ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/xsection.tex
Revision: 1.4
Committed: Sun Sep 7 09:28:04 2008 UTC (16 years, 8 months ago) by kkaadze
Content type: application/x-tex
Branch: MAIN
CVS Tags: HEAD
Changes since 1.3: +15 -9 lines
Log Message:
Update.

File Contents

# Content
1 \section{Combining cross section measurements for all channels}
2 \label{sec:xsec}
3
4 In this section we calculate the cross section for each individual channel and
5 combine them together taking into account correlations.
6
7 $\WZ$ cross section is calculated as follows
8
9 \begin{equation}
10 \label{eq:xsec}
11 \sigma = \frac{N_{obs}-N_{MC}-N_{Z}}{\epsilon \mathcal{L}},
12 \end{equation}
13
14 where $N_{obs}$ is the number of observed events, $N_{MC}$
15 is the number of background events estimated from Monte Carlo simulation,
16 $i.e.$ events from $\Z\gamma$, $\ZZ$, and processes without genuine $\Z$ boson
17 in final state. $N_Z$ is the number of instrumental background events from
18 processes with genuine $\Z$ boson; these numbers are given in
19 Tables~\ref{tab:yields}~and~\ref{tab:yieldsEstimate} for each channel.
20
21 The uncertainty on measured cross section is calculated as given in equation below
22 %Eq.~\ref{eq:xsecErr}
23
24 \begin{equation}
25 \label{eq:xsecErr}
26 \left(\Delta\sigma\right)^2 = \left(\frac{\Delta N_{obs}}{\epsilon\mathcal{L}}\right)^2
27 + \left(\frac{\Delta N_{MC}}{\epsilon \mathcal{L}}\right)^2
28 + \left(\frac{\Delta N_{Z}}{\epsilon \mathcal{L}}\right)^2
29 + \left(\frac{\Delta (\epsilon \mathcal{L})}{\epsilon \mathcal{L}} \frac{N_{WE}}{\epsilon \mathcal{L}}\right)^2 ,
30 \end{equation}
31
32 where $\Delta(\epsilon \mathcal{L})/(\epsilon \mathcal{L})$ is
33 modeling uncertainty for each channel, given in Table~\ref{tab:FullSys}.
34
35 We normalize cross section to the theoretical cross section, calculated from
36 Monte Carlo simulation. The normalized $\WZ$ cross section, $\sigma_n$, is given as
37
38 %\begin{equation}
39 \begin{eqnarray}
40 \label{eq:normSigma}
41 \sigma_n &=&\frac{N_{obs}-N_{MC}-N_{\Z}}{\epsilon\mathcal{L}} \frac{1}{\sigma_{theory}} \nonumber \\
42 &=& \frac{N_{obs}-N_{MC}-N_{\Z}}{\epsilon\mathcal{L}} \frac{\epsilon \mathcal{L}}{N_{\WZ}} \nonumber \\
43 &=& \frac{N_{obs}-N_{MC}-N_{\Z}}{N_{\WZ}}
44 \end{eqnarray}
45 %\end{equation}
46
47 %\sigma_{n} = \frac{N_{obs}-N_{MC}-N_{\Z}}{N_{\WZ}}
48
49 where $N_{\WZ}$ is the expected number of signal events, corresponding to a sample of 300 $pb^{-1}$
50 integrated luminosity, which is given in the first line of Table~\ref{tab:yields}.
51 %Thus, the normalization factors are 7.9, 8.0, 8.9, and 10.1 for $3e$, $2e1\mu$,
52 %$2\mu1e$, and $3\mu$, respectively.
53 Normalized cross section for each channel is given in
54 Table~\ref{tab:fourXsections}.
55
56 \begin{table}[h]
57 \begin{center}
58 \begin{tabular}{|l|c|} \hline
59 Channels & normalized cross section \\ \hline
60 $3e$ & 1.00$\pm$0.58 \\
61 $2e 1\mu$ & 0.95$\pm$0.45 \\
62 $2\mu 1e$ & 0.82$\pm$0.52 \\
63 $3\mu$ & 0.98$\pm$0.39 \\ \hline
64 \end{tabular}
65 \caption{Normalized cross section measured for each channel and corresponding uncertainties.}
66 \label{tab:fourXsections}
67 \end{center}
68 \end{table}
69
70 In order to combine the results for four different channels we use BLUE
71 ($i.e.$ Best Linear Unbiased Estimate) method~\cite{BLUE}.
72 According to this method, final estimation of the cross section is a linear combination
73 of cross-sections, measured for each channel separately
74
75 \begin{equation}
76 \label{eq:sumXsec}
77 \sigma = \sum_{i} \alpha_i\sigma_i
78 \end{equation}
79
80 where $\alpha_{i}$ are weighting factors for each measurement, which needs to be determined.
81
82 In the experiment we measure cross section for each channel and calculate uncertainty matrix,
83 $\mathbb{E}$. As we consider four channels, $\mathbb{E}$ will be $4 \times $4 symmetric matrix.
84
85 \begin{equation}
86 \label{eq:uncertMatrix}
87 \mathbb{E} =\left( \begin{array}{cccc}
88 \sigma_1^2 & \sigma_{12} & \sigma_{13} & \sigma_{14} \\
89 \sigma_{21} & \sigma_2^2 & \sigma_{23} & \sigma_{24} \\
90 \sigma_{31} & \sigma_{32} & \sigma_3^2 & \sigma_{34} \\
91 \sigma_{41} & \sigma_{42} & \sigma_{43} & \sigma_4^2 \end{array} \right),
92 \end{equation}
93
94 %where the diagonal elements correspond to variances of cross-section measurements for channels
95 where diagonal elements are the full uncertainties for individual channel squared and
96 the off-diagonal elements represent uncertainties of the respective channels from sources of
97 correlation, $e.g.$, $\sigma_{12}$ describes uncertainty due to the common sources between the channels $3e$
98 and $2e1\mu$ and equals to $\sigma_{1}^{corr} \sigma_{2}^{corr}$, where $\sigma_{1}^{corr}$
99 and $\sigma_{2}^{corr}$ are uncertainties on first ($3e$) and second ($2e1\mu$) channels, respectively.
100
101
102 %==================================================================
103
104 As an example, calculation of $\sigma_{12}=\sigma_1^{corr} \sigma_2^{corr}$ is described below.
105 At first we estimate the uncertainty due to modeling sources, common between all channels, which are
106 listed in Table~\ref{tab:sys}. These are luminosity, trigger, lepton reconstruction, lepton energy scale,
107 PDF, and W transverse mass requirement. Adding these uncertainties together results in 16.2\%.
108
109 Then we list the sources of uncertainty which are common between $3e$ and $2e1\mu$ channels:
110
111 \[ \begin{array}{lc}
112 \mbox{Electron charge determination} & 2\%+2\% = 4\% \\
113 \mbox{Electron identification} & 4\%+4\% = 8\% \\
114 \mbox{Fully correlated modeling} & 16.2\% \\
115 \mbox{Background estimated from MC} & \\
116 \end{array}\]
117
118 and add these uncertainties as from uncorrelated sources.
119
120 Uncertainty due to electron charge determination, electron identification, and
121 fully correlated modeling is
122 \begin{equation}
123 \label{eq:sigma0corr}
124 1.00 \sqrt{4\%^2+8\%^2+16.2\%^2} = 0.185
125 \end{equation}
126 for $3e$ channel and
127 \begin{equation}
128 \label{eq:sigma1corr}
129 0.95 \sqrt{4\%^2+8\%^2+16.2\%^2} = 0.176
130 \end{equation}
131 for $2e1\mu$ channel. Hence, the uncertainties for $3e$ and $2e1\mu$ channels due to all
132 sources of correlations are
133
134 \begin{subequations}
135 \label{eq:covTerms}
136 \begin{align}
137 \sigma_0^{corr}& = \sqrt{0.185^2 + (\frac{1.3}{7.9})^2} = 0.248 \label{first}\\
138 \sigma_1^{corr}& = \sqrt{0.176^2 + (\frac{0.9}{8.0})^2} = 0.209 \label{second}
139 \end{align}
140 \end{subequations}
141 Thus,
142 \begin{equation}\label{eq:covTermFin}
143 \sigma_{01} = 0.248 * 0.209 = 0.052
144 \end{equation}
145
146 Calculating other terms using previously described procedure result in
147
148 \[ \mathbb{E} = \left( \begin{array}{cccc}
149 0.335 & 0.052 & 0.095 & 0.041 \\
150 0.052 & 0.202 & 0.037 & 0.043 \\
151 0.095 & 0.037 & 0.267 & 0.036 \\
152 0.041 & 0.043 & 0.036 & 0.155 \end{array} \right) .\]
153
154 In order to determine $\alpha_i$ weighting factors following
155 procedure described in paper~\cite{BLUE}
156
157 \begin{equation}
158 \label{eq:weights}
159 \alpha = \mathbb{E}^{-1}U/(\tilde{U}\mathbb{E}^{-1}U) ,
160 \end{equation}
161
162 where $U$ is a four-dimensional vector whose all components are unity.
163 Obtained weights are 0.112, 0.281, 0.194, and 0.413 for $3e$, $2e1\mu$, $2\mu1e$, and $3\mu$ channels, respectively.
164 Total uncertainty on combined measurement squared is calculated as
165
166 \begin{equation}
167 \label{eq:sigmaSquared}
168 \sigma^2 = \tilde{\alpha}\mathbb{E}\alpha
169 \end{equation}
170
171 Thus, normalized combined cross section is $0.96\pm0.3$.
172 Cross sections measured for each channel separately and result of BLUE method is
173 shown on Fig.~\ref{fig:xsections}
174
175 \begin{figure}[bt]
176 \begin{center}
177 \scalebox{0.8}{\includegraphics{figs/combined_xsections.eps}}
178 \caption{From bottom to top, the normalized cross section measured for each channel and corresponding uncertainties;
179 cross section after combining four measurements using BLUE method. }
180 \label{fig:xsections}
181 \end{center}
182 \end{figure}
183
184
185 \end{document}
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212