ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/selection.tex
Revision: 1.21
Committed: Sat Jun 28 00:54:59 2008 UTC (16 years, 10 months ago) by vuko
Content type: application/x-tex
Branch: MAIN
CVS Tags: draft0
Changes since 1.20: +20 -17 lines
Log Message:
editing

File Contents

# Content
1 \section{Event reconstruction}
2 \label{sec:eventReconstruction}
3
4 We categorize \WZ\ three-lepton final state as following
5 \begin{itemize}
6 \item $3e$: for \WZ events with $\W \to e \nu$ and $\Z\to \epem$.
7 \item $2e1\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \epem$.
8 \item $2\mu 1e$: for \WZ events with $\W \to e \nu$ and $\Z\to \mumu$.
9 \item $3\mu$: for \WZ events with $\W \to \mu \nu$ and $\Z\to \mumu$.
10 \end{itemize}
11
12
13 \subsection{Trigger selection and efficiencies}
14
15 Events stemming from the three-lepton final states of $\WZ$ production
16 are collected by the electron and/or muon triggers. For each channel,
17 a minimun number of HLT requirements is chosen while keeping
18 the HLT efficiency for selected events close to 100\%. The same
19 HLT requirements are used for channels with the same \Z decay mode:
20 \begin{itemize}
21 \item for $3e$ and $2e1\mu$: HLTSingleElectron or HLTDoubleElectronRelaxed
22 \item for $2\mu1e$ and $3\mu$: HLTSingleMuonIso
23 \end{itemize}
24 The HLT efficiencies for all modes for events passing the full
25 selection described in this section are given in table~\ref{tab:hlteff}.
26
27 \begin{table}[tbph]
28 \begin{center}
29
30 \begin{tabular}{llc} \hline \hline
31 Channel & HLT selection & HLT efficiency \\ \hline
32 $3e$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.996 \\
33 $2e1\mu$ & HLTSingleElectron or HLTDoubleElectronRelaxed & 0.969 \\
34 $2\mu 1e$ & HLTSingleMuonIso & 0.966 \\
35 $3\mu$ & HLTSingleMuonIso & 0.994 \\ \hline \hline
36 \end{tabular}
37
38 \end{center}
39 \caption{HLT Efficiencies for all the events in the generated phase space that
40 have been retained by the complete event selection.}
41 \label{tab:hlteff}
42 \end{table}
43
44
45 \begin{figure}[tbp]
46 \begin{center}
47 \scalebox{0.7}{\includegraphics{figs/mu_isol.eps}}
48 \caption{Muon isolation variables for the muon associated
49 to the \W boson decay in $2e1\mu$ events: in the left plot
50 we illustrate the sum of calorimetric energy in a $\Delta R=0.3$ cone
51 around the muon candidate; in the right plot we display the sum of
52 transverse momenta of tracks within a $\Delta R = 0.25$ cone around
53 the muon candidate. The normalization of signal and background
54 distributions is arbitrary.
55 }
56 \label{fig:mu_isol}
57 \end{center}
58 \end{figure}
59
60 \begin{figure}[tb]
61 \begin{center}
62 \scalebox{0.6}{\includegraphics{figs/mu_SIP.eps}}
63 \caption{
64 Muon impact parameter significance distribution
65 in $2e1\mu$ events. The normalization of signal and background
66 distributions is arbitrary.
67 }
68 \label{fig:mu_SIP}
69 \end{center}
70 \end{figure}
71
72
73 \subsection{Lepton identification}
74 \label{sec:leptonId}
75
76 The requirements used for electron identification in this analysis are described
77 in~\cite{noteElectronID}.
78
79 Muon candidates are selected from global muons, which are reconstructed
80 by combining measurements in the muon chambers and the central tracker.
81 An additional isolation criterion is imposed to require the energy
82 measured in the calorimeters within a $\Delta R = 0.3$ cone around the
83 muon to be smaller than 3 GeV and the sum of the $p_T$ of tracks
84 within a $\Delta R = 0.25$ cone around the muon must be smaller than 2 GeV.
85 These cuts reduce the background from muons originated in
86 \b-quark decays of the $\Zbbbar$ background, which are close to tracks
87 and clusters from the other \b-quark decay products.
88 The signal and background distributions of these isolation variables
89 are shown in Figure~\ref{fig:mu_isol} for the muon in $2e1\mu$ candidate
90 events.
91
92 %Figures~\ref{fig:muonisol} and ~\ref{fig:muonisoleffi} show the
93 %performance of the isolation cut. The distribution of the isolation
94 %variables for the $\Z\b\bbar(\epem\b\bbar)$ is particularly
95 %interesting, since muons only stem from \b-quark decays.
96
97 The significance of the muon impact parameter in the plane
98 transverse to the beam, $S_{IP}$, discriminates against leptons from
99 heavy-quark decays in all standard model background processes. This
100 variable is defined as the ratio between the measured impact parameter
101 and its uncertainty: $S_{IP}=IP/\sigma_{IP}$, and is required to
102 satisfy $S_{IP}<3$. This requirement is applied only for muon candidates
103 and not for electrons. For electron candidates, a significant fraction of the
104 background comes from misidentified light quark jets. Thus,
105 the requirement on the impact parameter significance does not
106 increase the significance of the $\W\to e$ channels, as can be seen in
107 Fig.~\ref{fig:wl_IP_SvsCut}. The distribution of $S_{IP}$ for the muon
108 in $2e1\mu$ candidate events is shown in Figure~\ref{fig:mu_SIP}.
109
110 The muons fullfilling all these requirements will be called ``tight'', while global
111 muons without requirements on isolation or impact parameter significance are called ``loose''.
112
113 \begin{figure}[p]
114 \begin{center}
115 \scalebox{0.6}{\includegraphics{figs/wl_IP_eff.eps}}
116 \caption{Efficiency for signal and background as a function
117 of the requirement on the \W-boson lepton impact parameter
118 significance. All other criteria but the one on impact parameter
119 significance are applied.
120 % Only events with 81 GeV $< M_Z < $ 101 \gev
121 % are considered.
122 }
123 \label{fig:wl_IP_eff}
124 \end{center}
125 %\end{figure}
126
127 %\begin{figure}[bt]
128 \begin{center}
129 \scalebox{0.6}{\includegraphics{figs/wl_IP_SvsCut.eps}}
130 \caption{Signal significance as a function of requirement on
131 the \W-boson lepton impact parameter significance. All other criteria but
132 the requirement on the impact parameter significance are applied.
133 % Only events with 81 GeV $< M_Z < $ 101 \gev are considered.
134 }
135 \label{fig:wl_IP_SvsCut}
136 \end{center}
137 \end{figure}
138
139
140 \begin{table}[tbp]
141 \begin{tabular}{|l|c|c|c|c|} \hline
142 & $3e$ & $2e1\mu$ & $2\mu 1e$ & $3\mu$ \\ \hline \hline
143 \multicolumn{5}{|c|}{Lepton selection} \\ \hline
144 Electrons & \multicolumn{3}{|c|}{{\tt SimpleLoose} requirements for \Z reconstruction} & \\
145 & \multicolumn{3}{|c|}{{\tt SimpleTight} requirements for \W} & \\ \hline
146 Muons & & \multicolumn{3}{|c|}{ Track Isolation:$ {\tt IsoTrack}(\Delta R= 0.25) < 2 \gev$} \\
147 & & \multicolumn{3}{|c|}{ Calorimetric Isolation:$ {\tt IsoCalo}(\Delta R = 0.3) < 5 \gev$} \\
148 & & \multicolumn{3}{|c|}{$S_{IP}=IP/\sigma_{IP}<3$ } \\ \hline
149 HLT requirement & \multicolumn{2}{|c|}{ HLTSingleElectron or HLTDoubleElectronRelaxed}
150 & \multicolumn{2}{|c|}{ HLTSingleMuonIso} \\ \hline
151 \multicolumn{5}{|c|}{\Z reconstruction} \\ \hline
152 Lepton cuts & \multicolumn{4}{|c|}{for both \Z leptons: $p_T > 15$ GeV} \\
153 Mass window & \multicolumn{4}{|c|}{$50 \gev < M_Z < 120 \gev $ } \\
154 Second \Z veto & \multicolumn{4}{|c|}{No independent second \Z candidate with $50 \gev < M_Z < 120 \gev $ } \\ \hline
155 \multicolumn{5}{|c|}{\W lepton selection} \\ \hline
156
157 Other cuts & & & $\Delta R(\mu_Z,e_W)>0.1$ & \\ \hline
158 Signal region & \multicolumn{4}{|c|}{$81 \gev < M_Z < 101 \gev $ } \\ \hline \hline
159
160 \end{tabular}
161 \caption{Summary of the criteria we use to select \WZ\ final state}
162 \label{tab:allcuts}
163 \end{table}
164
165
166 \begin{figure}[p]
167 \begin{center}
168 \scalebox{0.6}{\includegraphics{figs/wlpt_cuteff.eps}}
169 \caption{Efficiency for signal and background as a function
170 of the cut value on the \W-boson lepton transverse momentum.
171 All other cuts but the cut on this variable are applied.
172 Only events with 81 GeV $< M_Z < $ 101 \gev
173 are considered.}
174 \label{fig:wlpt_cuteff}
175 \end{center}
176 %\end{figure}
177
178 %\begin{figure}[bt]
179 \begin{center}
180 \scalebox{0.6}{\includegraphics{figs/wlpt_cutS.eps}}
181 \caption{Signal significance as a function of the cut value on
182 the \W-boson lepton transverse momentum. All other cuts but
183 the cut on this variable are applied. Only events with
184 81 GeV $< M_Z < $ 101 \gev are considered.}
185 \label{fig:wlpt_cutS}
186 \end{center}
187 \end{figure}
188
189
190 \subsection{\WZ candidate selection}
191
192 Events are accepted if they contain at least three charged leptons,
193 either electrons or muons, with $p_T > 15\,\mathrm{GeV}$ and $| \eta | < 2.5$ for
194 electrons,$| \eta | < 2.4$ for muons, as discussed in Section~\ref{sec:leptonId}.
195
196 The \WZ candidate selection proceeds from building all possible
197 \Z-boson candidates from same-flavour opposite-charge lepton pairs.
198 For $\Z \to ee$ decays, electron candidates have to fulfill the loose requirements
199 defined in~\cite{noteElectronID}.
200
201 Events are retained if the mass of the \Z boson candidate is
202 within 20 GeV of the \Z boson mass, $m_Z$. The event is
203 rejected if a second \Z candidate is found. This second \Z boson candidate is formed
204 using all possible same-flavour opposite-charge combinations which are left
205 after removing the two leptons already used for the first \Z boson candidate. This
206 secondary \Z boson veto helps to suppress $\Z\Z$ events.
207 %The invariant
208 %mass distribution for accepted \Z candidates is shown in
209 %Figure~\ref{fig:zcandidates}.
210
211 % and the \Z mass resolution is shown in
212 %Figure~\ref{fig:dzmass}.
213
214 After the \Z boson candidate is identified, the remaining leptons in the event
215 are required, for electrons, to pass the tight criteria described in~\cite{noteElectronID}
216 or, for muons, all criteria described in section~\ref{sec:leptonId}.
217 If more than one lepton candidate satisfies the tight requirements, the one with the
218 highest $p_T$ is associated with \W boson decay. This lepton's $p_T$ is effective
219 discriminant against \Zbbbar and \Zjets production (see Fig.~\ref{fig:wlpt_cuteff}).
220 We require the transverse momentum to exceed 20 GeV, as it maximizes
221 the significance of the \WZ\ signal with respect to background as shown in
222 Fig.~\ref{fig:wlpt_cutS}.
223
224 An additional requirement on the isolation between electron and muon candidates is applied
225 for the $2\mu 1e$ channel, by demanding the value of $\Delta R$ between the electron
226 candidate associated with the \W boson decay and any of the two muons associated with
227 the \Z boson decay to be greater than 0.1.
228
229 This requirement allows suppressing the contribution of $\Z \to \mu\mu$
230 decays, where one of the two muons radiates a photon which is reconstructed
231 as an electron, possibly after conversion.
232 % ADD THE PLOT TO JUSTIFY THIS COMMENT
233 % This can be seen as a peak in the dimuon
234 %invariant mass at around 60 GeV in Fig.~\ref{fig:Z2mu1e_60GeVPeak}.
235
236 The summary of the selection criteria is given in Table~\ref{tab:allcuts}.
237
238 The expected number of the events satisfying the sequential steps of the selection
239 is listed in Tables~\ref{tab:sel-effA} and~\ref{tab:sel-effB}.
240 In Table~\ref{tab:wz-effimatrix} we list the total selection efficiency for different
241 \W and \Z boson decay modes. It can be seen lepton candidates from \W and \Z
242 boson decays are almost always are reconstructed with the correct flavor. As expected,
243 there is a small contribution from $\W \to \tau \nu_\tau \to \ell \nu_\ell \nu_\tau$
244 decays. However, this contribution is suppressed, mostly due to $p_T$ requirement
245 on the third lepton, as leptons from $\tau$ decays are not as energetic as those from
246 $\W \to \ell \nu$ processes.
247
248 In Tables~\ref{tab:wz-matcheffi-Zee} and \ref{tab:wz-matcheffi-Zmumu} we
249 display the fraction of reconstructed \WZ events with correctly-matched leptons.
250 It can be seen that the lepton associated with the \W boson decay is correctly matched
251 to the true Monte Carlo lepton from the \W boson decay in more than 90\% of
252 the cases, even for events with several lepton candidates available to be associated
253 to the \W boson decay. The choice to take the lepton candidate with the leading $p_T$ is,
254 therefore, justified.
255
256 \begin{table}[p]
257 \begin{center}
258
259 \begin{tabular}{lcc|cc|cc|cc|} \hline
260 \multicolumn{9}{c}{ {\bf $3e$ Channel}} \\ \hline \hline
261 Step & $\WZ \to 3e\nu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline
262 All events & 185 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\
263 Found $\Z \to ee$ & 73.9 & 39.9\% & $5.02\cdot 10^5$ & 8.63\% & $2.92\cdot 10^3$ & 0.353\% & $2.78\cdot 10^4$ & 19.4\% \\
264 Second \Z veto & 73.9 & 100\% & $5.02\cdot 10^5$ & 100\% & $2.92\cdot 10^3$ & 99.9\% & $2.78\cdot 10^4$ & 100\% \\
265 Found $\W \to e\nu$ & 37.4 & 50.6\% & 310 & 0.062\% & 13.8 & 0.474\% & 171 & 0.61\% \\
266 \W lepton $p_T$ cut & 32.5 & 86.7\% & 86.8 & 28\% & 8.26 & 59.7\% & 23.4 & 13.7\% \\
267 Passes HLT & 32.3 & 99.6\% & 86.8 & 100\% & 8.26 & 100\% & 23.3 & 99.7\% \\
268 \Z mass window & 29.5 & 91.2\% & 51.9 & 59.8\% & 3.26 & 39.5\% & 17.3 & 74\% \\
269 \hline
270 Overall efficiency & & 15.9\% & & 0.00089\% & & 0.00039\% & & 0.012\% \\
271 \hline
272
273 \multicolumn{9}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline
274 Step & $\WZ \to 2e1\mu\nu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{t}\ell\ell$ & $ \epsilon$\\ \hline
275 All events & 185 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\
276 Found $\Z \to ee$ & 63.8 & 34.5\% & $5.02\cdot 10^5$ & 8.63\% & $2.92\cdot 10^3$ & 0.35\% & $2.78\cdot 10^4$ & 19.4\% \\
277 Second \Z veto & 63.7 & 99.9\% & $5.02\cdot 10^5$ & 100\% & $2.92\cdot 10^3$ & 99.9\% & $2.78\cdot 10^4$ & 100\% \\
278 Found $\W \to \mu\nu$ & 42.6 & 66.8\% & $2.19\cdot 10^3$ & 0.44\% & 55.6 & 1.91\% & 748 & 2.69\% \\
279 \W lepton $p_T$ cut & 35.1 & 82.5\% & 9.58 & 0.44\% & 16.4 & 29.5\% & 9.49 & 1.27\% \\
280 Passes HLT & 34.3 & 97.6\% & 8.32 & 86.9\% & 14.1 & 86\% & 9.12 & 96.1\% \\
281 \Z mass window & 30.8 & 89.8\% & 7.31 & 87.9\% & 3.76 & 26.7\% & 8 & 87.8\% \\
282 \hline
283 Overall efficiency & & 16.7\% & & 0.00013\% & & 0.00045\% & & 0.0056\% \\
284 \hline
285
286 \multicolumn{9}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline
287 Step & $\WZ \to 2\mu1e$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline
288 All events & 190 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\
289 Found $\Z \to \mu\mu$ & 75.2 & 39.7\% & $5.77\cdot 10^5$ & 9.92\% & $2.78\cdot 10^3$ & 0.336\% & $3.19\cdot 10^4$ & 22.2\% \\
290 Second \Z veto & 75.2 & 100\% & $5.77\cdot 10^5$ & 100\% & $2.77\cdot 10^3$ & 99.9\% & $3.19\cdot 10^4$ & 100\% \\
291 Found $\W \to e\nu$ & 44 & 58.5\% & 702 & 0.12\% & 15.1 & 0.54\% & 213 & 0.67\% \\
292 \W lepton $p_T$ cut & 38.4 & 87.2\% & 464 & 66.2\% & 10.3 & 68\% & 50.5 & 23.7\% \\
293 $\Delta R(e,\mu)$ cut & 38.4 & 99.9\% & 93 & 20\% & 7.15 & 69.6\% & 23.3 & 46\% \\
294 Passes HLT & 37.3 & 97.1\% & 88.8 & 95.5\% & 6.62 & 92.7\% & 23.1 & 99.4\% \\
295 \Z mass window & 33.6 & 90.1\% & 50.3 & 56.6\% & 2.84 & 42.9\% & 18.8 & 81.4\% \\
296 \hline
297 Overall efficiency & & 17.7\% & & 0.00086\% & & 0.00034\% & & 0.013\% \\
298 \hline
299 %\end{tabular}
300 %\begin{tabular}{lcc|cc|cc|cc|} \hline
301 \multicolumn{9}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline
302 Step & $\WZ \to 3\mu$ & $ \epsilon$ & $\Z+jets$ & $ \epsilon$ & $t\bar{t}+jets$ & $ \epsilon$ & $b\bar{b}\ell\ell$ & $ \epsilon$\\ \hline
303 All events & 189 & & $5.82\cdot 10^6$ & & $8.27\cdot 10^5$ & & $1.44\cdot 10^5$ & \\
304 Found $\Z \to \mu\mu$ & 83.8 & 44.3\% & $5.77\cdot 10^5$ & 9.92\% & $2.78\cdot 10^3$ & 0.336\% & $3.19\cdot 10^4$ & 22.2\% \\
305 Second \Z veto & 83.6 & 99.8\% & $5.77\cdot 10^5$ & 100\% & $2.77\cdot 10^3$ & 99.9\% & $3.19\cdot 10^4$ & 100\% \\
306 Found $\W \to \mu\nu$ & 51.8 & 62\% & $2.52\cdot 10^3$ & 0.44\% & 34.8 & 1.25\% & 810 & 2.54\% \\
307 \W lepton $p_T$ cut & 42.5 & 81.9\% & 1.84 & 0.07\% & 1.16 & 3.33\% & 8.89 & 1.1\% \\
308 Passes HLT & 42.2 & 99.4\% & 1.84 & 100\% & 1.16 & 100\% & 8.89 & 100\% \\
309 \Z mass window & 38.5 & 91.1\% & 1.84 & 100\% & 1.16 & 100\% & 7.78 & 87.5\% \\
310 \hline
311 Overall efficiency & & 20.3\% & & 0.000032\% & & 0.00014\% & & 0.0054\% \\
312 \hline
313 \end{tabular}
314
315 \caption{Expected number of signal and background events passing the different
316 selections steps together with the efficiency of each requirement and total efficiency of
317 selection criteria in the \WZ, \Zbbbar, \Zjets and \ttjets samples for an integrated luminosity
318 of 1 \invfb.}
319 \label{tab:sel-effA}
320 \end{center}
321 \end{table}
322
323
324
325 \begin{table}
326 \begin{center}
327 \begin{tabular}{lcc|cc|cc|} \hline
328 \multicolumn{7}{c}{ {\bf $3e$ Channel}} \\ \hline \hline
329 Step & W+jets & $ \epsilon$ & ZZ & $ \epsilon$ & Zgamma & $ \epsilon$\\ \hline
330 All events & 5.64e+07 & & 1.61e+04 & & 2.16e+03 & \\
331 Found $Z \to ee$ & 1.28e+03 & 0.00227 \% & 387 & 2.41 \% & 635 & 29.4 \% \\
332 Second Z veto & 1.28e+03 & 100 \% & 380 & 98.1 \% & 635 & 100 \% \\
333 Found $W \to e$ & 5.8 & 0.454 \% & 9.68 & 2.55 \% & 21.4 & 3.37 \% \\
334 W Lepton Pt cut & 4.5 & 77.7 \% & 7.65 & 79 \% & 19.1 & 89.5 \% \\
335 Passes HLT & 4.5 & 100 \% & 7.65 & 100 \% & 18.9 & 98.9 \% \\
336 Z mass window & 1.29 & 28.7 \% & 6.87 & 89.8 \% & 16.6 & 87.7 \% \\
337 \hline
338 Overall efficiency & & 2.29e-06 \% & & 0.0427 \% & & 0.768 \% \\
339 \hline
340 \end{tabular}
341 \begin{tabular}{lcc|cc|cc|} \hline
342 \multicolumn{7}{c}{ {\bf $2e1\mu$ Channel}} \\ \hline \hline
343 Step & W+jets & $ \epsilon$ & ZZ & $ \epsilon$ & Zgamma & $ \epsilon$\\ \hline
344 All events & 5.64e+07 & & 1.61e+04 & & 2.16e+03 & \\
345 Found $Z \to ee$ & 1.28e+03 & 0.00227 \% & 387 & 2.41 \% & 635 & 29.4 \% \\
346 Second Z veto & 1.28e+03 & 100 \% & 380 & 98.1 \% & 635 & 100 \% \\
347 Found $W \to \mu$ & 7.51 & 0.588 \% & 8.59 & 2.26 \% & 3.14 & 0.494 \% \\
348 W Lepton Pt cut & 3.8 & 50.6 \% & 3.44 & 40 \% & 0.0296 & 0.943 \% \\
349 Passes HLT & 1.25 & 33 \% & 3.44 & 100 \% & 0.0296 & 100 \% \\
350 Z mass window & 1.25 & 100 \% & 3.44 & 100 \% & 0.0296 & 100 \% \\
351 \hline
352 Overall efficiency & & 2.22e-06 \% & & 0.0213 \% & & 0.00137 \% \\
353 \hline
354 \end{tabular}
355
356 \begin{tabular}{lcc|cc|cc|} \hline
357 \multicolumn{7}{c}{ {\bf $2\mu1e$ Channel}} \\ \hline \hline
358 Step & W+jets & $ \epsilon$ & ZZ & $ \epsilon$ & Zgamma & $ \epsilon$\\ \hline
359 All events & 5.64e+07 & & 1.61e+04 & & 2.16e+03 & \\
360 Found $Z \to \mu\mu$ & 60.1 & 0.000107 \% & 429 & 2.67 \% & 546 & 25.3 \% \\
361 Second Z veto & 60.1 & 100 \% & 423 & 98.6 \% & 546 & 100 \% \\
362 Found $W \to e$ & 0 & 0 \% & 11.6 & 2.73 \% & 17.4 & 3.2 \% \\
363 W Lepton Pt cut & 0 & 0 \% & 7.96 & 68.9 \% & 16.1 & 92.2 \% \\
364 $\Delta R(e,\mu)$ cut & 0 & 0 \% & 7.34 & 92.2 \% & 15.6 & 97.4 \% \\
365 Passes HLT & 0 & 0 \% & 7.34 & 100 \% & 15.1 & 96.3 \% \\
366 Z mass window & 0 & 0 \% & 6.25 & 85.1 \% & 13.3 & 88.4 \% \\
367 \hline
368 Overall efficiency & & 0 \% & & 0.0388 \% & & 0.617 \% \\
369 \hline
370 \end{tabular}
371
372 \begin{tabular}{lcc|cc|cc|} \hline
373 \multicolumn{7}{c}{ {\bf $3\mu$ Channel}} \\ \hline \hline
374 Step & W+jets & $ \epsilon$ & ZZ & $ \epsilon$ & Zgamma & $ \epsilon$\\ \hline
375 All events & 5.64e+07 & & 1.61e+04 & & 2.16e+03 & \\
376 Found $Z \to \mu\mu$ & 60.1 & 0.000107 \% & 429 & 2.67 \% & 546 & 25.3 \% \\
377 Second Z veto & 60.1 & 100 \% & 423 & 98.6 \% & 546 & 100 \% \\
378 Found $W \to \mu$ & 0 & 0 \% & 11.7 & 2.77 \% & 2.49 & 0.456 \% \\
379 W Lepton Pt cut & 0 & 0 \% & 4.53 & 38.7 \% & 0.00987 & 0.397 \% \\
380 Passes HLT & 0 & 0 \% & 4.53 & 100 \% & 0.00987 & 100 \% \\
381 Z mass window & 0 & 0 \% & 4.37 & 96.6 \% & 0.00987 & 100 \% \\
382 \hline
383 Overall efficiency & & 0 \% & & 0.0272 \% & & 0.000457 \% \\
384 \hline
385 \end{tabular}
386
387 \caption{Expected number of signal and background events passing the different
388 selections steps together with the efficiency of each requirement and total efficiency of
389 selection criteria in the \W + jets, \ZZ and \Zgamma samples for an integrated luminosity
390 of 1 \invfb.}
391 \label{tab:sel-effB}
392 \end{center}
393 \end{table}
394
395 \begin{table}[p]
396 \begin{center}
397 \begin{tabular}{l|ccccc}
398 \hline \hline
399 & \multicolumn{5}{c}{$\Z \to ee$ and \W decay modes below} \\
400 Reconstruction channel & $e \nu$
401 & $\mu \nu $
402 & $\tau \nu \to e \nu \nu $
403 & $\tau \nu \to \mu \nu \nu $
404 & $\tau \nu \to {\rm hadrons~} \nu$
405 \\ \hline
406 $3e$ & 17.4\% & 0.0319\% & 6.42\% & 0\% & 0.162\% \\
407 $2e1\mu$ & 0\% & 18.6\% & 0\% & 5.53\% & 0.0485\% \\
408 $2\mu1e$ & 0\% & 0\% & 0\% & 0\% & 0\% \\
409 $3\mu$ & 0\% & 0\% & 0\% & 0\% & 0\% \\
410 \hline \hline
411
412 & \multicolumn{5}{c}{$\Z \to \mu\mu$ and \W decay modes below} \\
413 Reconstruction channel & $e\nu$
414 & $\mu\nu$
415 & $\tau\nu \to e\nu\nu$
416 & $\tau\nu \to \mu\nu\nu$
417 & $\tau\nu \to {\rm hadrons~}\nu$
418 \\ \hline
419 $3e$ & 0\% & 0\% & 0\% & 0\% & 0\% \\
420 $2e1\mu$ & 0.0104\% & 0\% & 0\% & 0\% & 0\% \\
421 $2\mu1e$ & 19.6\% & 0.0208\% & 5.56\% & 0\% & 0.18\% \\
422 $3\mu$ & 0\% & 23.4\% & 0.0573\% & 6.77\% & 0.0164\% \\
423 \hline \hline
424 \end{tabular}
425 \end{center}
426 \caption{Selection efficiency for signal events in the four selection channels for the different
427 generated \W and \Z decay channels.}
428 \label{tab:wz-effimatrix}
429
430 %\end{table}
431 %\begin{table}[tbp]
432 \begin{center}
433 \begin{tabular}{llcc} \hline
434 & & \multicolumn{2}{c}{Generated decay} \\
435 & & \multicolumn{2}{c}{$\Z \to ee $} \\
436 Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$ \\
437 \hline \hline
438 \multicolumn{4}{c}{all} \\ \hline
439 $3e$ & all & 1644 events & 3 events \\
440 $3e$ & matched \Z & 93$\pm$1\% & 100\%\\
441 $3e$ & matched \W & 92$\pm$1\% & 0\\
442 $3e$ & matched \WZ & 91$\pm$1\% & 0\\
443 \hline \hline
444
445 \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
446 $3e$ & all & 1602 events & 0 events \\
447 $3e$ & matched \Z & 94$\pm$1\% & 0\\
448 $3e$ & matched \W & 92$\pm$1\% & 0\\
449 $3e$ & matched \WZ & 91$\pm$1\% & 0\\
450 \hline \hline
451
452 \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
453 $3e$ & all & 42 events & 3 events \\
454 $3e$ & matched \Z & 93$\pm$4\% & 100\%\\
455 $3e$ & matched \W & 91 $\pm$5\% & 0\\
456 $3e$ & matched \WZ & 91$\pm$5\% & 0\\
457 \hline \hline
458
459 \multicolumn{4}{c}{all} \\ \hline
460 $2e1\mu$ & all & 0 events & 1746 events \\
461 $2e1\mu$ & matched \Z & 0 & 100\%\\
462 $2e1\mu$ & matched \W & 0 & 100\%\\
463 $2e1\mu$ & matched \WZ & 0 & 100\%\\
464 \hline \hline
465
466 \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
467 $2e1\mu$ & all & 0 events & 1715 events \\
468 $2e1\mu$ & matched \Z & 0 & 100\%\\
469 $2e1\mu$ & matched \W & 0 & 100\%\\
470 $2e1\mu$ & matched \WZ & 0 & 100\%\\
471 \hline \hline
472
473 \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
474 $2e1\mu$ & all & 0 & 31 \\
475 $2e1\mu$ & matched \Z & 0 & 100\%\\
476 $2e1\mu$ & matched \W & 0 & 100\%\\
477 $2e1\mu$ & matched \WZ & 0 & 100\% \\ \hline \hline
478 \end{tabular}
479 \end{center}
480 \caption{Fractions of events with correctly matched leptons
481 to true decay product of \W and \Z decays for final states
482 with generated $\Z\to ee$ decays}
483 \label{tab:wz-matcheffi-Zee}
484 \end{table}
485
486
487
488 \begin{table}[tbp]
489 \begin{center}
490 \begin{tabular}{llcc} \hline
491 & & \multicolumn{2}{c}{Generated decay:} \\
492 & & \multicolumn{2}{c}{$\Z \to \mu\mu $} \\
493 Selection channel & & $\W \to e\nu$ & $\W \to \mu\nu$
494 \\
495 \hline \hline
496 \multicolumn{4}{c}{all} \\ \hline
497 $2\mu1e$ & all & 1895 events & 2 events \\
498 $2\mu1e$ & matched \Z & 100\% & 100\%\\
499 $2\mu1e$ & matched \W & 99$\pm$1\% & 0\\
500 $2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\
501 \hline \hline
502
503 \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
504 $2\mu1e$ & all & 1847 events & 0 events \\
505 $2\mu1e$ & matched \Z & 100\% & 0\\
506 $2\mu1e$ & matched \W & 99$\pm$1\% & 0\\
507 $2\mu1e$ & matched \WZ & 99$\pm$1\% & 0\\
508 \hline \hline
509
510 \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
511 $2\mu1e$ & all & 48 events & 2 events \\
512 $2\mu1e$ & matched \Z & 100\% & 100\%\\
513 $2\mu1e$ & matched \W & 94$\pm$3.5\%& 0\\
514 $2\mu1e$ & matched \WZ & 94$\pm$3.5\% & 0\\
515 \hline \hline
516
517 \multicolumn{4}{c}{all} \\ \hline
518 $3\mu$ & all & 0 events & 2251 events \\
519 $3\mu$ & matched \Z & 0 & 94$\pm$1\%\\
520 $3\mu$ & matched \W & 0 & 93$\pm$1\%\\
521 $3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\
522 \hline \hline
523
524 \multicolumn{4}{c}{exactly 1 \W lepton candidate} \\ \hline
525 $3\mu$ & all & 0 events & 2207 events \\
526 $3\mu$ & matched \Z & 0 & 94$\pm$1\%\\
527 $3\mu$ & matched \W & 0 & 93$\pm$1\%\\
528 $3\mu$ & matched \WZ & 0 & 93$\pm$1\%\\
529 \hline \hline
530
531 \multicolumn{4}{c}{more than 1 \W lepton candidate} \\ \hline
532 $3\mu$ & all & 0 events & 44 events \\
533 $3\mu$ & matched \Z & 0 & 91$\pm$4\%\\
534 $3\mu$ & matched \W & 0 & 91$\pm$4\%\\
535 $3\mu$ & matched \WZ & 0 & 91$\pm$4\%\\ \hline \hline
536 \end{tabular}
537 \end{center}
538 \caption{Fractions of MC \WZ events with correctly matched leptons
539 to true decay product of \W and \Z decays for final states
540 with generated $\Z\to \mu\mu$ decays}
541 \label{tab:wz-matcheffi-Zmumu}
542 \end{table}
543
544
545 \subsection{Complementary studies: can we use the neutrino?}
546
547 In $\WZ \to \ell^{\pm}\nu \ellell (\ell=e,\mu)$ events, the neutrino
548 coming from the \W-boson decay leaves the detector with a significant
549 amount of energy, which should reflect in a large transverse missing
550 energy measurement. On the other side, no large MET is expected for
551 the most important background categories, especially \Zjets,
552 \Zbbbar, \ZZ and \Zgamma. This expectation is confirmed, as can be
553 seen in Figure~\ref{fig:met}.
554
555 \begin{figure}[bt]
556 \begin{center}
557 \scalebox{0.8}{\includegraphics{figs/met_by_channel.eps}}
558 \caption{Missing transverse energy for the four signal categories.
559 The distributions show the number of expected events
560 for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 \gev
561 are shown. All selection cuts are applied.}
562 \label{fig:met}
563 \end{center}
564 \end{figure}
565
566 \begin{figure}[bt]
567 \begin{center}
568 \scalebox{0.8}{\includegraphics{figs/mtw_by_channel.eps}}
569 \caption{\W transverse mass for the four signal categories.
570 The distributions show the number of expected events
571 for $1 fb^{-1}$. Only events with 81 GeV $< M_Z < $ 101 GeV are shown.
572 All selection cuts are applied.}
573 \label{fig:mtw}
574 \end{center}
575 \end{figure}
576
577
578 Another variable sensitive to the presence of the neutrino
579 is the W transverse mass $m_T^W$, obtained by combining the missing
580 energy vector and the lepton associated to the \W-boson decay.
581 The distribution of $m_T^W$ is shown in Figure~\ref{fig:mtw}.
582 The signal yield could be extracted from that distribution.
583 This requires however additional studies and it has not been
584 done at this stage.
585
586 %\subsection{Signal extraction}
587 %\input D0Matrix
588 \input zjetbackground
589
590
591 \section{Systematic uncertainties}
592 \label{sec:systematic}
593 \input Sys
594
595
596
597
598
599
600