ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/xsection.tex
Revision: 1.3
Committed: Fri Sep 5 00:39:57 2008 UTC (16 years, 8 months ago) by kkaadze
Content type: application/x-tex
Branch: MAIN
CVS Tags: Summer08-FinalApproved
Changes since 1.2: +81 -81 lines
Log Message:
Undate.

File Contents

# User Rev Content
1 kkaadze 1.3 \section{Combining cross section measurements for all channels}
2 kkaadze 1.1 \label{sec:xsec}
3    
4 kkaadze 1.3 In this section we calculate the cross section for each channel and
5     provide the method to combine four measurements taking into account the correlation.
6    
7     $\WZ$ cross section is calculated as follows
8 kkaadze 1.1
9     \begin{equation}
10     \label{eq:xsec}
11     \sigma = \frac{N_{obs}-N_{MC}-N_{Z}}{\epsilon \mathcal{L}},
12     \end{equation}
13    
14 kkaadze 1.3 where $N_{obs}$ is the number of observed events, $N_{MC}$
15     is the number of background events estimated from Monte Carlo simulation,
16     $i.e.$ events from $\Z\gamma$, $\ZZ$, and processes without genuine $\Z$ boson
17     in final state. $N_Z$ is the number of instrumental background events from
18     processes with genuine $\Z$ boson. These numbers are given in
19     Tables~\ref{tab:yields}~and~\ref{tab:yieldsEstimate} for each channel.
20 kkaadze 1.1
21 kkaadze 1.3 The uncertainty on measured cross section is calculated as given in equation below
22 kkaadze 1.2 %Eq.~\ref{eq:xsecErr}
23 kkaadze 1.1
24     \begin{equation}
25     \label{eq:xsecErr}
26     \left(\Delta\sigma\right)^2 = \left(\frac{\Delta N_{obs}}{\epsilon\mathcal{L}}\right)^2
27     + \left(\frac{\Delta N_{MC}}{\epsilon \mathcal{L}}\right)^2
28     + \left(\frac{\Delta N_{Z}}{\epsilon \mathcal{L}}\right)^2
29 kkaadze 1.3 + \left(\frac{\Delta (\epsilon \mathcal{L})}{\epsilon \mathcal{L}} \frac{N_{WE}}{\epsilon \mathcal{L}}\right)^2 ,
30 kkaadze 1.1 \end{equation}
31    
32 kkaadze 1.3 where $\frac{\Delta(\epsilon \mathcal{L})}{\epsilon \mathcal{L}}$ is
33     modeling uncertainty for each channel, given in Table~\ref{tab:FullSys}.
34 kkaadze 1.1
35 kkaadze 1.3 We normalize cross section to the theoretical cross section, calculated from
36     Monte Carlo simulation. The normalized $\WZ$ cross section, $\sigma_n$, is given as
37 kkaadze 1.1
38     %\begin{equation}
39 kkaadze 1.3 \begin{eqnarray}
40     \label{eq:normSigma}
41     \sigma_n &=&\frac{N_{obs}-N_{MC}-N_{\Z}}{\epsilon\mathcal{L}} \frac{1}{\sigma_{theory}} \nonumber \\
42     &=& \frac{N_{obs}-N_{MC}-N_{\Z}}{\epsilon\mathcal{L}} \frac{\epsilon \mathcal{L}}{N_{\WZ}} \nonumber \\
43     &=& \frac{N_{obs}-N_{MC}-N_{\Z}}{N_{\WZ}}
44     \end{eqnarray}
45 kkaadze 1.1 %\end{equation}
46    
47 kkaadze 1.3 %\sigma_{n} = \frac{N_{obs}-N_{MC}-N_{\Z}}{N_{\WZ}}
48 kkaadze 1.1
49 kkaadze 1.3 where $N_{\WZ}$ is the expected number of signal events, corresponding to a sample of 300 $pb^{-1}$
50     integrated luminosity, which is given in the first line of Table~\ref{tab:yields}.
51     %Thus, the normalization factors are 7.9, 8.0, 8.9, and 10.1 for $3e$, $2e1\mu$,
52     %$2\mu1e$, and $3\mu$, respectively.
53 kkaadze 1.1
54 kkaadze 1.3 Normalized cross section for each channel is given in
55     Table below %~\ref{tab:fourXsections}
56 kkaadze 1.1
57 kkaadze 1.3 \begin{table}[h]
58     \begin{center}
59     \begin{tabular}{|l|c|} \hline
60     Channels & normalized cross section \\ \hline
61     $3e$ & 1.00$\pm$0.58 \\
62     $2e 1\mu$ & 0.95$\pm$0.45 \\
63     $2\mu 1e$ & 0.82$\pm$0.52 \\
64     $3\mu$ & 0.98$\pm$0.39 \\ \hline
65 kkaadze 1.1 \end{tabular}
66 kkaadze 1.3 \caption{Normalized cross section measured for each channel and corresponding uncertainties.}
67 kkaadze 1.1 \label{tab:fourXsections}
68 kkaadze 1.3 \end{center}
69     \end{table}
70 kkaadze 1.1
71 kkaadze 1.3 In order to combine the results for four different channels we use BLUE
72 kkaadze 1.1 ($i.e.$ Best Linear Unbiased Estimate) method~\cite{BLUE}.
73     According to this method, final estimation of the cross section is a linear combination
74 kkaadze 1.3 of cross-sections, measured for each channel separately
75 kkaadze 1.1
76     \begin{equation}
77     \label{eq:sumXsec}
78     \sigma = \sum_{i} \alpha_i\sigma_i
79     \end{equation}
80    
81 kkaadze 1.3 where $\alpha_{i}$ are weighting factors for each measurement, which needs to be determined.
82 kkaadze 1.1
83 kkaadze 1.3 In the experiment we measure cross section for each channel and calculate uncertainty matrix,
84 kkaadze 1.2 $\mathbb{E}$. As we consider four channels, $\mathbb{E}$ will be $4 \times $4 symmetric matrix.
85    
86 kkaadze 1.3 \begin{equation}
87     \label{eq:uncertMatrix}
88     \mathbb{E} =\left( \begin{array}{cccc}
89     \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\
90     \sigma_{21} & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\
91     \sigma_{31} & \sigma_{32} & \sigma_3^2 & \sigma_{34} \\
92     \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_4^2 \end{array} \right),
93     \end{equation}
94 kkaadze 1.1
95     %where the diagonal elements correspond to variances of cross-section measurements for channels
96     where diagonal elements are the full uncertainties for individual channel squared and
97 kkaadze 1.3 the off-diagonal elements represent uncertainties of the respective channels from sources of
98     correlation, $e.g.$, $\sigma_{12}$ describes uncertainty due to the common sources between the channels $3e$
99     and $2e1\mu$ and equals to $\sigma_{1}^{corr} \sigma_{2}^{corr}$, where $\sigma_{1}^{corr}$
100     and $\sigma_{2}^{corr}$ are uncertainties on first ($3e$) and second ($2e1\mu$) channels, respectively.
101 kkaadze 1.1
102    
103     %==================================================================
104    
105 kkaadze 1.3 As an example, calculation of $\sigma_{12}=\sigma_1^{corr} \sigma_2^{corr}$ is described below.
106     At first we estimate the uncertainty due to modeling sources, common between all channels, which are
107     listed in Table~\ref{tab:sys}. These are luminosity, trigger, lepton reconstruction, lepton energy scale,
108     PDF, and W transverse mass requirement. Adding these uncertainties together results in 16.2\%.
109 kkaadze 1.1
110 kkaadze 1.3 Then we list the sources of uncertainty which are common between $3e$ and $2e1\mu$ channels:
111 kkaadze 1.1
112     \[ \begin{array}{lc}
113 kkaadze 1.3 \mbox{Electron charge determination} & 2\%+2\% = 4\% \\
114     \mbox{Electron identification} & 4\%+4\% = 8\% \\
115     \mbox{Fully correlated modeling} & 16.2\% \\
116     \mbox{Background estimated from MC} & \\
117 kkaadze 1.1 \end{array}\]
118    
119     and add these uncertainties as from uncorrelated sources.
120    
121 kkaadze 1.3 Uncertainty due to electron charge determination, electron identification, and
122     fully correlated modeling is
123     $$\sqrt{4\%^2+8\%^2+16.2\%^2} 1.00 = 0.185$$
124     for $3e$ channel and
125     $$\sqrt{4\%^2+8\%^2+16.2\%^2} 0.95 = 0.176$$
126     for $2e1\mu$ channel. Hence, the uncertainties for $3e$ and $2e1\mu$ channels due to all
127     sources of correlations are
128 kkaadze 1.1
129     \begin{subequations}
130     \label{eq:covTerms}
131     \begin{align}
132     \sigma_0^{corr}& = \sqrt{0.185^2 + (\frac{1.3}{7.9})^2} = 0.248 \label{first}\\
133     \sigma_1^{corr}& = \sqrt{0.176^2 + (\frac{0.9}{8.0})^2} = 0.209 \label{second}
134     \end{align}
135     \end{subequations}
136     Thus,
137     \begin{equation}\label{eq:covTermFin}
138     \sigma_{01} = 0.248 * 0.209 = 0.052
139     \end{equation}
140    
141 kkaadze 1.3 Calculating other terms using previously described procedure result in
142 kkaadze 1.1
143     \[ \mathbb{E} = \left( \begin{array}{cccc}
144     0.335 & 0.052 & 0.095 & 0.041 \\
145     0.052 & 0.202 & 0.037 & 0.043 \\
146     0.095 & 0.037 & 0.267 & 0.036 \\
147     0.041 & 0.043 & 0.036 & 0.155 \end{array} \right) .\]
148    
149 kkaadze 1.3 In order to determine $\alpha_i$ weighting factors following
150     procedure described in paper~\cite{BLUE}
151 kkaadze 1.1
152     \begin{equation}
153     \label{eq:weights}
154 kkaadze 1.2 \alpha = \mathbb{E}^{-1}U/(\tilde{U}\mathbb{E}^{-1}U) ,
155 kkaadze 1.1 \end{equation}
156    
157 kkaadze 1.2 where $U$ is a four-dimensional vector whose all components are unity.
158 kkaadze 1.3 Obtained weights are 0.112, 0.281, 0.194, and 0.413 for $3e$, $2e1\mu$, $2\mu1e$, and $3\mu$ channels, respectively.
159 kkaadze 1.2 Total uncertainty on combined measurement squared is calculated as
160    
161     \begin{equation}
162     \label{eq:sigmaSquared}
163     \sigma^2 = \tilde{\alpha}\mathbb{E}\alpha
164     \end{equation}
165    
166 kkaadze 1.3 Thus, normalized combined cross section is $0.96\pm0.3$.
167     Cross sections measured for each channel separately and result of BLUE method is
168     shown on Fig.~\ref{fig:xsections}
169 kkaadze 1.2
170     \begin{figure}[bt]
171     \begin{center}
172     \scalebox{0.8}{\includegraphics{figs/combined_xsections.eps}}
173 kkaadze 1.3 \caption{The normalized cross section measured for each channel and corresponding uncertainties. }
174 kkaadze 1.2 \label{fig:xsections}
175     \end{center}
176     \end{figure}
177    
178 kkaadze 1.1
179     \end{document}
180    
181    
182    
183    
184    
185    
186    
187    
188    
189    
190    
191    
192    
193    
194    
195    
196    
197    
198    
199    
200    
201    
202    
203    
204    
205    
206