ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/xsection.tex
Revision: 1.2
Committed: Wed Sep 3 09:36:31 2008 UTC (16 years, 8 months ago) by kkaadze
Content type: application/x-tex
Branch: MAIN
Changes since 1.1: +44 -26 lines
Log Message:
Undate; Figure is included.

File Contents

# User Rev Content
1 kkaadze 1.2 \section{Combine cross section measurements for all channels}
2 kkaadze 1.1 \label{sec:xsec}
3    
4 kkaadze 1.2 We calculate $WZ$ cross section using equation given below
5 kkaadze 1.1
6     \begin{equation}
7     \label{eq:xsec}
8     \sigma = \frac{N_{obs}-N_{MC}-N_{Z}}{\epsilon \mathcal{L}},
9     \end{equation}
10    
11     where $N_{obs}$ is number of observed events, $N_{MC}$
12 kkaadze 1.2 is the number of background events from both non genuine $\Z$
13     and genuine $\Z$ physics backgrounds and $N_Z$ is number of instrumental background
14     events from processes with genuine $\Z$ boson. These numbers are given in
15     Tables ~\ref{tab:yields}~and~\ref{tab:yieldsEstimate} for each channel.
16 kkaadze 1.1
17 kkaadze 1.2 The error on measured cross section is calculated as given in qeuation below
18     %Eq.~\ref{eq:xsecErr}
19 kkaadze 1.1
20     \begin{equation}
21     \label{eq:xsecErr}
22     \left(\Delta\sigma\right)^2 = \left(\frac{\Delta N_{obs}}{\epsilon\mathcal{L}}\right)^2
23     + \left(\frac{\Delta N_{MC}}{\epsilon \mathcal{L}}\right)^2
24     + \left(\frac{\Delta N_{Z}}{\epsilon \mathcal{L}}\right)^2
25 kkaadze 1.2 + \left(\frac{\Delta (\epsilon \mathcal{L})}{\epsilon \mathcal{L}} \frac{N_{WZ}}{\epsilon \mathcal{L}}\right)^2 ,
26 kkaadze 1.1 \end{equation}
27    
28     where $\frac{\Delta(\epsilon \mathcal{L})}{\epsilon \mathcal{L}}$ represents the
29     modeling error for each channel, given in Table~\ref{tab:FullSys}.
30    
31     We normalize measured cross section by theoretical cross section. The latter one is obtained by
32     using the estimated Monte Carlo number of $WZ$ events corresponding to a sample of 300 $pb^{-1}$
33     integrated luminosity, given in the first line of Table~\ref{tab:yields}.
34 kkaadze 1.2 Thus, the normalization factors are 7.9, 8.0, 8.9, and 10.1 for $3e$, $2e1\mu$, $2\mu1e$, and $3\mu$, respectively.
35 kkaadze 1.1 % Units? Or better, we need to update the note with efficiency*Acceptance numbers.
36     %<---- Is unit of 7.9(etc) the same as Luminosity? As I think \epsilon ( or A*\epsilon is the measured in \% )???
37    
38     % Remove this example... it does not serve much purpose.
39     %As an example, the calculation for 3$e$ channel is provided below.
40     %Normalized cross-section and corresponding uncertainty is calculated in Eqs.~\ref{eq:sOverStheory}
41     %and ~\ref{eq:deltaSOverStheory}
42    
43     %\begin{equation}
44     %\label{eq:sOverStheory}
45    
46     %\frac{\sigma}{\sigma_theory} = \frac{13.6 - 2.5 - 3.2}{7.9} = 1.0
47    
48     %\end{equation}
49    
50     %\begin{equation}
51     %\label{eq:deltaSOverStheory}
52    
53     %\left(\frac{\Delta\sigma}{\sogma_theory}\right)^2 = \frac{13.6 + 1.3^2 + 1.7^2}{7.9^2} + (0.21^2*\frac{7.9}{7.9})^2 = 0.335
54     %\frac{\Delta\sigma}{\sogma_theory} = 0.58
55    
56     %\end{equation}
57     % Remove up to here
58    
59     We obtain the cross sections normalized by the theoretical ones as given
60     in Table below %~\ref{tab:fourXsections}
61    
62 kkaadze 1.2 $$
63 kkaadze 1.1 \begin{tabular}{|l|c|c|} \hline
64     Channels & normalized cross section & normalization factor \\ \hline
65     $3e$ & 1.00$\pm$0.58 & 7.9 \\
66     $2e 1\mu$ & 0.95$\pm$0.45 & 8.0 \\
67     $2\mu 1e$ & 0.82$\pm$0.52 & 8.9 \\
68     $3\mu$ & 0.98$\pm$0.39 & 10.1 \\ \hline
69     \end{tabular}
70     \label{tab:fourXsections}
71 kkaadze 1.2 $$
72 kkaadze 1.1
73     In order to combine the results for four different channles we use BLUE
74     ($i.e.$ Best Linear Unbiased Estimate) method~\cite{BLUE}.
75     According to this method, final estimation of the cross section is a linear combination
76 kkaadze 1.2 of cross-sections, individual estimates, measured for each channel.
77 kkaadze 1.1
78     \begin{equation}
79     \label{eq:sumXsec}
80     \sigma = \sum_{i} \alpha_i\sigma_i
81     \end{equation}
82    
83     where $\alpha_{i}$ are weighting factors for the estimates, which needs to be determined.
84    
85 kkaadze 1.2 In the experiment we measure cross-section for each channel and calculate matrix of uncertainties,
86     $\mathbb{E}$. As we consider four channels, $\mathbb{E}$ will be $4 \times $4 symmetric matrix.
87    
88 kkaadze 1.1
89 kkaadze 1.2 \[ \mathbb{E} =\left( \begin{array}{cccc}
90 kkaadze 1.1 \sigma_0^2 & \sigma_{01} & \sigma_{02} & \sigma_{03} \\
91     \sigma_{10} & \sigma_1^2 & \sigma_{12} & \sigma_{13} \\
92     \sigma_{20} & \sigma_{21} & \sigma_2^2 & \sigma_{23} \\
93 kkaadze 1.2 \sigma_{30} & \sigma_{31} & \sigma_{32} & \sigma_3^2 \end{array} \right), \]
94    
95 kkaadze 1.1
96     %where the diagonal elements correspond to variances of cross-section measurements for channels
97     where diagonal elements are the full uncertainties for individual channel squared and
98     the off-diagonal elements represent the correlated uncertainties of the respective channels,
99     $e.g.$, $\sigma_{01}$ describes uncertainty due to the correlation between the channels $3e$ and $2e1\mu$
100 kkaadze 1.2 and equals to $\sigma_{0}^{corr} \sigma_{1}^{corr}$, where $\sigma_{0}^{corr}$ is uncetrainty
101     on zeroth channel ($3e$) due to correlated sources with first channel ($2e1\mu$) and
102     $\sigma_{1}^{corr}$ is uncertainty on first channel due to correlated sources woth zeroth channel.
103 kkaadze 1.1
104    
105     %==================================================================
106    
107     As an example, calculation of $\sigma_{01}=\sigma_0^{corr} \sigma_1^{corr}$ is described below.
108     At first we estimate the uncertainty which is due to correlated modelling sources, common between all channels,
109     listed in Table~\ref{tab:sys}. These sources are Luminosity, trigger, lepton reconstruction, lepton energy scale,
110     PDF, W transwers mass requirement. Adding these uncertainties together as uncorrelated results in 16.2\%.
111    
112     Then we list the sources of uncertainty which are common between $3e$, $2e1\mu$ channels:
113    
114     \[ \begin{array}{lc}
115     \mbox{Electron charge determination} & 2*2\% = 4\% \\
116     \mbox{Electron identification} & 2*4\% = 8\% \\
117     \mbox{fully correlated modeling} & 16.2\% \\
118     \mbox{background estimated from MC} & \\
119     \end{array}\]
120    
121     and add these uncertainties as from uncorrelated sources.
122    
123     Uncertainty due to elctron charge identification, electron indetification and
124     fully correlated modeling will be
125     $\sqrt{4\%^2+8\%^2+16.2\%^2} *1.00 = 0.185$ on $3e$ channel and $\sqrt{4\%^2+8\%^2+16.2\%^2} *0.95 = 0.176$
126     on $2e1\mu$ channel, normalized by the corresponding theoretical cross sections.
127     Hence, the uncertainties on $3e$ and $2e1\mu$ channels due to all sources of correlations are
128    
129     \begin{subequations}
130     \label{eq:covTerms}
131     \begin{align}
132     \sigma_0^{corr}& = \sqrt{0.185^2 + (\frac{1.3}{7.9})^2} = 0.248 \label{first}\\
133     \sigma_1^{corr}& = \sqrt{0.176^2 + (\frac{0.9}{8.0})^2} = 0.209 \label{second}
134     \end{align}
135     \end{subequations}
136     Thus,
137     \begin{equation}\label{eq:covTermFin}
138     \sigma_{01} = 0.248 * 0.209 = 0.052
139     \end{equation}
140    
141 kkaadze 1.2 Other terms are also calculated accordingly, which results in following uncertainty matrix
142 kkaadze 1.1
143     \[ \mathbb{E} = \left( \begin{array}{cccc}
144     0.335 & 0.052 & 0.095 & 0.041 \\
145     0.052 & 0.202 & 0.037 & 0.043 \\
146     0.095 & 0.037 & 0.267 & 0.036 \\
147     0.041 & 0.043 & 0.036 & 0.155 \end{array} \right) .\]
148    
149     In order to determine $\alpha_i$ weighting factors we follow
150     straight forward calculation described in paper ~\cite{BLUE}.
151    
152     % I need to correct the syntax in this formula
153     \begin{equation}
154     \label{eq:weights}
155 kkaadze 1.2 \alpha = \mathbb{E}^{-1}U/(\tilde{U}\mathbb{E}^{-1}U) ,
156 kkaadze 1.1 \end{equation}
157    
158 kkaadze 1.2 where $U$ is a four-dimensional vector whose all components are unity.
159     Obtained weights equal to 0.112, 0.281, 0.194, and 0.413 for $3e$, $2e1\mu$, $2\mu1e$, and $3\mu$ channels, respectively.
160     Total uncertainty on combined measurement squared is calculated as
161    
162     \begin{equation}
163     \label{eq:sigmaSquared}
164     \sigma^2 = \tilde{\alpha}\mathbb{E}\alpha
165     \end{equation}
166    
167     Thus obtained normalized cross section after combining all four channels is $0.96\pm0.3$.
168     Corss sections measured for each channel and result of BLUE method is shown on figure Fig.~\ref{fig:xsections}
169    
170     \begin{figure}[bt]
171     \begin{center}
172     \scalebox{0.8}{\includegraphics{figs/combined_xsections.eps}}
173     \caption{Normalized cross section measured for each channel and corresponding uncertainties. }
174     \label{fig:xsections}
175     \end{center}
176     \end{figure}
177    
178 kkaadze 1.1
179     \end{document}
180    
181    
182    
183    
184    
185    
186    
187    
188    
189    
190    
191    
192    
193    
194    
195    
196    
197    
198    
199    
200    
201    
202    
203    
204    
205    
206