ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
(Generate patch)

Comparing UserCode/Vuko/Notes/WZCSA07/selection.tex (file contents):
Revision 1.2 by vuko, Thu Jun 19 15:54:43 2008 UTC vs.
Revision 1.16 by vuko, Fri Jun 27 17:14:35 2008 UTC

# Line 1 | Line 1
1   \section{Event reconstruction}
2   \label{sec:eventReconstruction}
3  
4 < The four possible final states of \WZ
5 < production with electrons and muons are studied, $\rm e^\pm \epem$, $\mu^\pm \epem$, $\rm e^\pm \mu^+\mu^-$
6 < and $\mu^\pm \mu^+\mu^-$. They are associated to four possible classes,
7 < denoted as follows:
4 > We categorize \WZ\ three-lepton final state as following
5   \begin{itemize}
6   \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
7   \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
# Line 16 | Line 13 | denoted as follows:
13   \subsection{Trigger selection and efficiencies}
14  
15   Events stemming from the three-lepton final states of $\WZ$ production
16 < are collected by the electron and muon triggers. For each channel,
16 > are collected by the electron and/or muon triggers. For each channel,
17   a minimun number of HLT requirements is chosen while keeping
18   the HLT efficiency for selected events close to 100\%. The same
19 < HLT requirements are used for channels with the same Z decay mode:
19 > HLT requirements are used for channels with the same \Z decay mode:
20   \begin{itemize}
21   \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
22   \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
# Line 27 | Line 24 | HLT requirements are used for channels w
24   The HLT efficiencies for all modes for events passing the full
25   selection described in this section are given in table~\ref{tab:hlteff}.
26  
30
27   \begin{table}[tbph]
28   \begin{center}
29  
# Line 40 | Line 36 | $3\mu$     &   HLTSingleMuonIso
36   \end{tabular}
37  
38   \end{center}
39 < \caption{HLT Efficiencies, in percent, for all
40 <  the events in the generated phase space for events retained  by
45 <  the complete event selection.}
39 > \caption{HLT Efficiencies for all the events in the generated phase space that
40 >  have been retained  by the complete event selection.}
41   \label{tab:hlteff}
42   \end{table}
43  
44 +
45 + \begin{figure}[tbp]
46 +  \begin{center}
47 +  \scalebox{0.7}{\includegraphics{figs/mu_isol.eps}}
48 +  \caption{Muon isolation variables for the muon associated
49 +    to the \W boson decay in $2e1\mu$ events: in the left plot
50 +    we illustrate the sum of calorimetric energy in a $\Delta R=0.3$ cone
51 +    around the muon candidate; in the right plot we display the sum of
52 +    transverse momenta of tracks within a $\Delta R = 0.25$ cone around
53 +    the muon candidate. The normalization of signal and background
54 +    distributions is arbitrary.
55 + }
56 +  \label{fig:mu_isol}
57 +  \end{center}
58 + \end{figure}
59 +
60 + \begin{figure}[tb]
61 +  \begin{center}
62 +  \scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}}
63 +  \caption{
64 +    Muon impact parameter significance distribution
65 +    in $2e1\mu$ events. The normalization of signal and background
66 +    distributions is arbitrary.
67 +  }
68 +  \label{fig:mu_SIP}
69 +  \end{center}
70 + \end{figure}
71 +
72 +
73   \subsection{Lepton identification}
74   \label{sec:leptonId}
75  
# Line 53 | Line 77 | The requirements used for electron ident
77   in~\cite{noteElectronID}.
78  
79   Muon candidates are selected from global muons, which are reconstructed
80 < combining measurements in the muon chambers and the central tracker.
81 < An additional isolation criterion requires that the energy
80 > by combining measurements in the muon chambers and the central tracker.
81 > An additional isolation criterion is imposed to require the energy
82   measured in the calorimeters within a $\Delta R = 0.3$ cone around the
83 < muon must be smaller than 3 GeV and the sum of the $p_t$ of tracks
84 < within a $\Delta R = 0.35$ cone around the muon must be smaller than 2.5
85 < GeV. These cuts reduce the background from muons originated in
83 > muon to be smaller than 3 GeV and the sum of the $p_T$ of tracks
84 > within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 GeV.
85 > These cuts reduce the background from muons originated in
86   \b-quark decays of the $\Zbbbar$ background, which are close to tracks
87   and clusters from the other \b-quark decay products.
88 + The signal and background distributions of these isolation variables
89 + are shown in Figure~\ref{fig:mu_isol} for the muon in $2e1\mu$ candidate
90 + events.
91  
92   %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
93   %performance of the isolation cut. The distribution of the isolation
94   %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
95   %interesting, since muons only stem from  \b-quark decays.
96  
97 + The significance of the muon impact parameter in the plane
98 + transverse to the beam, $S_{IP}$, discriminates against leptons from
99 + heavy-quark decays in all standard model background processes. This
100 + variable is defined as the ratio between the measured impact parameter
101 + and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
102 + satisfy $S_{IP}<3$. This requirement is applied only for muon candidates
103 + and not for electrons. For electron candidates, a significant fraction of the
104 + background comes from misidentified light quark jets. Thus,
105 + the requirement on the impact parameter significance does not
106 + increase the significance of the $\W\to e$ channels, as can be seen in
107 + Fig.~\ref{fig:wl_IP_SvsCut}. The distribution of $S_{IP}$ for the muon
108 + in $2e1\mu$ candidate events is shown in Figure~\ref{fig:mu_SIP}.
109 +
110 + \begin{figure}[p]
111 +  \begin{center}
112 +  \scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}}
113 +  \caption{Efficiency for signal and background as a function
114 +    of the requirement on the \W-boson lepton impact parameter
115 +    significance. All other criteria but the one on impact parameter
116 +    significance are applied.
117 + %    Only events with 81 GeV $< M_Z < $ 101 \gev
118 + %    are considered.
119 +  }
120 +  \label{fig:wl_IP_eff}
121 +  \end{center}
122 + %\end{figure}
123 +
124 + %\begin{figure}[bt]
125 +  \begin{center}
126 +  \scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}}
127 +  \caption{Signal significance as a function of requirement on
128 +    the \W-boson lepton impact parameter significance. All other criteria but
129 +    the requirement on the impact parameter significance are applied.
130 + %    Only events with 81 GeV $< M_Z < $ 101 \gev are considered.
131 +  }
132 +  \label{fig:wl_IP_SvsCut}
133 +  \end{center}
134 + \end{figure}
135 +
136 +
137 + \begin{table}[tbp]
138 + \begin{tabular}{|l|c|c|c|c|} \hline
139 +              &  $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
140 + \multicolumn{5}{|c|}{Lepton selection} \\ \hline
141 + Electrons     &   \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for \Z reconstruction} & \\
142 +              &   \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for \W} &  \\ \hline
143 + Muons         &  &  \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$}  \\
144 +              &  &  \multicolumn{3}{|c|}{ Calorimetric Isolation:$  {\tt IsoCalo}(\Delta R = 0.3)  < 5 \gev$}  \\
145 +              &  &  \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ }  \\ \hline
146 + HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
147 +                & \multicolumn{2}{|c|}{  HLTSingleMuonIso} \\ \hline
148 + \multicolumn{5}{|c|}{\Z reconstruction} \\ \hline
149 + Lepton cuts   &  \multicolumn{4}{|c|}{for both \Z leptons: $p_T > 15$ GeV} \\
150 + Mass window   &  \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
151 + Second \Z veto &  \multicolumn{4}{|c|}{No independent second \Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
152 + \multicolumn{5}{|c|}{\W lepton selection} \\ \hline
153 +
154 + Other cuts    &     &        & $\Delta R(\mu_Z,e_W)>0.1$ &  \\ \hline
155 + Signal region  &    \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
156 +
157 + \end{tabular}
158 + \caption{Summary of the criteria we use to select \WZ\ final state}
159 + \label{tab:allcuts}
160 + \end{table}
161 +
162 +
163 + \begin{figure}[p]
164 +  \begin{center}
165 +  \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
166 +  \caption{Efficiency for signal and background as a function
167 +    of the cut value on the \W-boson lepton transverse momentum.
168 +    All other cuts but the cut on this variable are applied.
169 +    Only events with 81 GeV $< M_Z < $ 101 \gev
170 +    are considered.}
171 +  \label{fig:wlpt_cuteff}
172 +  \end{center}
173 + %\end{figure}
174 +
175 + %\begin{figure}[bt]
176 +  \begin{center}
177 +  \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
178 +  \caption{Signal significance as a function of the cut value on
179 +    the \W-boson lepton transverse momentum. All other cuts but
180 +    the cut on this variable are applied. Only events with
181 +    81 GeV $< M_Z < $ 101 \gev are considered.}
182 +  \label{fig:wlpt_cutS}
183 +  \end{center}
184 + \end{figure}
185 +
186  
187   \subsection{\WZ candidate selection}
188  
189   Events are accepted if they contain at least three charged leptons,
190 < either electrons or muons, with $p_t > 10\,\mathrm{GeV}$ and $| \eta | < 2.5$, as
191 < discussed in~\ref{sec:leptonId}.
190 > either electrons or muons, with $p_T > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
191 > electrons,$| \eta | < 2.4$ for muons, as discussed in Section~\ref{sec:leptonId}.
192  
193   The \WZ candidate selection proceeds from building all possible
194   \Z-boson candidates from same-flavour opposite-charge lepton pairs.
195 < For $\Z \to ee$ decays, electrons have to fullfil the loose requirements
195 > For $\Z \to ee$ decays, electron candidates have to fulfill the loose requirements
196   defined in~\cite{noteElectronID}.
197  
198 < Events are retained if the mass of this \Z-boson candidate is
199 < within 20 GeV of the Z-boson mass,$m_Z$. The event is
200 < rejected if a second Z candidate is found. This second Z candidate is done
201 < with all possible same-flavour opposite-charge combinations which are left
202 < after removing the two leptons already used for the first Z candidate. This
203 < veto on the presence of a second Z helps to suppress $ZZ$ events. The invariant
204 < mass distribution for accepted \Z candidates is shown in
205 < Figure~\ref{fig:zcandidates}.
198 > Events are retained if the mass of the \Z boson candidate is
199 > within 20 GeV of the \Z boson mass, $m_Z$. The event is
200 > rejected if a second \Z candidate is found. This second \Z boson candidate is formed
201 > using all possible same-flavour opposite-charge combinations which are left
202 > after removing the two leptons already used for the first \Z boson candidate. This
203 > secondary \Z boson veto helps to suppress $\Z\Z$ events.
204 > %The invariant
205 > %mass distribution for accepted \Z candidates is shown in
206 > %Figure~\ref{fig:zcandidates}.
207  
208   % and the \Z mass resolution is shown in
209   %Figure~\ref{fig:dzmass}.
210  
211 < After the \Z-boson candidate is identified, the lepton associated
212 < to the  \W-boson decay is chosen from the remaining electrons and muons
213 < in the event that have not been used for reconstructing the \Z-boson.
214 < Electrons are required to pass the tight criteria described in
215 < \cite{noteElectronID}.  If the event contains more than three leptons,
216 < the highest $p_t$ is chosen as the one from the \W-boson decay, and
217 < the additional leptons are not considered further.
218 < The transverse momentum of this lepton is required to be larger
219 < than 20 GeV. This last requirement is effective in rejecting
220 < the \Zbbbar and \Zjets backgrounds, and the cut value is chosen in
221 < the range that maximises the significance as shown in
222 < Figure~\ref{fig:s_vs_wlpt}.
223 <
224 <
225 < The expected number of events passing the various steps of the selection
226 < is listed in Tables~\ref{tab:sel-effA} and~\ref{tab:sel-effB}.
227 < Table~\ref{tab:wz-effimatrix} lists the final selection efficiency for
228 < the different generated \W and \Z decays. It can be seen there that \WZ\
229 < events with both the \W and the \Z boson decaying into electrons or muons
230 < almost always get reconstructed with the correct flavour. It is to be
231 < noted in addition that each of our four selection channels gets a small
232 < contribution from $W \to \tau \to e/\mu$ decays as one would expect. The
233 < selection efficiency for these events is however smaller which is mostly due
234 < to the \pt cut on the third lepton, since the \pt spectrum of electrons or
235 < muons from $W \to \tau \to e/\mu$ decays is softer.
211 > After the \Z boson candidate is identified, the remaining leptons in the event
212 > are required, for electrons, to pass the tight criteria described in~\cite{noteElectronID}
213 > or, for muons, all criteria described in section~\ref{sec:leptonId}.
214 > If more than one lepton candidate satisfies the tight requirements, the one with the
215 > highest $p_T$ is associated with \W boson decay. This lepton's $p_T$ is effective
216 > discriminant against \Zbbbar and \Zjets production (see Fig.~\ref{fig:wlpt_cuteff}).
217 > We require the transverse momentum to exceed 20 GeV, as it maximizes
218 > the significance of the \WZ\ signal with respect to background as shown in
219 > Fig.~\ref{fig:wlpt_cutS}.
220 >
221 > An additional requirement on the isolation between electron and muon candidates is applied
222 > for the $2\mu 1e$ channel, by demanding the value of $\Delta R$ between the electron
223 > candidate associated with the \W boson decay and any of the two muons associated with
224 > the \Z boson decay to be greater than 0.1.
225 >
226 > This requirement allows suppressing the contribution of $\Z \to \mu\mu$
227 > decays, where one of the two muons radiates a photon which is reconstructed
228 > as an electron, possibly after conversion. This can be seen as a peak in the dimuon
229 > invariant mass at  around 60 GeV in Fig.~\ref{fig:Z2mu1e_60GeVPeak}.
230 >
231 > The summary of the selection criteria is given in Table~\ref{tab:allcuts}.
232 >
233 > The expected number of the events satisfying the sequential steps of the selection
234 > is listed in Tables~\ref{tab:sel-effA}.  
235 > In Table~\ref{tab:wz-effimatrix} we list the total selection efficiency for  different
236 > \W and \Z boson decay modes. It can be seen lepton candidates from \W and \Z
237 > boson decays are almost always are reconstructed with the correct flavor. As expected,
238 > there is a small contribution from $\W \to \tau \nu_\tau \to \ell \nu_\ell \nu_\tau$
239 > decays. However, this contribution is suppressed, mostly due to $p_T$ requirement
240 > on the third lepton, as leptons from $\tau$ decays are not as energetic as those from
241 > $\W \to \ell \nu$ processes.
242 >
243 > In Tables~\ref{tab:wz-matcheffi-Zee} and \ref{tab:wz-matcheffi-Zmumu} we
244 > display the fraction of reconstructed \WZ events with correctly-matched leptons.
245 > It can be seen that the lepton associated with the \W boson decay is correctly matched
246 > to the true Monte Carlo lepton from the \W boson decay in more than 90\% of
247 > the cases, even for events with several lepton candidates available to be associated
248 > to the \W boson decay. The choice to take the lepton candidate with the leading $p_T$ is,
249 > therefore, justified.
250 >
251 > \begin{table}[p]
252 >  \begin{center}
253 >
254 >
255 >
256 >
257 > \begin{tabular}{lcc|cc|cc|cc|c} \hline \hline
258 > \multicolumn{9}{c}{ {\bf $3e$ Channel}} \\ \hline  \hline
259 > Step                                 & \WZ  & $\epsilon$ & $b\bar{b}\ell\ell$  & $\epsilon$ & $\Z+jets$  & $\epsilon$ & $t\bar{t}+jets$  & $\epsilon$ \\ \hline
260 > All events                       & 546   &                    & 72,700 &                     & 1,268,000       &                       & 17,600     &               \\
261 > Found $\Z \to ee$         & 205   & 38\%         & 27,800 & 38\%            & 502,300          & 40\%            & 2,920        & 17\%    \\
262 > Found $\W \to e\nu$    & 42.0  & 21\%         & 171       & 0.6\%           & 309.6               & 0.06\%        & 13.8           & 0.5\%   \\
263 > \W lepton $p_T$ cut    & 34.9  & 83\%          & 23.7     & 14\%            & 86.8                  & 28 \%          &   8.3            & 60\%   \\
264 > Passes HLT                  & 34.7  & 100\%        & 23.6     & 99\%            & 86.8                  &100\%         &   8.3            & 100\%  \\
265 > \Z mass window           & 31.6  & 91\%          & 17.5     & 74\%            & 51.9                  &60\%           &    3.3            & 39\%    \\ \hline
266 > Overall efficiency        &           &  5.8\%        &              &   0.024\%    &                            & 0.0041\%  &                     & 0.019\% \\
267 > \hline\hline
268 >
269 > \multicolumn{9}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline  \hline
270 > Step   & \WZ  & $\epsilon$ & $b\bar{b}\ell\ell$ & $\epsilon$ & $\Z+jets$  & $\epsilon$ & $t\bar{t}+jets$ & $\epsilon$  \\ \hline
271 > All events                        & 546  &             & 72,770 &                 & 1,268,000       &                    & 17,600            &             \\
272 > Found $\Z \to ee$          & 201  & 38\%  & 27,800  & 38\%      &  502,300          &  40\%     &     2,921          &17\% \\
273 > Found $\W \to \mu\nu$ & 47.9 & 23\%  & 748       & 2.7\%      &  2194         &  0.43\%  &      56.8          &1.9\% \\
274 > \W lepton $p_T$ cut      & 37.1 & 77\%  & 9.6        & 1.3\%      &   9.6                  &  0.4\%         &      17.5         &31\% \\
275 > Passes HLT                    & 36.2 & 98\%  & 9.3        & 96\%       &   8.3                  &  87\%    &     15.2   & 87 \%) \\
276 > \Z mass window             & 32.5 & 90\%  & 8.2        &  88\%      &    7.3                 &  88\%            &       4.9         & 32\%) \\ \hline
277 > Overall efficiency          &          & 6.0\% &               & 0.011\% &                           &  0.00058\% &                      &     0.028\% \\
278 > \hline \hline
279 >
280 > \multicolumn{9}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline  \hline
281 > Step   & \WZ   & $\epsilon$ & $b\bar{b}\ell\ell$   & $\epsilon$ & $\Z+jets$   & $\epsilon$ & $t\bar{t}+jets$  & $\epsilon$ \\ \hline
282 > All events       & 546  &   & 72,770   &    & 1,268,000 &    & 17,600 &  \\
283 > Found $\Z \to \mu\mu$     & 234  &43\%&      31,890 & 44\% & 577,200 & 46\%   & 2779 & 16\% \\
284 > Found $\W \to e\nu$          & 48.8 &21\%&    214        & 0.67\%   & 702 & 0.12\%         & 15.1 & 0.54\% \\
285 > \W lepton $p_T$ cut          & 40.7 &83\%&      50.6      & 24\%      & 464.0 & 66\%      & 10.3 & 68\% \\
286 > $\Delta R(e,\mu)$ cut       & 40.6&100\%&      23.3     & 46\%     & 93.0 & 20\%         & 7.1 & 70\%  \\
287 > Passes HLT                       & 39.4 &97\%&        23.2     & 99\%      & 88.8 & 95\%        & 6.6  & 93\%  \\
288 > \Z mass window                & 35.6 & 90\% &          18.9 & 81\%      & 50.3 & 57\%       & 2.8   &44\%  \\ \hline
289 > Overall efficiency              &           &6.5\%  &                  & 0.026\% &           & 0.0040\%  &          & 0.016\% \\
290 > \hline \hline
291 >
292 > \multicolumn{9}{c}{ {\bf $3\mu$ Channel}} \\ \hline  \hline
293 > Step   & \WZ   & $\epsilon$ & ${b\bar{b}\ell\ell}$   & $\epsilon$ & $\Z+jets$   & $\epsilon$ & ${t\bar{t}+jets}$  & $\epsilon$ \\ \hline
294 > All events       & 546 &   & 72,770  &      & 1,268,000  &   & 17,600 &  \\
295 > Found $Z \to \mu\mu$        & 234     & 43\%   & 31,900 & 44\%       & 577,000 & 45\%          & 2779  & 16 \% \\
296 > Found $W \to \mu$             & 58        & 25 \%  & 811      & 2.5\%      & 2521       & 0.44\%       & 35.3   & 1.23 \% \\
297 > W Lepton Pt cut                   & 44.2    & 77 \% & 8.9         & 1.1\%      & 1.8          & 0.07\%        & 1.7     & 4.8 \% \\
298 > Passes HLT                         & 44.0    & 99\%  & 8.9          & 100\%    & 1.8         & 100 \%        & 1.7     & 100 \% \\
299 > Z mass window                   & 40.0    & 91 \%)  & 7.8        & 88\%      & 1.8          & 100 \%        & 1.2     & 69\% \\ \hline
300 > Overall efficiency               &             & 7.3 \% &                & 0.011\% &                & 0.00015\% &            & 0.0065\% \\
301 > \hline
302 > \end{tabular}
303 >
304 >
305 > \caption{Expected number of signal and background events passing the different
306 >  selections steps together with the efficiency of each requirement and total efficiency of
307 >  selection criteria in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
308 >  of 1 \invfb.}
309 > \label{tab:sel-effA}
310 > \end{center}
311 > \end{table}
312 >
313 > \begin{table}[p]
314 > \begin{center}
315 > \begin{tabular}{l|ccccc}
316 > \hline \hline
317 >   & \multicolumn{5}{c}{$\Z \to ee$ and \W decay modes below} \\
318 > Reconstruction channel  &  $e \nu$
319 >   &  $\mu \nu $
320 >   &  $\tau \nu \to e \nu \nu  $
321 >   &  $\tau \nu \to \mu \nu \nu $
322 >   &  $\tau \nu \to {\rm hadrons~} \nu$
323 > \\ \hline
324 > $3e$       &  17.4 \%  &  0.0319 \%  &  6.42 \%  &  0 \%  &  0.162 \% \\
325 > $2e1\mu$   &  0 \%  &  18.6 \%  &  0 \%  &  5.53 \%  &  0.0485 \% \\
326 > $2\mu1e$   &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
327 > $3\mu$     &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
328 > \hline \hline
329 >
330 > & \multicolumn{5}{c}{$\Z \to \mu\mu$ and \W decay modes below} \\
331 > Reconstruction channel  &  $e\nu$
332 >   &  $\mu\nu$
333 >   &  $\tau\nu \to e\nu\nu$
334 >   &  $\tau\nu \to \mu\nu\nu$
335 >   &  $\tau\nu \to {\rm hadrons~}\nu$
336 > \\ \hline
337 > $3e$        &  0 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
338 > $2e1\mu$   &  0.0104 \%  &  0 \%  &  0 \%  &  0 \%  &  0 \% \\
339 > $2\mu1e$   &  19.6 \%  &  0.0208 \%  &  5.56 \%  &  0 \%  &  0.18 \% \\
340 > $3\mu$     &  0 \%  &  23.4 \%  &  0.0573 \%  &  6.77 \%  &  0.0164 \% \\
341 > \hline \hline
342 > \end{tabular}
343 > \end{center}
344 > \caption{Selection efficiency for signal events in the four selection channels for the different
345 >  generated \W and \Z decay channels.}
346 > \label{tab:wz-effimatrix}
347 >
348 > %\end{table}
349 > %\begin{table}[tbp]
350 > \begin{center}
351 > \begin{tabular}{llcc} \hline
352 >  & & \multicolumn{2}{c}{Generated decay} \\
353 >  & & \multicolumn{2}{c}{$\Z \to ee $} \\
354 > Selection channel  &    &  $\W \to e\nu$   &  $\W \to \mu\nu$ \\
355 > \hline \hline
356 > \multicolumn{4}{c}{all} \\ \hline
357 > $3e$        & all & 1644 events         & 3 events    \\
358 > $3e$        & matched \Z & 93$\pm$1\% & 100\%\\
359 > $3e$        & matched \W & 92$\pm$1\% & 0\\
360 > $3e$        & matched \WZ & 91$\pm$1\% & 0\\
361 > \hline \hline
362 >
363 > \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
364 > $3e$        & all & 1602  events       & 0 events    \\
365 > $3e$        & matched \Z & 94$\pm$1\% & 0\\
366 > $3e$        & matched \W & 92$\pm$1\% & 0\\
367 > $3e$        & matched \WZ & 91$\pm$1\% & 0\\
368 > \hline \hline
369 >
370 > \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
371 > $3e$        & all & 42 events  & 3 events   \\
372 > $3e$        & matched \Z & 93$\pm$4\% & 100\%\\
373 > $3e$        & matched \W & 91 $\pm$5\% & 0\\
374 > $3e$        & matched \WZ & 91$\pm$5\% & 0\\
375 > \hline \hline
376 >
377 > \multicolumn{4}{c}{all} \\ \hline
378 > $2e1\mu$   & all & 0  events   & 1746 events \\
379 > $2e1\mu$   & matched \Z & 0 & 100\%\\
380 > $2e1\mu$   & matched \W & 0 & 100\%\\
381 > $2e1\mu$   & matched \WZ & 0 & 100\%\\
382 > \hline \hline
383 >
384 > \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
385 > $2e1\mu$   & all & 0 events    & 1715 events \\
386 > $2e1\mu$   & matched \Z & 0 & 100\%\\
387 > $2e1\mu$   & matched \W & 0 & 100\%\\
388 > $2e1\mu$   & matched \WZ & 0 & 100\%\\
389 > \hline \hline
390 >
391 > \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
392 > $2e1\mu$   & all & 0     & 31   \\
393 > $2e1\mu$   & matched \Z & 0 & 100\%\\
394 > $2e1\mu$   & matched \W & 0 & 100\%\\
395 > $2e1\mu$   & matched \WZ & 0 & 100\% \\ \hline \hline
396 > \end{tabular}
397 > \end{center}
398 > \caption{Fractions of events with correctly matched leptons
399 >  to true decay product of \W and \Z decays for final states
400 >  with generated $\Z\to ee$ decays}
401 > \label{tab:wz-matcheffi-Zee}
402 > \end{table}
403 >
404 >
405 >
406 > \begin{table}[tbp]
407 > \begin{center}
408 > \begin{tabular}{llcc} \hline
409 >  & & \multicolumn{2}{c}{Generated decay:} \\
410 > & & \multicolumn{2}{c}{$\Z \to \mu\mu $} \\
411 > Selection channel  &    &  $\W \to e\nu$   &  $\W \to \mu\nu$
412 > \\
413 > \hline \hline
414 > \multicolumn{4}{c}{all} \\ \hline
415 > $2\mu1e$   & all & 1895 events  & 2 events   \\
416 > $2\mu1e$   & matched \Z & 100\% & 100\%\\
417 > $2\mu1e$   & matched \W & 99$\pm$1\% & 0\\
418 > $2\mu1e$   & matched \WZ & 99$\pm$1\% & 0\\
419 > \hline \hline
420 >
421 > \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
422 > $2\mu1e$   & all & 1847 events & 0 events    \\
423 > $2\mu1e$   & matched \Z & 100\% & 0\\
424 > $2\mu1e$   & matched \W & 99$\pm$1\% & 0\\
425 > $2\mu1e$   & matched \WZ & 99$\pm$1\% & 0\\
426 > \hline \hline
427 >
428 > \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
429 > $2\mu1e$   & all & 48 events   & 2 events    \\
430 > $2\mu1e$   & matched \Z & 100\% & 100\%\\
431 > $2\mu1e$   & matched \W & 94$\pm$3.5\%& 0\\
432 > $2\mu1e$   & matched \WZ & 94$\pm$3.5\% & 0\\
433 > \hline \hline
434 >
435 > \multicolumn{4}{c}{all} \\ \hline
436 > $3\mu$     & all & 0 events   & 2251 events \\
437 > $3\mu$     & matched \Z & 0 & 94$\pm$1\%\\
438 > $3\mu$     & matched \W & 0 & 93$\pm$1\%\\
439 > $3\mu$     & matched \WZ & 0 & 93$\pm$1\%\\
440 > \hline \hline
441 >
442 > \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
443 > $3\mu$     & all & 0 events    & 2207 events \\
444 > $3\mu$     & matched \Z & 0 & 94$\pm$1\%\\
445 > $3\mu$     & matched \W & 0 & 93$\pm$1\%\\
446 > $3\mu$     & matched \WZ & 0 & 93$\pm$1\%\\
447 > \hline \hline
448 >
449 > \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
450 > $3\mu$     & all & 0 events    & 44 events  \\
451 > $3\mu$     & matched \Z & 0 & 91$\pm$4\%\\
452 > $3\mu$     & matched \W & 0 & 91$\pm$4\%\\
453 > $3\mu$     & matched \WZ & 0 & 91$\pm$4\%\\ \hline \hline
454 > \end{tabular}
455 > \end{center}
456 > \caption{Fractions of MC \WZ events with correctly matched leptons
457 >  to true decay product of \W and \Z decays for final states
458 >  with generated $\Z\to \mu\mu$ decays}
459 > \label{tab:wz-matcheffi-Zmumu}
460 > \end{table}
461  
462  
463 < \subsection{Signal extraction}
463 > %\subsection{Signal extraction}
464 > %\input D0Matrix
465 > \input zjetbackground
466 >
467 >
468 > \subsection{Complementary studies: can we use the neutrino?}
469 >
470 > In $\WZ \to  \ell^{\pm}\nu \ellell (\ell=e,\mu)$ events, the neutrino
471 > coming from the \W-boson decay leaves the detector with a significant
472 > amount of energy, which should reflect in a large transverse missing
473 > energy measurement. On the other side, no large MET is expected for
474 > the  most  important background categories, especially \Zjets,
475 > \Zbbbar, \ZZ and \Zgamma. This expectation is confirmed, as can be
476 > seen in Figure~\ref{fig:met}.
477 >
478 > Another variable sensitive to the presence of the neutrino
479 > is the W transverse mass $m_T^W$, obtained by combining the missing
480 > energy vector and the lepton associated to the \W-boson decay.
481 > The distribution of $m_T^W$ is shown in Figure~\ref{fig:mtw}.
482 > The signal yield could be extracted from that distribution.
483 > This requires however additional studies and it has not been
484 > done at this stage.
485 >
486 >
487 > \section{Systematic uncertainties}
488 > \input Sys
489 >
490 >
491 > \begin{figure}[bt]
492 >  \begin{center}
493 >  \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
494 >  \caption{Missing transverse mass for the four signal categories.
495 >    The distributions  show the number of expected events
496 >    for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 \gev
497 >    are shown. All selection cuts are applied.}
498 >  \label{fig:met}
499 >  \end{center}
500 > \end{figure}
501 >
502 > \begin{figure}[bt]
503 >  \begin{center}
504 >  \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
505 >  \caption{\W transverse mass for the four signal categories.
506 >    The distributions  show the number of expected events
507 >    for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 GeV are shown.
508 >    All selection cuts are applied.}
509 >  \label{fig:mtw}
510 >  \end{center}
511 > \end{figure}
512  
513  
124 \subsection{Systematic uncertainties}
514  
515  
516  

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines