ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/selection.tex (file contents):
Revision 1.1 by vuko, Wed Jun 11 15:18:44 2008 UTC vs.
Revision 1.19 by vuko, Fri Jun 27 23:38:48 2008 UTC

# Line 1 | Line 1
1   \section{Event reconstruction}
2   \label{sec:eventReconstruction}
3  
4 < \subsection{Trigger selection and efficiencies}
4 > We categorize \WZ\ three-lepton final state as following
5 > \begin{itemize}
6 > \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
7 > \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
8 > \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
9 > \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
10 > \end{itemize}
11  
12  
13 < \subsection{Lepton identification}
13 > \subsection{Trigger selection and efficiencies}
14  
15 + Events stemming from the three-lepton final states of $\WZ$ production
16 + are collected by the electron and/or muon triggers. For each channel,
17 + a minimun number of HLT requirements is chosen while keeping
18 + the HLT efficiency for selected events close to 100\%. The same
19 + HLT requirements are used for channels with the same \Z decay mode:
20 + \begin{itemize}
21 + \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
22 + \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
23 + \end{itemize}
24 + The HLT efficiencies for all modes for events passing the full
25 + selection described in this section are given in table~\ref{tab:hlteff}.
26 +
27 + \begin{table}[tbph]
28 + \begin{center}
29 +
30 + \begin{tabular}{llc} \hline \hline
31 + Channel    &   HLT selection                                   & HLT efficiency \\ \hline
32 + $3e$       &   HLTSingleElectron or HLTDoubleElectronRelaxed   &  0.996         \\
33 + $2e1\mu$   &   HLTSingleElectron or HLTDoubleElectronRelaxed   &  0.969         \\
34 + $2\mu 1e$  &   HLTSingleMuonIso                                &  0.966         \\
35 + $3\mu$     &   HLTSingleMuonIso                                &  0.994         \\ \hline \hline
36 + \end{tabular}
37 +
38 + \end{center}
39 + \caption{HLT Efficiencies for all the events in the generated phase space that
40 +  have been retained  by the complete event selection.}
41 + \label{tab:hlteff}
42 + \end{table}
43 +
44 +
45 + \begin{figure}[tbp]
46 +  \begin{center}
47 +  \scalebox{0.7}{\includegraphics{figs/mu_isol.eps}}
48 +  \caption{Muon isolation variables for the muon associated
49 +    to the \W boson decay in $2e1\mu$ events: in the left plot
50 +    we illustrate the sum of calorimetric energy in a $\Delta R=0.3$ cone
51 +    around the muon candidate; in the right plot we display the sum of
52 +    transverse momenta of tracks within a $\Delta R = 0.25$ cone around
53 +    the muon candidate. The normalization of signal and background
54 +    distributions is arbitrary.
55 + }
56 +  \label{fig:mu_isol}
57 +  \end{center}
58 + \end{figure}
59 +
60 + \begin{figure}[tb]
61 +  \begin{center}
62 +  \scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}}
63 +  \caption{
64 +    Muon impact parameter significance distribution
65 +    in $2e1\mu$ events. The normalization of signal and background
66 +    distributions is arbitrary.
67 +  }
68 +  \label{fig:mu_SIP}
69 +  \end{center}
70 + \end{figure}
71  
72  
73 < \subsection{\WZ candidate selection}
73 > \subsection{Lepton identification}
74 > \label{sec:leptonId}
75  
76 + The requirements used for electron identification in this analysis are described
77 + in~\cite{noteElectronID}.
78  
79 < \subsection{Signal extraction}
79 > Muon candidates are selected from global muons, which are reconstructed
80 > by combining measurements in the muon chambers and the central tracker.
81 > An additional isolation criterion is imposed to require the energy
82 > measured in the calorimeters within a $\Delta R = 0.3$ cone around the
83 > muon to be smaller than 3 GeV and the sum of the $p_T$ of tracks
84 > within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 GeV.
85 > These cuts reduce the background from muons originated in
86 > \b-quark decays of the $\Zbbbar$ background, which are close to tracks
87 > and clusters from the other \b-quark decay products.
88 > The signal and background distributions of these isolation variables
89 > are shown in Figure~\ref{fig:mu_isol} for the muon in $2e1\mu$ candidate
90 > events.
91 >
92 > %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
93 > %performance of the isolation cut. The distribution of the isolation
94 > %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
95 > %interesting, since muons only stem from  \b-quark decays.
96 >
97 > The significance of the muon impact parameter in the plane
98 > transverse to the beam, $S_{IP}$, discriminates against leptons from
99 > heavy-quark decays in all standard model background processes. This
100 > variable is defined as the ratio between the measured impact parameter
101 > and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
102 > satisfy $S_{IP}<3$. This requirement is applied only for muon candidates
103 > and not for electrons. For electron candidates, a significant fraction of the
104 > background comes from misidentified light quark jets. Thus,
105 > the requirement on the impact parameter significance does not
106 > increase the significance of the $\W\to e$ channels, as can be seen in
107 > Fig.~\ref{fig:wl_IP_SvsCut}. The distribution of $S_{IP}$ for the muon
108 > in $2e1\mu$ candidate events is shown in Figure~\ref{fig:mu_SIP}.
109 >
110 > The muons fullfilling all these requirements will be called ``tight'', while global
111 > muons without requirements on isolation or impact parameter significance are called ``loose''.
112 >
113 > \begin{figure}[p]
114 >  \begin{center}
115 >  \scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}}
116 >  \caption{Efficiency for signal and background as a function
117 >    of the requirement on the \W-boson lepton impact parameter
118 >    significance. All other criteria but the one on impact parameter
119 >    significance are applied.
120 > %    Only events with 81 GeV $< M_Z < $ 101 \gev
121 > %    are considered.
122 >  }
123 >  \label{fig:wl_IP_eff}
124 >  \end{center}
125 > %\end{figure}
126 >
127 > %\begin{figure}[bt]
128 >  \begin{center}
129 >  \scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}}
130 >  \caption{Signal significance as a function of requirement on
131 >    the \W-boson lepton impact parameter significance. All other criteria but
132 >    the requirement on the impact parameter significance are applied.
133 > %    Only events with 81 GeV $< M_Z < $ 101 \gev are considered.
134 >  }
135 >  \label{fig:wl_IP_SvsCut}
136 >  \end{center}
137 > \end{figure}
138 >
139 >
140 > \begin{table}[tbp]
141 > \begin{tabular}{|l|c|c|c|c|} \hline
142 >              &  $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
143 > \multicolumn{5}{|c|}{Lepton selection} \\ \hline
144 > Electrons     &   \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for \Z reconstruction} & \\
145 >              &   \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for \W} &  \\ \hline
146 > Muons         &  &  \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$}  \\
147 >              &  &  \multicolumn{3}{|c|}{ Calorimetric Isolation:$  {\tt IsoCalo}(\Delta R = 0.3)  < 5 \gev$}  \\
148 >              &  &  \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ }  \\ \hline
149 > HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
150 >                & \multicolumn{2}{|c|}{  HLTSingleMuonIso} \\ \hline
151 > \multicolumn{5}{|c|}{\Z reconstruction} \\ \hline
152 > Lepton cuts   &  \multicolumn{4}{|c|}{for both \Z leptons: $p_T > 15$ GeV} \\
153 > Mass window   &  \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
154 > Second \Z veto &  \multicolumn{4}{|c|}{No independent second \Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
155 > \multicolumn{5}{|c|}{\W lepton selection} \\ \hline
156 >
157 > Other cuts    &     &        & $\Delta R(\mu_Z,e_W)>0.1$ &  \\ \hline
158 > Signal region  &    \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
159 >
160 > \end{tabular}
161 > \caption{Summary of the criteria we use to select \WZ\ final state}
162 > \label{tab:allcuts}
163 > \end{table}
164 >
165 >
166 > \begin{figure}[p]
167 >  \begin{center}
168 >  \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
169 >  \caption{Efficiency for signal and background as a function
170 >    of the cut value on the \W-boson lepton transverse momentum.
171 >    All other cuts but the cut on this variable are applied.
172 >    Only events with 81 GeV $< M_Z < $ 101 \gev
173 >    are considered.}
174 >  \label{fig:wlpt_cuteff}
175 >  \end{center}
176 > %\end{figure}
177 >
178 > %\begin{figure}[bt]
179 >  \begin{center}
180 >  \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
181 >  \caption{Signal significance as a function of the cut value on
182 >    the \W-boson lepton transverse momentum. All other cuts but
183 >    the cut on this variable are applied. Only events with
184 >    81 GeV $< M_Z < $ 101 \gev are considered.}
185 >  \label{fig:wlpt_cutS}
186 >  \end{center}
187 > \end{figure}
188  
189  
190 < \subsection{Systematic uncertainties}
190 > \subsection{\WZ candidate selection}
191  
192 + Events are accepted if they contain at least three charged leptons,
193 + either electrons or muons, with $p_T > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
194 + electrons,$| \eta | < 2.4$ for muons, as discussed in Section~\ref{sec:leptonId}.
195 +
196 + The \WZ candidate selection proceeds from building all possible
197 + \Z-boson candidates from same-flavour opposite-charge lepton pairs.
198 + For $\Z \to ee$ decays, electron candidates have to fulfill the loose requirements
199 + defined in~\cite{noteElectronID}.
200 +
201 + Events are retained if the mass of the \Z boson candidate is
202 + within 20 GeV of the \Z boson mass, $m_Z$. The event is
203 + rejected if a second \Z candidate is found. This second \Z boson candidate is formed
204 + using all possible same-flavour opposite-charge combinations which are left
205 + after removing the two leptons already used for the first \Z boson candidate. This
206 + secondary \Z boson veto helps to suppress $\Z\Z$ events.
207 + %The invariant
208 + %mass distribution for accepted \Z candidates is shown in
209 + %Figure~\ref{fig:zcandidates}.
210 +
211 + % and the \Z mass resolution is shown in
212 + %Figure~\ref{fig:dzmass}.
213 +
214 + After the \Z boson candidate is identified, the remaining leptons in the event
215 + are required, for electrons, to pass the tight criteria described in~\cite{noteElectronID}
216 + or, for muons, all criteria described in section~\ref{sec:leptonId}.
217 + If more than one lepton candidate satisfies the tight requirements, the one with the
218 + highest $p_T$ is associated with \W boson decay. This lepton's $p_T$ is effective
219 + discriminant against \Zbbbar and \Zjets production (see Fig.~\ref{fig:wlpt_cuteff}).
220 + We require the transverse momentum to exceed 20 GeV, as it maximizes
221 + the significance of the \WZ\ signal with respect to background as shown in
222 + Fig.~\ref{fig:wlpt_cutS}.
223 +
224 + An additional requirement on the isolation between electron and muon candidates is applied
225 + for the $2\mu 1e$ channel, by demanding the value of $\Delta R$ between the electron
226 + candidate associated with the \W boson decay and any of the two muons associated with
227 + the \Z boson decay to be greater than 0.1.
228 +
229 + This requirement allows suppressing the contribution of $\Z \to \mu\mu$
230 + decays, where one of the two muons radiates a photon which is reconstructed
231 + as an electron, possibly after conversion.
232 + % ADD THE PLOT TO JUSTIFY THIS COMMENT
233 + % This can be seen as a peak in the dimuon
234 + %invariant mass at  around 60 GeV in Fig.~\ref{fig:Z2mu1e_60GeVPeak}.
235 +
236 + The summary of the selection criteria is given in Table~\ref{tab:allcuts}.
237 +
238 + The expected number of the events satisfying the sequential steps of the selection
239 + is listed in Tables~\ref{tab:sel-effA}.  
240 + In Table~\ref{tab:wz-effimatrix} we list the total selection efficiency for  different
241 + \W and \Z boson decay modes. It can be seen lepton candidates from \W and \Z
242 + boson decays are almost always are reconstructed with the correct flavor. As expected,
243 + there is a small contribution from $\W \to \tau \nu_\tau \to \ell \nu_\ell \nu_\tau$
244 + decays. However, this contribution is suppressed, mostly due to $p_T$ requirement
245 + on the third lepton, as leptons from $\tau$ decays are not as energetic as those from
246 + $\W \to \ell \nu$ processes.
247 +
248 + In Tables~\ref{tab:wz-matcheffi-Zee} and \ref{tab:wz-matcheffi-Zmumu} we
249 + display the fraction of reconstructed \WZ events with correctly-matched leptons.
250 + It can be seen that the lepton associated with the \W boson decay is correctly matched
251 + to the true Monte Carlo lepton from the \W boson decay in more than 90\% of
252 + the cases, even for events with several lepton candidates available to be associated
253 + to the \W boson decay. The choice to take the lepton candidate with the leading $p_T$ is,
254 + therefore, justified.
255 +
256 + \begin{table}[p]
257 +  \begin{center}
258 +
259 + \begin{tabular}{lcc|cc|cc|cc|} \hline
260 + \multicolumn{9}{c}{ {\bf $3e$ Channel}} \\ \hline  \hline
261 + Step   & $\WZ \to 3e\nu$ &  $ \epsilon$  & $\Z+jets$ &  $ \epsilon$  & $t\bar{t}+jets$ &  $ \epsilon$  & $b\bar{b}\ell\ell$ &  $ \epsilon$\\ \hline
262 + All events       & 185 &         & $5.82\cdot 10^6$ &    & $8.27\cdot 10^5$ &    & $1.44\cdot 10^5$ &  \\
263 + Found $\Z \to ee$         & 73.9 & 39.9\%        & $5.02\cdot 10^5$ & 8.63\%    & $2.92\cdot 10^3$ & 0.353\%   & $2.78\cdot 10^4$ & 19.4\% \\
264 + Second \Z veto            & 73.9 & 100\%         & $5.02\cdot 10^5$ & 100\%     & $2.92\cdot 10^3$ & 99.9\%    & $2.78\cdot 10^4$ & 100\% \\
265 + Found $\W \to e\nu$          & 37.4 & 50.6\%        & 310 & 0.062\%       & 13.8 & 0.474\%       & 171 & 0.61\% \\
266 + \W lepton $p_T$ cut          & 32.5 & 86.7\%        & 86.8 & 28\%  & 8.26 & 59.7\%        & 23.4 & 13.7\% \\
267 + Passes HLT               & 32.3 & 99.6\%        & 86.8 & 100\%         & 8.26 & 100\%         & 23.3 & 99.7\% \\
268 + \Z mass window    & 29.5 & 91.2\%        & 51.9 & 59.8\%        & 3.26 & 39.5\%        & 17.3 & 74\% \\
269 + \hline
270 +  Overall efficiency  &  &  15.9\% &  &  0.00089\% &  &  0.00039\% &  &  0.012\% \\
271 + \hline
272 +
273 + \multicolumn{9}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline  \hline
274 + Step   & $\WZ \to 2e1\mu\nu$ &  $ \epsilon$  & $\Z+jets$ &  $ \epsilon$  & $t\bar{t}+jets$ &  $ \epsilon$  & $b\bar{t}\ell\ell$ &  $ \epsilon$\\ \hline
275 + All events       & 185 &         & $5.82\cdot 10^6$ &    & $8.27\cdot 10^5$ &    & $1.44\cdot 10^5$ &  \\
276 + Found $\Z \to ee$         & 63.8 & 34.5\%        & $5.02\cdot 10^5$ & 8.63\%    & $2.92\cdot 10^3$ & 0.35\%   & $2.78\cdot 10^4$ & 19.4\% \\
277 + Second \Z veto            & 63.7 & 99.9\%        & $5.02\cdot 10^5$ & 100\%     & $2.92\cdot 10^3$ & 99.9\%    & $2.78\cdot 10^4$ & 100\% \\
278 + Found $\W \to \mu\nu$        & 42.6 & 66.8\%        & $2.19\cdot 10^3$ & 0.44\%   & 55.6 & 1.91\%        & 748 & 2.69\% \\
279 + \W lepton $p_T$ cut          & 35.1 & 82.5\%        & 9.58 & 0.44\%       & 16.4 & 29.5\%        & 9.49 & 1.27\% \\
280 + Passes HLT               & 34.3 & 97.6\%        & 8.32 & 86.9\%        & 14.1 & 86\%  & 9.12 & 96.1\% \\
281 + \Z mass window    & 30.8 & 89.8\%        & 7.31 & 87.9\%        & 3.76 & 26.7\%        & 8 & 87.8\% \\
282 + \hline
283 +  Overall efficiency  &  &  16.7\% &  &  0.00013\% &  &  0.00045\% &  &  0.0056\% \\
284 + \hline
285 +
286 + \multicolumn{9}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline  \hline
287 + Step   & $\WZ \to 2\mu1e$ &  $ \epsilon$  & $\Z+jets$ &  $ \epsilon$  & $t\bar{t}+jets$ &  $ \epsilon$  & $b\bar{b}\ell\ell$ &  $ \epsilon$\\ \hline
288 + All events       & 190 &         & $5.82\cdot 10^6$ &    & $8.27\cdot 10^5$ &    & $1.44\cdot 10^5$ &  \\
289 + Found $\Z \to \mu\mu$     & 75.2 & 39.7\%        & $5.77\cdot 10^5$ & 9.92\%    & $2.78\cdot 10^3$ & 0.336\%   & $3.19\cdot 10^4$ & 22.2\% \\
290 + Second \Z veto            & 75.2 & 100\%         & $5.77\cdot 10^5$ & 100\%     & $2.77\cdot 10^3$ & 99.9\%    & $3.19\cdot 10^4$ & 100\% \\
291 + Found $\W \to e\nu$          & 44 & 58.5\%  & 702 & 0.12\%        & 15.1 & 0.54\%       & 213 & 0.67\% \\
292 + \W lepton $p_T$ cut                  & 38.4 & 87.2\%        & 464 & 66.2\%         & 10.3 & 68\%  & 50.5 & 23.7\% \\
293 + $\Delta R(e,\mu)$ cut    & 38.4 & 99.9\%        & 93 & 20\%    & 7.15 & 69.6\%        & 23.3 & 46\% \\
294 + Passes HLT                       & 37.3 & 97.1\%        & 88.8 & 95.5\%        & 6.62 & 92.7\%        & 23.1 & 99.4\% \\
295 + \Z mass window    & 33.6 & 90.1\%        & 50.3 & 56.6\%        & 2.84 & 42.9\%        & 18.8 & 81.4\% \\
296 + \hline
297 +  Overall efficiency  &  &  17.7\% &  &  0.00086\% &  &  0.00034\% &  &  0.013\% \\
298 + \hline
299 + %\end{tabular}
300 + %\begin{tabular}{lcc|cc|cc|cc|} \hline
301 + \multicolumn{9}{c}{ {\bf $3\mu$ Channel}} \\ \hline  \hline
302 + Step   & $\WZ \to 3\mu$ &  $ \epsilon$  & $\Z+jets$ &  $ \epsilon$  & $t\bar{t}+jets$ &  $ \epsilon$  & $b\bar{b}\ell\ell$ &  $ \epsilon$\\ \hline
303 + All events       & 189 &         & $5.82\cdot 10^6$ &    & $8.27\cdot 10^5$ &    & $1.44\cdot 10^5$ &  \\
304 + Found $\Z \to \mu\mu$     & 83.8 & 44.3\%        & $5.77\cdot 10^5$ & 9.92\%    & $2.78\cdot 10^3$ & 0.336\%   & $3.19\cdot 10^4$ & 22.2\% \\
305 + Second \Z veto            & 83.6 & 99.8\%        & $5.77\cdot 10^5$ & 100\%     & $2.77\cdot 10^3$ & 99.9\%    & $3.19\cdot 10^4$ & 100\% \\
306 + Found $\W \to \mu\nu$        & 51.8 & 62\%  & $2.52\cdot 10^3$ & 0.44\%   & 34.8 & 1.25\%        & 810 & 2.54\% \\
307 + \W lepton $p_T$ cut                  & 42.5 & 81.9\%        & 1.84 & 0.07\%       & 1.16 & 3.33\%        & 8.89 & 1.1\% \\
308 + Passes HLT                       & 42.2 & 99.4\%        & 1.84 & 100\%         & 1.16 & 100\%         & 8.89 & 100\% \\
309 + \Z mass window    & 38.5 & 91.1\%        & 1.84 & 100\%         & 1.16 & 100\%         & 7.78 & 87.5\% \\
310 + \hline
311 + Overall efficiency  &  &  20.3\% &  &  0.000032\% &  &  0.00014\% &  &  0.0054\% \\
312 + \hline
313 + \end{tabular}
314 +
315 + \caption{Expected number of signal and background events passing the different
316 +  selections steps together with the efficiency of each requirement and total efficiency of
317 +  selection criteria in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
318 +  of 1 \invfb.}
319 + \label{tab:sel-effA}
320 + \end{center}
321 + \end{table}
322 +
323 + \begin{table}[p]
324 + \begin{center}
325 + \begin{tabular}{l|ccccc}
326 + \hline \hline
327 +   & \multicolumn{5}{c}{$\Z \to ee$ and \W decay modes below} \\
328 + Reconstruction channel  &  $e \nu$
329 +   &  $\mu \nu $
330 +   &  $\tau \nu \to e \nu \nu  $
331 +   &  $\tau \nu \to \mu \nu \nu $
332 +   &  $\tau \nu \to {\rm hadrons~} \nu$
333 + \\ \hline
334 + $3e$       &  17.4\%  &  0.0319\%  &  6.42\%  &  0\%  &  0.162\% \\
335 + $2e1\mu$   &  0\%  &  18.6\%  &  0\%  &  5.53\%  &  0.0485\% \\
336 + $2\mu1e$   &  0\%  &  0\%  &  0\%  &  0\%  &  0\% \\
337 + $3\mu$     &  0\%  &  0\%  &  0\%  &  0\%  &  0\% \\
338 + \hline \hline
339 +
340 + & \multicolumn{5}{c}{$\Z \to \mu\mu$ and \W decay modes below} \\
341 + Reconstruction channel  &  $e\nu$
342 +   &  $\mu\nu$
343 +   &  $\tau\nu \to e\nu\nu$
344 +   &  $\tau\nu \to \mu\nu\nu$
345 +   &  $\tau\nu \to {\rm hadrons~}\nu$
346 + \\ \hline
347 + $3e$        &  0\%  &  0\%  &  0\%  &  0\%  &  0\% \\
348 + $2e1\mu$   &  0.0104\%  &  0\%  &  0\%  &  0\%  &  0\% \\
349 + $2\mu1e$   &  19.6\%  &  0.0208\%  &  5.56\%  &  0\%  &  0.18\% \\
350 + $3\mu$     &  0\%  &  23.4\%  &  0.0573\%  &  6.77\%  &  0.0164\% \\
351 + \hline \hline
352 + \end{tabular}
353 + \end{center}
354 + \caption{Selection efficiency for signal events in the four selection channels for the different
355 +  generated \W and \Z decay channels.}
356 + \label{tab:wz-effimatrix}
357 +
358 + %\end{table}
359 + %\begin{table}[tbp]
360 + \begin{center}
361 + \begin{tabular}{llcc} \hline
362 +  & & \multicolumn{2}{c}{Generated decay} \\
363 +  & & \multicolumn{2}{c}{$\Z \to ee $} \\
364 + Selection channel  &    &  $\W \to e\nu$   &  $\W \to \mu\nu$ \\
365 + \hline \hline
366 + \multicolumn{4}{c}{all} \\ \hline
367 + $3e$        & all & 1644 events         & 3 events    \\
368 + $3e$        & matched \Z & 93$\pm$1\% & 100\%\\
369 + $3e$        & matched \W & 92$\pm$1\% & 0\\
370 + $3e$        & matched \WZ & 91$\pm$1\% & 0\\
371 + \hline \hline
372 +
373 + \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
374 + $3e$        & all & 1602  events       & 0 events    \\
375 + $3e$        & matched \Z & 94$\pm$1\% & 0\\
376 + $3e$        & matched \W & 92$\pm$1\% & 0\\
377 + $3e$        & matched \WZ & 91$\pm$1\% & 0\\
378 + \hline \hline
379 +
380 + \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
381 + $3e$        & all & 42 events  & 3 events   \\
382 + $3e$        & matched \Z & 93$\pm$4\% & 100\%\\
383 + $3e$        & matched \W & 91 $\pm$5\% & 0\\
384 + $3e$        & matched \WZ & 91$\pm$5\% & 0\\
385 + \hline \hline
386 +
387 + \multicolumn{4}{c}{all} \\ \hline
388 + $2e1\mu$   & all & 0  events   & 1746 events \\
389 + $2e1\mu$   & matched \Z & 0 & 100\%\\
390 + $2e1\mu$   & matched \W & 0 & 100\%\\
391 + $2e1\mu$   & matched \WZ & 0 & 100\%\\
392 + \hline \hline
393 +
394 + \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
395 + $2e1\mu$   & all & 0 events    & 1715 events \\
396 + $2e1\mu$   & matched \Z & 0 & 100\%\\
397 + $2e1\mu$   & matched \W & 0 & 100\%\\
398 + $2e1\mu$   & matched \WZ & 0 & 100\%\\
399 + \hline \hline
400 +
401 + \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
402 + $2e1\mu$   & all & 0     & 31   \\
403 + $2e1\mu$   & matched \Z & 0 & 100\%\\
404 + $2e1\mu$   & matched \W & 0 & 100\%\\
405 + $2e1\mu$   & matched \WZ & 0 & 100\% \\ \hline \hline
406 + \end{tabular}
407 + \end{center}
408 + \caption{Fractions of events with correctly matched leptons
409 +  to true decay product of \W and \Z decays for final states
410 +  with generated $\Z\to ee$ decays}
411 + \label{tab:wz-matcheffi-Zee}
412 + \end{table}
413 +
414 +
415 +
416 + \begin{table}[tbp]
417 + \begin{center}
418 + \begin{tabular}{llcc} \hline
419 +  & & \multicolumn{2}{c}{Generated decay:} \\
420 + & & \multicolumn{2}{c}{$\Z \to \mu\mu $} \\
421 + Selection channel  &    &  $\W \to e\nu$   &  $\W \to \mu\nu$
422 + \\
423 + \hline \hline
424 + \multicolumn{4}{c}{all} \\ \hline
425 + $2\mu1e$   & all & 1895 events  & 2 events   \\
426 + $2\mu1e$   & matched \Z & 100\% & 100\%\\
427 + $2\mu1e$   & matched \W & 99$\pm$1\% & 0\\
428 + $2\mu1e$   & matched \WZ & 99$\pm$1\% & 0\\
429 + \hline \hline
430 +
431 + \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
432 + $2\mu1e$   & all & 1847 events & 0 events    \\
433 + $2\mu1e$   & matched \Z & 100\% & 0\\
434 + $2\mu1e$   & matched \W & 99$\pm$1\% & 0\\
435 + $2\mu1e$   & matched \WZ & 99$\pm$1\% & 0\\
436 + \hline \hline
437 +
438 + \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
439 + $2\mu1e$   & all & 48 events   & 2 events    \\
440 + $2\mu1e$   & matched \Z & 100\% & 100\%\\
441 + $2\mu1e$   & matched \W & 94$\pm$3.5\%& 0\\
442 + $2\mu1e$   & matched \WZ & 94$\pm$3.5\% & 0\\
443 + \hline \hline
444 +
445 + \multicolumn{4}{c}{all} \\ \hline
446 + $3\mu$     & all & 0 events   & 2251 events \\
447 + $3\mu$     & matched \Z & 0 & 94$\pm$1\%\\
448 + $3\mu$     & matched \W & 0 & 93$\pm$1\%\\
449 + $3\mu$     & matched \WZ & 0 & 93$\pm$1\%\\
450 + \hline \hline
451 +
452 + \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
453 + $3\mu$     & all & 0 events    & 2207 events \\
454 + $3\mu$     & matched \Z & 0 & 94$\pm$1\%\\
455 + $3\mu$     & matched \W & 0 & 93$\pm$1\%\\
456 + $3\mu$     & matched \WZ & 0 & 93$\pm$1\%\\
457 + \hline \hline
458 +
459 + \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
460 + $3\mu$     & all & 0 events    & 44 events  \\
461 + $3\mu$     & matched \Z & 0 & 91$\pm$4\%\\
462 + $3\mu$     & matched \W & 0 & 91$\pm$4\%\\
463 + $3\mu$     & matched \WZ & 0 & 91$\pm$4\%\\ \hline \hline
464 + \end{tabular}
465 + \end{center}
466 + \caption{Fractions of MC \WZ events with correctly matched leptons
467 +  to true decay product of \W and \Z decays for final states
468 +  with generated $\Z\to \mu\mu$ decays}
469 + \label{tab:wz-matcheffi-Zmumu}
470 + \end{table}
471 +
472 +
473 + \subsection{Complementary studies: can we use the neutrino?}
474 +
475 + In $\WZ \to  \ell^{\pm}\nu \ellell (\ell=e,\mu)$ events, the neutrino
476 + coming from the \W-boson decay leaves the detector with a significant
477 + amount of energy, which should reflect in a large transverse missing
478 + energy measurement. On the other side, no large MET is expected for
479 + the  most  important background categories, especially \Zjets,
480 + \Zbbbar, \ZZ and \Zgamma. This expectation is confirmed, as can be
481 + seen in Figure~\ref{fig:met}.
482 +
483 + Another variable sensitive to the presence of the neutrino
484 + is the W transverse mass $m_T^W$, obtained by combining the missing
485 + energy vector and the lepton associated to the \W-boson decay.
486 + The distribution of $m_T^W$ is shown in Figure~\ref{fig:mtw}.
487 + The signal yield could be extracted from that distribution.
488 + This requires however additional studies and it has not been
489 + done at this stage.
490 +
491 + %\subsection{Signal extraction}
492 + %\input D0Matrix
493 + \input zjetbackground
494 +
495 +
496 + \section{Systematic uncertainties}
497 + \input Sys
498 +
499 +
500 + \begin{figure}[bt]
501 +  \begin{center}
502 +  \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
503 +  \caption{Missing transverse energy for the four signal categories.
504 +    The distributions  show the number of expected events
505 +    for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 \gev
506 +    are shown. All selection cuts are applied.}
507 +  \label{fig:met}
508 +  \end{center}
509 + \end{figure}
510 +
511 + \begin{figure}[bt]
512 +  \begin{center}
513 +  \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
514 +  \caption{\W transverse mass for the four signal categories.
515 +    The distributions  show the number of expected events
516 +    for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 GeV are shown.
517 +    All selection cuts are applied.}
518 +  \label{fig:mtw}
519 +  \end{center}
520 + \end{figure}
521  
522  
523  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines