1 |
|
\section{Event reconstruction} |
2 |
|
\label{sec:eventReconstruction} |
3 |
|
|
4 |
< |
\subsection{Trigger selection and efficiencies} |
4 |
> |
We categorize \WZ\ three-lepton final state as following |
5 |
> |
\begin{itemize} |
6 |
> |
\item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$. |
7 |
> |
\item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$. |
8 |
> |
\item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$. |
9 |
> |
\item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$. |
10 |
> |
\end{itemize} |
11 |
|
|
12 |
|
|
13 |
< |
\subsection{Lepton identification} |
13 |
> |
\subsection{Trigger selection and efficiencies} |
14 |
|
|
15 |
+ |
Events stemming from the three-lepton final states of $\WZ$ production |
16 |
+ |
are collected by the electron and/or muon triggers. For each channel, |
17 |
+ |
a minimun number of HLT requirements is chosen while keeping |
18 |
+ |
the HLT efficiency for selected events close to 100\%. The same |
19 |
+ |
HLT requirements are used for channels with the same \Z decay mode: |
20 |
+ |
\begin{itemize} |
21 |
+ |
\item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed |
22 |
+ |
\item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso |
23 |
+ |
\end{itemize} |
24 |
+ |
The HLT efficiencies for all modes for events passing the full |
25 |
+ |
selection described in this section are given in table~\ref{tab:hlteff}. |
26 |
+ |
|
27 |
+ |
\begin{table}[tbph] |
28 |
+ |
\begin{center} |
29 |
+ |
|
30 |
+ |
\begin{tabular}{llc} \hline \hline |
31 |
+ |
Channel & HLT selection & HLT efficiency \\ \hline |
32 |
+ |
$3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\ |
33 |
+ |
$2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\ |
34 |
+ |
$2\mu 1e$ & HLTSingleMuonIso & 0.966 \\ |
35 |
+ |
$3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline |
36 |
+ |
\end{tabular} |
37 |
+ |
|
38 |
+ |
\end{center} |
39 |
+ |
\caption{HLT Efficiencies for all the events in the generated phase space that |
40 |
+ |
have been retained by the complete event selection.} |
41 |
+ |
\label{tab:hlteff} |
42 |
+ |
\end{table} |
43 |
+ |
|
44 |
+ |
|
45 |
+ |
\begin{figure}[tbp] |
46 |
+ |
\begin{center} |
47 |
+ |
\scalebox{0.7}{\includegraphics{figs/mu_isol.eps}} |
48 |
+ |
\caption{Muon isolation variables for the muon associated |
49 |
+ |
to the \W boson decay in $2e1\mu$ events: in the left plot |
50 |
+ |
we illustrate the sum of calorimetric energy in a $\Delta R=0.3$ cone |
51 |
+ |
around the muon candidate; in the right plot we display the sum of |
52 |
+ |
transverse momenta of tracks within a $\Delta R = 0.25$ cone around |
53 |
+ |
the muon candidate. The normalization of signal and background |
54 |
+ |
distributions is arbitrary. |
55 |
+ |
} |
56 |
+ |
\label{fig:mu_isol} |
57 |
+ |
\end{center} |
58 |
+ |
\end{figure} |
59 |
+ |
|
60 |
+ |
\begin{figure}[tb] |
61 |
+ |
\begin{center} |
62 |
+ |
\scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}} |
63 |
+ |
\caption{ |
64 |
+ |
Muon impact parameter significance distribution |
65 |
+ |
in $2e1\mu$ events. The normalization of signal and background |
66 |
+ |
distributions is arbitrary. |
67 |
+ |
} |
68 |
+ |
\label{fig:mu_SIP} |
69 |
+ |
\end{center} |
70 |
+ |
\end{figure} |
71 |
|
|
72 |
|
|
73 |
< |
\subsection{\WZ candidate selection} |
73 |
> |
\subsection{Lepton identification} |
74 |
> |
\label{sec:leptonId} |
75 |
|
|
76 |
+ |
The requirements used for electron identification in this analysis are described |
77 |
+ |
in~\cite{noteElectronID}. |
78 |
|
|
79 |
< |
\subsection{Signal extraction} |
79 |
> |
Muon candidates are selected from global muons, which are reconstructed |
80 |
> |
by combining measurements in the muon chambers and the central tracker. |
81 |
> |
An additional isolation criterion is imposed to require the energy |
82 |
> |
measured in the calorimeters within a $\Delta R = 0.3$ cone around the |
83 |
> |
muon to be smaller than 3 GeV and the sum of the $p_T$ of tracks |
84 |
> |
within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 GeV. |
85 |
> |
These cuts reduce the background from muons originated in |
86 |
> |
\b-quark decays of the $\Zbbbar$ background, which are close to tracks |
87 |
> |
and clusters from the other \b-quark decay products. |
88 |
> |
The signal and background distributions of these isolation variables |
89 |
> |
are shown in Figure~\ref{fig:mu_isol} for the muon in $2e1\mu$ candidate |
90 |
> |
events. |
91 |
> |
|
92 |
> |
%Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the |
93 |
> |
%performance of the isolation cut. The distribution of the isolation |
94 |
> |
%variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly |
95 |
> |
%interesting, since muons only stem from \b-quark decays. |
96 |
> |
|
97 |
> |
The significance of the muon impact parameter in the plane |
98 |
> |
transverse to the beam, $S_{IP}$, discriminates against leptons from |
99 |
> |
heavy-quark decays in all standard model background processes. This |
100 |
> |
variable is defined as the ratio between the measured impact parameter |
101 |
> |
and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to |
102 |
> |
satisfy $S_{IP}<3$. This requirement is applied only for muon candidates |
103 |
> |
and not for electrons. For electron candidates, a significant fraction of the |
104 |
> |
background comes from misidentified light quark jets. Thus, |
105 |
> |
the requirement on the impact parameter significance does not |
106 |
> |
increase the significance of the $\W\to e$ channels, as can be seen in |
107 |
> |
Fig.~\ref{fig:wl_IP_SvsCut}. The distribution of $S_{IP}$ for the muon |
108 |
> |
in $2e1\mu$ candidate events is shown in Figure~\ref{fig:mu_SIP}. |
109 |
> |
|
110 |
> |
The muons fullfilling all these requirements will be called ``tight'', while global |
111 |
> |
muons without requirements on isolation or impact parameter significance are called ``loose''. |
112 |
> |
|
113 |
> |
\begin{figure}[p] |
114 |
> |
\begin{center} |
115 |
> |
\scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}} |
116 |
> |
\caption{Efficiency for signal and background as a function |
117 |
> |
of the requirement on the \W-boson lepton impact parameter |
118 |
> |
significance. All other criteria but the one on impact parameter |
119 |
> |
significance are applied. |
120 |
> |
% Only events with 81 GeV $< M_Z < $ 101 \gev |
121 |
> |
% are considered. |
122 |
> |
} |
123 |
> |
\label{fig:wl_IP_eff} |
124 |
> |
\end{center} |
125 |
> |
%\end{figure} |
126 |
> |
|
127 |
> |
%\begin{figure}[bt] |
128 |
> |
\begin{center} |
129 |
> |
\scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}} |
130 |
> |
\caption{Signal significance as a function of requirement on |
131 |
> |
the \W-boson lepton impact parameter significance. All other criteria but |
132 |
> |
the requirement on the impact parameter significance are applied. |
133 |
> |
% Only events with 81 GeV $< M_Z < $ 101 \gev are considered. |
134 |
> |
} |
135 |
> |
\label{fig:wl_IP_SvsCut} |
136 |
> |
\end{center} |
137 |
> |
\end{figure} |
138 |
> |
|
139 |
> |
|
140 |
> |
\begin{table}[tbp] |
141 |
> |
\begin{tabular}{|l|c|c|c|c|} \hline |
142 |
> |
& $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline |
143 |
> |
\multicolumn{5}{|c|}{Lepton selection} \\ \hline |
144 |
> |
Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for \Z reconstruction} & \\ |
145 |
> |
& \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for \W} & \\ \hline |
146 |
> |
Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\ |
147 |
> |
& & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\ |
148 |
> |
& & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline |
149 |
> |
HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed} |
150 |
> |
& \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline |
151 |
> |
\multicolumn{5}{|c|}{\Z reconstruction} \\ \hline |
152 |
> |
Lepton cuts & \multicolumn{4}{|c|}{for both \Z leptons: $p_T > 15$ GeV} \\ |
153 |
> |
Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\ |
154 |
> |
Second \Z veto & \multicolumn{4}{|c|}{No independent second \Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline |
155 |
> |
\multicolumn{5}{|c|}{\W lepton selection} \\ \hline |
156 |
> |
|
157 |
> |
Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline |
158 |
> |
Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline |
159 |
> |
|
160 |
> |
\end{tabular} |
161 |
> |
\caption{Summary of the criteria we use to select \WZ\ final state} |
162 |
> |
\label{tab:allcuts} |
163 |
> |
\end{table} |
164 |
> |
|
165 |
> |
|
166 |
> |
\begin{figure}[p] |
167 |
> |
\begin{center} |
168 |
> |
\scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}} |
169 |
> |
\caption{Efficiency for signal and background as a function |
170 |
> |
of the cut value on the \W-boson lepton transverse momentum. |
171 |
> |
All other cuts but the cut on this variable are applied. |
172 |
> |
Only events with 81 GeV $< M_Z < $ 101 \gev |
173 |
> |
are considered.} |
174 |
> |
\label{fig:wlpt_cuteff} |
175 |
> |
\end{center} |
176 |
> |
%\end{figure} |
177 |
> |
|
178 |
> |
%\begin{figure}[bt] |
179 |
> |
\begin{center} |
180 |
> |
\scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}} |
181 |
> |
\caption{Signal significance as a function of the cut value on |
182 |
> |
the \W-boson lepton transverse momentum. All other cuts but |
183 |
> |
the cut on this variable are applied. Only events with |
184 |
> |
81 GeV $< M_Z < $ 101 \gev are considered.} |
185 |
> |
\label{fig:wlpt_cutS} |
186 |
> |
\end{center} |
187 |
> |
\end{figure} |
188 |
|
|
189 |
|
|
190 |
< |
\subsection{Systematic uncertainties} |
190 |
> |
\subsection{\WZ candidate selection} |
191 |
|
|
192 |
+ |
Events are accepted if they contain at least three charged leptons, |
193 |
+ |
either electrons or muons, with $p_T > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for |
194 |
+ |
electrons,$| \eta | < 2.4$ for muons, as discussed in Section~\ref{sec:leptonId}. |
195 |
+ |
|
196 |
+ |
The \WZ candidate selection proceeds from building all possible |
197 |
+ |
\Z-boson candidates from same-flavour opposite-charge lepton pairs. |
198 |
+ |
For $\Z \to ee$ decays, electron candidates have to fulfill the loose requirements |
199 |
+ |
defined in~\cite{noteElectronID}. |
200 |
+ |
|
201 |
+ |
Events are retained if the mass of the \Z boson candidate is |
202 |
+ |
within 20 GeV of the \Z boson mass, $m_Z$. The event is |
203 |
+ |
rejected if a second \Z candidate is found. This second \Z boson candidate is formed |
204 |
+ |
using all possible same-flavour opposite-charge combinations which are left |
205 |
+ |
after removing the two leptons already used for the first \Z boson candidate. This |
206 |
+ |
secondary \Z boson veto helps to suppress $\Z\Z$ events. |
207 |
+ |
%The invariant |
208 |
+ |
%mass distribution for accepted \Z candidates is shown in |
209 |
+ |
%Figure~\ref{fig:zcandidates}. |
210 |
+ |
|
211 |
+ |
% and the \Z mass resolution is shown in |
212 |
+ |
%Figure~\ref{fig:dzmass}. |
213 |
+ |
|
214 |
+ |
After the \Z boson candidate is identified, the remaining leptons in the event |
215 |
+ |
are required, for electrons, to pass the tight criteria described in~\cite{noteElectronID} |
216 |
+ |
or, for muons, all criteria described in section~\ref{sec:leptonId}. |
217 |
+ |
If more than one lepton candidate satisfies the tight requirements, the one with the |
218 |
+ |
highest $p_T$ is associated with \W boson decay. This lepton's $p_T$ is effective |
219 |
+ |
discriminant against \Zbbbar and \Zjets production (see Fig.~\ref{fig:wlpt_cuteff}). |
220 |
+ |
We require the transverse momentum to exceed 20 GeV, as it maximizes |
221 |
+ |
the significance of the \WZ\ signal with respect to background as shown in |
222 |
+ |
Fig.~\ref{fig:wlpt_cutS}. |
223 |
+ |
|
224 |
+ |
An additional requirement on the isolation between electron and muon candidates is applied |
225 |
+ |
for the $2\mu 1e$ channel, by demanding the value of $\Delta R$ between the electron |
226 |
+ |
candidate associated with the \W boson decay and any of the two muons associated with |
227 |
+ |
the \Z boson decay to be greater than 0.1. |
228 |
+ |
|
229 |
+ |
This requirement allows suppressing the contribution of $\Z \to \mu\mu$ |
230 |
+ |
decays, where one of the two muons radiates a photon which is reconstructed |
231 |
+ |
as an electron, possibly after conversion. |
232 |
+ |
% ADD THE PLOT TO JUSTIFY THIS COMMENT |
233 |
+ |
% This can be seen as a peak in the dimuon |
234 |
+ |
%invariant mass at around 60 GeV in Fig.~\ref{fig:Z2mu1e_60GeVPeak}. |
235 |
+ |
|
236 |
+ |
The summary of the selection criteria is given in Table~\ref{tab:allcuts}. |
237 |
+ |
|
238 |
+ |
The expected number of the events satisfying the sequential steps of the selection |
239 |
+ |
is listed in Tables~\ref{tab:sel-effA}. |
240 |
+ |
In Table~\ref{tab:wz-effimatrix} we list the total selection efficiency for different |
241 |
+ |
\W and \Z boson decay modes. It can be seen lepton candidates from \W and \Z |
242 |
+ |
boson decays are almost always are reconstructed with the correct flavor. As expected, |
243 |
+ |
there is a small contribution from $\W \to \tau \nu_\tau \to \ell \nu_\ell \nu_\tau$ |
244 |
+ |
decays. However, this contribution is suppressed, mostly due to $p_T$ requirement |
245 |
+ |
on the third lepton, as leptons from $\tau$ decays are not as energetic as those from |
246 |
+ |
$\W \to \ell \nu$ processes. |
247 |
+ |
|
248 |
+ |
In Tables~\ref{tab:wz-matcheffi-Zee} and \ref{tab:wz-matcheffi-Zmumu} we |
249 |
+ |
display the fraction of reconstructed \WZ events with correctly-matched leptons. |
250 |
+ |
It can be seen that the lepton associated with the \W boson decay is correctly matched |
251 |
+ |
to the true Monte Carlo lepton from the \W boson decay in more than 90\% of |
252 |
+ |
the cases, even for events with several lepton candidates available to be associated |
253 |
+ |
to the \W boson decay. The choice to take the lepton candidate with the leading $p_T$ is, |
254 |
+ |
therefore, justified. |
255 |
+ |
|
256 |
+ |
\begin{table}[p] |
257 |
+ |
\begin{center} |
258 |
+ |
|
259 |
+ |
\begin{tabular}{lcc|cc|cc|cc|} \hline |
260 |
+ |
\multicolumn{9}{c}{ {\bf $3e$ Channel}} \\ \hline \hline |
261 |
+ |
Step & $\WZ \to 3e\nu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline |
262 |
+ |
All events & 185 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\ |
263 |
+ |
Found $\Z \to ee$ & 73.9 & 39.9\% & $5.02\cdot 10^5$ & 8.63\% & $2.92\cdot 10^3$ & 0.353\% & $2.78\cdot 10^4$ & 19.4\% \\ |
264 |
+ |
Second \Z veto & 73.9 & 100\% & $5.02\cdot 10^5$ & 100\% & $2.92\cdot 10^3$ & 99.9\% & $2.78\cdot 10^4$ & 100\% \\ |
265 |
+ |
Found $\W \to e\nu$ & 37.4 & 50.6\% & 310 & 0.062\% & 13.8 & 0.474\% & 171 & 0.61\% \\ |
266 |
+ |
\W lepton $p_T$ cut & 32.5 & 86.7\% & 86.8 & 28\% & 8.26 & 59.7\% & 23.4 & 13.7\% \\ |
267 |
+ |
Passes HLT & 32.3 & 99.6\% & 86.8 & 100\% & 8.26 & 100\% & 23.3 & 99.7\% \\ |
268 |
+ |
\Z mass window & 29.5 & 91.2\% & 51.9 & 59.8\% & 3.26 & 39.5\% & 17.3 & 74\% \\ |
269 |
+ |
\hline |
270 |
+ |
Overall efficiency & & 15.9\% & & 0.00089\% & & 0.00039\% & & 0.012\% \\ |
271 |
+ |
\hline |
272 |
+ |
|
273 |
+ |
\multicolumn{9}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline |
274 |
+ |
Step & $\WZ \to 2e1\mu\nu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{t}\ell\ell$ & $ \epsilon$\\ \hline |
275 |
+ |
All events & 185 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\ |
276 |
+ |
Found $\Z \to ee$ & 63.8 & 34.5\% & $5.02\cdot 10^5$ & 8.63\% & $2.92\cdot 10^3$ & 0.35\% & $2.78\cdot 10^4$ & 19.4\% \\ |
277 |
+ |
Second \Z veto & 63.7 & 99.9\% & $5.02\cdot 10^5$ & 100\% & $2.92\cdot 10^3$ & 99.9\% & $2.78\cdot 10^4$ & 100\% \\ |
278 |
+ |
Found $\W \to \mu\nu$ & 42.6 & 66.8\% & $2.19\cdot 10^3$ & 0.44\% & 55.6 & 1.91\% & 748 & 2.69\% \\ |
279 |
+ |
\W lepton $p_T$ cut & 35.1 & 82.5\% & 9.58 & 0.44\% & 16.4 & 29.5\% & 9.49 & 1.27\% \\ |
280 |
+ |
Passes HLT & 34.3 & 97.6\% & 8.32 & 86.9\% & 14.1 & 86\% & 9.12 & 96.1\% \\ |
281 |
+ |
\Z mass window & 30.8 & 89.8\% & 7.31 & 87.9\% & 3.76 & 26.7\% & 8 & 87.8\% \\ |
282 |
+ |
\hline |
283 |
+ |
Overall efficiency & & 16.7\% & & 0.00013\% & & 0.00045\% & & 0.0056\% \\ |
284 |
+ |
\hline |
285 |
+ |
|
286 |
+ |
\multicolumn{9}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline |
287 |
+ |
Step & $\WZ \to 2\mu1e$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline |
288 |
+ |
All events & 190 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\ |
289 |
+ |
Found $\Z \to \mu\mu$ & 75.2 & 39.7\% & $5.77\cdot 10^5$ & 9.92\% & $2.78\cdot 10^3$ & 0.336\% & $3.19\cdot 10^4$ & 22.2\% \\ |
290 |
+ |
Second \Z veto & 75.2 & 100\% & $5.77\cdot 10^5$ & 100\% & $2.77\cdot 10^3$ & 99.9\% & $3.19\cdot 10^4$ & 100\% \\ |
291 |
+ |
Found $\W \to e\nu$ & 44 & 58.5\% & 702 & 0.12\% & 15.1 & 0.54\% & 213 & 0.67\% \\ |
292 |
+ |
\W lepton $p_T$ cut & 38.4 & 87.2\% & 464 & 66.2\% & 10.3 & 68\% & 50.5 & 23.7\% \\ |
293 |
+ |
$\Delta R(e,\mu)$ cut & 38.4 & 99.9\% & 93 & 20\% & 7.15 & 69.6\% & 23.3 & 46\% \\ |
294 |
+ |
Passes HLT & 37.3 & 97.1\% & 88.8 & 95.5\% & 6.62 & 92.7\% & 23.1 & 99.4\% \\ |
295 |
+ |
\Z mass window & 33.6 & 90.1\% & 50.3 & 56.6\% & 2.84 & 42.9\% & 18.8 & 81.4\% \\ |
296 |
+ |
\hline |
297 |
+ |
Overall efficiency & & 17.7\% & & 0.00086\% & & 0.00034\% & & 0.013\% \\ |
298 |
+ |
\hline |
299 |
+ |
%\end{tabular} |
300 |
+ |
%\begin{tabular}{lcc|cc|cc|cc|} \hline |
301 |
+ |
\multicolumn{9}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline |
302 |
+ |
Step & $\WZ \to 3\mu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline |
303 |
+ |
All events & 189 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\ |
304 |
+ |
Found $\Z \to \mu\mu$ & 83.8 & 44.3\% & $5.77\cdot 10^5$ & 9.92\% & $2.78\cdot 10^3$ & 0.336\% & $3.19\cdot 10^4$ & 22.2\% \\ |
305 |
+ |
Second \Z veto & 83.6 & 99.8\% & $5.77\cdot 10^5$ & 100\% & $2.77\cdot 10^3$ & 99.9\% & $3.19\cdot 10^4$ & 100\% \\ |
306 |
+ |
Found $\W \to \mu\nu$ & 51.8 & 62\% & $2.52\cdot 10^3$ & 0.44\% & 34.8 & 1.25\% & 810 & 2.54\% \\ |
307 |
+ |
\W lepton $p_T$ cut & 42.5 & 81.9\% & 1.84 & 0.07\% & 1.16 & 3.33\% & 8.89 & 1.1\% \\ |
308 |
+ |
Passes HLT & 42.2 & 99.4\% & 1.84 & 100\% & 1.16 & 100\% & 8.89 & 100\% \\ |
309 |
+ |
\Z mass window & 38.5 & 91.1\% & 1.84 & 100\% & 1.16 & 100\% & 7.78 & 87.5\% \\ |
310 |
+ |
\hline |
311 |
+ |
Overall efficiency & & 20.3\% & & 0.000032\% & & 0.00014\% & & 0.0054\% \\ |
312 |
+ |
\hline |
313 |
+ |
\end{tabular} |
314 |
+ |
|
315 |
+ |
\caption{Expected number of signal and background events passing the different |
316 |
+ |
selections steps together with the efficiency of each requirement and total efficiency of |
317 |
+ |
selection criteria in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity |
318 |
+ |
of 1 \invfb.} |
319 |
+ |
\label{tab:sel-effA} |
320 |
+ |
\end{center} |
321 |
+ |
\end{table} |
322 |
+ |
|
323 |
+ |
\begin{table}[p] |
324 |
+ |
\begin{center} |
325 |
+ |
\begin{tabular}{l|ccccc} |
326 |
+ |
\hline \hline |
327 |
+ |
& \multicolumn{5}{c}{$\Z \to ee$ and \W decay modes below} \\ |
328 |
+ |
Reconstruction channel & $e \nu$ |
329 |
+ |
& $\mu \nu $ |
330 |
+ |
& $\tau \nu \to e \nu \nu $ |
331 |
+ |
& $\tau \nu \to \mu \nu \nu $ |
332 |
+ |
& $\tau \nu \to {\rm hadrons~} \nu$ |
333 |
+ |
\\ \hline |
334 |
+ |
$3e$ & 17.4\% & 0.0319\% & 6.42\% & 0\% & 0.162\% \\ |
335 |
+ |
$2e1\mu$ & 0\% & 18.6\% & 0\% & 5.53\% & 0.0485\% \\ |
336 |
+ |
$2\mu1e$ & 0\% & 0\% & 0\% & 0\% & 0\% \\ |
337 |
+ |
$3\mu$ & 0\% & 0\% & 0\% & 0\% & 0\% \\ |
338 |
+ |
\hline \hline |
339 |
+ |
|
340 |
+ |
& \multicolumn{5}{c}{$\Z \to \mu\mu$ and \W decay modes below} \\ |
341 |
+ |
Reconstruction channel & $e\nu$ |
342 |
+ |
& $\mu\nu$ |
343 |
+ |
& $\tau\nu \to e\nu\nu$ |
344 |
+ |
& $\tau\nu \to \mu\nu\nu$ |
345 |
+ |
& $\tau\nu \to {\rm hadrons~}\nu$ |
346 |
+ |
\\ \hline |
347 |
+ |
$3e$ & 0\% & 0\% & 0\% & 0\% & 0\% \\ |
348 |
+ |
$2e1\mu$ & 0.0104\% & 0\% & 0\% & 0\% & 0\% \\ |
349 |
+ |
$2\mu1e$ & 19.6\% & 0.0208\% & 5.56\% & 0\% & 0.18\% \\ |
350 |
+ |
$3\mu$ & 0\% & 23.4\% & 0.0573\% & 6.77\% & 0.0164\% \\ |
351 |
+ |
\hline \hline |
352 |
+ |
\end{tabular} |
353 |
+ |
\end{center} |
354 |
+ |
\caption{Selection efficiency for signal events in the four selection channels for the different |
355 |
+ |
generated \W and \Z decay channels.} |
356 |
+ |
\label{tab:wz-effimatrix} |
357 |
+ |
|
358 |
+ |
%\end{table} |
359 |
+ |
%\begin{table}[tbp] |
360 |
+ |
\begin{center} |
361 |
+ |
\begin{tabular}{llcc} \hline |
362 |
+ |
& & \multicolumn{2}{c}{Generated decay} \\ |
363 |
+ |
& & \multicolumn{2}{c}{$\Z \to ee $} \\ |
364 |
+ |
Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$ \\ |
365 |
+ |
\hline \hline |
366 |
+ |
\multicolumn{4}{c}{all} \\ \hline |
367 |
+ |
$3e$ & all & 1644 events & 3 events \\ |
368 |
+ |
$3e$ & matched \Z & 93$\pm$1\% & 100\%\\ |
369 |
+ |
$3e$ & matched \W & 92$\pm$1\% & 0\\ |
370 |
+ |
$3e$ & matched \WZ & 91$\pm$1\% & 0\\ |
371 |
+ |
\hline \hline |
372 |
+ |
|
373 |
+ |
\multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline |
374 |
+ |
$3e$ & all & 1602 events & 0 events \\ |
375 |
+ |
$3e$ & matched \Z & 94$\pm$1\% & 0\\ |
376 |
+ |
$3e$ & matched \W & 92$\pm$1\% & 0\\ |
377 |
+ |
$3e$ & matched \WZ & 91$\pm$1\% & 0\\ |
378 |
+ |
\hline \hline |
379 |
+ |
|
380 |
+ |
\multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline |
381 |
+ |
$3e$ & all & 42 events & 3 events \\ |
382 |
+ |
$3e$ & matched \Z & 93$\pm$4\% & 100\%\\ |
383 |
+ |
$3e$ & matched \W & 91 $\pm$5\% & 0\\ |
384 |
+ |
$3e$ & matched \WZ & 91$\pm$5\% & 0\\ |
385 |
+ |
\hline \hline |
386 |
+ |
|
387 |
+ |
\multicolumn{4}{c}{all} \\ \hline |
388 |
+ |
$2e1\mu$ & all & 0 events & 1746 events \\ |
389 |
+ |
$2e1\mu$ & matched \Z & 0 & 100\%\\ |
390 |
+ |
$2e1\mu$ & matched \W & 0 & 100\%\\ |
391 |
+ |
$2e1\mu$ & matched \WZ & 0 & 100\%\\ |
392 |
+ |
\hline \hline |
393 |
+ |
|
394 |
+ |
\multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline |
395 |
+ |
$2e1\mu$ & all & 0 events & 1715 events \\ |
396 |
+ |
$2e1\mu$ & matched \Z & 0 & 100\%\\ |
397 |
+ |
$2e1\mu$ & matched \W & 0 & 100\%\\ |
398 |
+ |
$2e1\mu$ & matched \WZ & 0 & 100\%\\ |
399 |
+ |
\hline \hline |
400 |
+ |
|
401 |
+ |
\multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline |
402 |
+ |
$2e1\mu$ & all & 0 & 31 \\ |
403 |
+ |
$2e1\mu$ & matched \Z & 0 & 100\%\\ |
404 |
+ |
$2e1\mu$ & matched \W & 0 & 100\%\\ |
405 |
+ |
$2e1\mu$ & matched \WZ & 0 & 100\% \\ \hline \hline |
406 |
+ |
\end{tabular} |
407 |
+ |
\end{center} |
408 |
+ |
\caption{Fractions of events with correctly matched leptons |
409 |
+ |
to true decay product of \W and \Z decays for final states |
410 |
+ |
with generated $\Z\to ee$ decays} |
411 |
+ |
\label{tab:wz-matcheffi-Zee} |
412 |
+ |
\end{table} |
413 |
+ |
|
414 |
+ |
|
415 |
+ |
|
416 |
+ |
\begin{table}[tbp] |
417 |
+ |
\begin{center} |
418 |
+ |
\begin{tabular}{llcc} \hline |
419 |
+ |
& & \multicolumn{2}{c}{Generated decay:} \\ |
420 |
+ |
& & \multicolumn{2}{c}{$\Z \to \mu\mu $} \\ |
421 |
+ |
Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$ |
422 |
+ |
\\ |
423 |
+ |
\hline \hline |
424 |
+ |
\multicolumn{4}{c}{all} \\ \hline |
425 |
+ |
$2\mu1e$ & all & 1895 events & 2 events \\ |
426 |
+ |
$2\mu1e$ & matched \Z & 100\% & 100\%\\ |
427 |
+ |
$2\mu1e$ & matched \W & 99$\pm$1\% & 0\\ |
428 |
+ |
$2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\ |
429 |
+ |
\hline \hline |
430 |
+ |
|
431 |
+ |
\multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline |
432 |
+ |
$2\mu1e$ & all & 1847 events & 0 events \\ |
433 |
+ |
$2\mu1e$ & matched \Z & 100\% & 0\\ |
434 |
+ |
$2\mu1e$ & matched \W & 99$\pm$1\% & 0\\ |
435 |
+ |
$2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\ |
436 |
+ |
\hline \hline |
437 |
+ |
|
438 |
+ |
\multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline |
439 |
+ |
$2\mu1e$ & all & 48 events & 2 events \\ |
440 |
+ |
$2\mu1e$ & matched \Z & 100\% & 100\%\\ |
441 |
+ |
$2\mu1e$ & matched \W & 94$\pm$3.5\%& 0\\ |
442 |
+ |
$2\mu1e$ & matched \WZ & 94$\pm$3.5\% & 0\\ |
443 |
+ |
\hline \hline |
444 |
+ |
|
445 |
+ |
\multicolumn{4}{c}{all} \\ \hline |
446 |
+ |
$3\mu$ & all & 0 events & 2251 events \\ |
447 |
+ |
$3\mu$ & matched \Z & 0 & 94$\pm$1\%\\ |
448 |
+ |
$3\mu$ & matched \W & 0 & 93$\pm$1\%\\ |
449 |
+ |
$3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\ |
450 |
+ |
\hline \hline |
451 |
+ |
|
452 |
+ |
\multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline |
453 |
+ |
$3\mu$ & all & 0 events & 2207 events \\ |
454 |
+ |
$3\mu$ & matched \Z & 0 & 94$\pm$1\%\\ |
455 |
+ |
$3\mu$ & matched \W & 0 & 93$\pm$1\%\\ |
456 |
+ |
$3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\ |
457 |
+ |
\hline \hline |
458 |
+ |
|
459 |
+ |
\multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline |
460 |
+ |
$3\mu$ & all & 0 events & 44 events \\ |
461 |
+ |
$3\mu$ & matched \Z & 0 & 91$\pm$4\%\\ |
462 |
+ |
$3\mu$ & matched \W & 0 & 91$\pm$4\%\\ |
463 |
+ |
$3\mu$ & matched \WZ & 0 & 91$\pm$4\%\\ \hline \hline |
464 |
+ |
\end{tabular} |
465 |
+ |
\end{center} |
466 |
+ |
\caption{Fractions of MC \WZ events with correctly matched leptons |
467 |
+ |
to true decay product of \W and \Z decays for final states |
468 |
+ |
with generated $\Z\to \mu\mu$ decays} |
469 |
+ |
\label{tab:wz-matcheffi-Zmumu} |
470 |
+ |
\end{table} |
471 |
+ |
|
472 |
+ |
|
473 |
+ |
\subsection{Complementary studies: can we use the neutrino?} |
474 |
+ |
|
475 |
+ |
In $\WZ \to \ell^{\pm}\nu \ellell (\ell=e,\mu)$ events, the neutrino |
476 |
+ |
coming from the \W-boson decay leaves the detector with a significant |
477 |
+ |
amount of energy, which should reflect in a large transverse missing |
478 |
+ |
energy measurement. On the other side, no large MET is expected for |
479 |
+ |
the most important background categories, especially \Zjets, |
480 |
+ |
\Zbbbar, \ZZ and \Zgamma. This expectation is confirmed, as can be |
481 |
+ |
seen in Figure~\ref{fig:met}. |
482 |
+ |
|
483 |
+ |
Another variable sensitive to the presence of the neutrino |
484 |
+ |
is the W transverse mass $m_T^W$, obtained by combining the missing |
485 |
+ |
energy vector and the lepton associated to the \W-boson decay. |
486 |
+ |
The distribution of $m_T^W$ is shown in Figure~\ref{fig:mtw}. |
487 |
+ |
The signal yield could be extracted from that distribution. |
488 |
+ |
This requires however additional studies and it has not been |
489 |
+ |
done at this stage. |
490 |
+ |
|
491 |
+ |
%\subsection{Signal extraction} |
492 |
+ |
%\input D0Matrix |
493 |
+ |
\input zjetbackground |
494 |
+ |
|
495 |
+ |
|
496 |
+ |
\section{Systematic uncertainties} |
497 |
+ |
\input Sys |
498 |
+ |
|
499 |
+ |
|
500 |
+ |
\begin{figure}[bt] |
501 |
+ |
\begin{center} |
502 |
+ |
\scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}} |
503 |
+ |
\caption{Missing transverse energy for the four signal categories. |
504 |
+ |
The distributions show the number of expected events |
505 |
+ |
for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 \gev |
506 |
+ |
are shown. All selection cuts are applied.} |
507 |
+ |
\label{fig:met} |
508 |
+ |
\end{center} |
509 |
+ |
\end{figure} |
510 |
+ |
|
511 |
+ |
\begin{figure}[bt] |
512 |
+ |
\begin{center} |
513 |
+ |
\scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}} |
514 |
+ |
\caption{\W transverse mass for the four signal categories. |
515 |
+ |
The distributions show the number of expected events |
516 |
+ |
for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 GeV are shown. |
517 |
+ |
All selection cuts are applied.} |
518 |
+ |
\label{fig:mtw} |
519 |
+ |
\end{center} |
520 |
+ |
\end{figure} |
521 |
|
|
522 |
|
|
523 |
|
|