ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/Vuko/Notes/WZCSA07/zjetbackground.tex
Revision: 1.31
Committed: Tue Aug 12 19:24:08 2008 UTC (16 years, 8 months ago) by ymaravin
Content type: application/x-tex
Branch: MAIN
CVS Tags: Summer08-FinalApproved, HEAD
Changes since 1.30: +11 -9 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 smorovic 1.1 \section{Signal extraction}
2 beaucero 1.6 \label{sec:SignalExt}
3 ymaravin 1.27 We separate backgrounds into three categories: physics background
4 ymaravin 1.29 from \Z$\gamma$ and \ZZ processes, with a genuine \Z boson from
5     $\Z+jets$ processes, and finally without a genuine \Z boson from
6     $t\bar{t}$ and $\W+jet$ production.
7    
8 ymaravin 1.31 The first physics background from \ZZ production is estimated from
9     Monte Carlo simulation. We assigning a very conservative 100\%
10     uncertainty on the estimated \ZZ contribution due to modeling of
11     kinematics of the decay products. The second physics
12 ymaravin 1.29 background from \Z$\gamma$ processes is estimated from Monte Carlo
13     simulation as well, although it can be determined from data once the FSR
14 ymaravin 1.31 $\Z\gamma$ signal is measured at CMS. We also assign a conservative 100\%
15     systematic uncertainty on the \Z$\gamma$ background contribution due
16     to modeling of the photon conversion probability.
17 ymaravin 1.29
18     Instrumental backgrounds from processes with misidentified leptons
19     attributed to \Z candidate decay products can be estimated from the
20     side-bands of the \Z candidate invariant mass distribution. However,
21     the background is relatively small. We estimate this background to contribute
22     at about 6\% level to the \WZ signal sample and about 20\% of the full
23     background processes. That corresponds to less than 8 events combined
24     for all four signatures for integrated luminosity of 1 \invfb.
25     Thus, it is impractical to infer this background from a sideband
26 ymaravin 1.31 fit. Thus, we estimate this background from Monte Carlo simulation
27     and we assign a conservative 100\% systematic uncertainty on the contribution
28     due to modeling of the $t\bar{t}+jets$ and $\W+jets$ background in
29     Monte Carlo simulation.
30 ymaravin 1.10
31 ymaravin 1.29 The remaining, largest background is from \Z+misidentified lepton processes
32     that we describe in details below.
33 beaucero 1.8
34 ymaravin 1.29 \subsection{Matrix method}
35     \label{sec:D0Matrix}
36     In this Section the ``loose'' and ``tight'' lepton requirements
37     are defined in Section~\ref{sec:looseTight}.
38 beaucero 1.22
39 ymaravin 1.29 The idea of a method is to apply ``loose'' identification criteria
40 ymaravin 1.10 on the third lepton after \Z boson candidate is identified
41     and count the number of the observed events, $N_{loose}$.
42 ymaravin 1.29 These events contain events with real leptons $N_{l}$
43 ymaravin 1.10 and events with misidentified jets $N_j$:
44     \begin{equation}
45 vuko 1.21 \label{eq:matrixEq1}
46 ymaravin 1.29 N_{loose} = N_l + N_j.
47 ymaravin 1.10 \end{equation}
48 beaucero 1.4
49 ymaravin 1.29 If we are to apply ``tight'' selection on the third lepton, the number
50 ymaravin 1.10 of the observed events $N_{tight}$ would change as following
51     \begin{equation}
52 vuko 1.21 \label{eq:matrixEq2}
53 ymaravin 1.29 N_{tight} = \epsilon_{tight} N_l + p_{fake} N_j,
54 ymaravin 1.10 \end{equation}
55 ymaravin 1.29 where $\epsilon_{tight}$ and $p_{fake}$ are efficiency of ``tight''
56     criteria with respect to ``loose'' requirements for leptons and
57 ymaravin 1.10 misidentified jets, respectively. As $N_{loose}$ and $N_{tight}$
58     are directly observable, to extract the number of $Z+jet$ events
59     in the final sample, one needs to measure $\epsilon_{tight}$
60 ymaravin 1.29 and $p_{fake}$ in control data samples as described in the next
61     two sections.
62    
63     If $\epsilon_{tight}$ and $p_{fake}$ are measured as functions of some
64     variable, for example, lepton $p_T$, then it is possible to estimate
65     the background as function of $p_T$ by applying the matrix method to
66     binned distribution of $dN_{tight}/dp_T$ and $dN_{loose}/dp_T$.
67 smorovic 1.1
68 beaucero 1.8 \subsubsection{Determination of $\epsilon_{tight}$}
69 smorovic 1.9
70 ymaravin 1.10 To estimate the $\epsilon_{tight}$ we apply ``tag-and-probe'' method
71 ymaravin 1.29 using $\Z \to \ell\ell$ from \Z+jets Chowder sample, including \W+jets
72 smorovic 1.9 and $t\bar{t}$ as background. \Z mass distribution is separated for two cases where
73 ymaravin 1.29 leptons from \Z boson decay either both pass ``tight'' selection (``tight-tight'' case), or only
74     one passes the ``tight'' selection, while the other electron passes ``loose'' but not ``tight''
75     selection (``tight-loose'' case).
76 smorovic 1.9
77     Equation for determination of signal efficiency is given as
78     \begin{equation}
79 ymaravin 1.29 \epsilon_{tight}=\frac{ 2(N_{TT}-B_{TT}) }{ (N_{TL}-B_{TL})+2(N_{TT}-B_{TT}) }
80 beaucero 1.26 \label{eq:errmatrix}
81 smorovic 1.9 \end{equation}
82    
83 ymaravin 1.29 where $N_{TT}$, $B_{TT}$, $N_{TL}$, and $B_{TL}$ are numbers of signal plus background
84     and background events for ``tight-tight'' and ``loose-tight'' electron combinations,
85     respectively. We estimated an efficiency for both electrons and muons to be
86     $\epsilon_{tight}=0.98 \pm 0.01$.
87 smorovic 1.9
88 ymaravin 1.10 \subsubsection{Determination of $p_{fake}$}
89    
90 ymaravin 1.29 The probability of a jet to be misidentified as a lepton depends on
91     $p_T$, $\eta$, and composition of quarks and gluons. Although the
92     light quark and gluons have a very similar misidentification rate
93     (see Fig.~\ref{fig:pfake_gg_qq}), this rate can be different for jets
94     enriched with heavy quark jets. Thus, we propose to measure the
95     $p_{fake}$ in the \W+jets sample, as jets in this sample has a very
96     similar composition as those in \Z+jets process, the major background
97     to the signal.
98    
99 ymaravin 1.10 \begin{figure}[bt]
100     \begin{center}
101 ymaravin 1.29 \scalebox{0.4}{\includegraphics{figs/pfake_gg_qq.eps}}
102     \caption{The misidentification probability $p_{fake}$ measured in light-quark jets (left),
103     and gluon jets (right) using multi-jet {\sl ALPGEN} Monte Carlo simulation.}
104     \label{fig:pfake_gg_qq}
105 ymaravin 1.10 \end{center}
106     \end{figure}
107    
108 ymaravin 1.29 We select the \W+jets sample for electron misidentification study as follows:
109     \begin{itemize}
110     \item event must be triggered by the HLTSingleMuonIso trigger,
111     \item event must not have a \Z boson candidate with an invariant mass between 50 and 120 GeV,
112     \item event must have a muon candidate within the acceptance with $p_T >$ 20 GeV satisfying
113     isolation and impact parameter significance requirements; the transverse mass of the muon candidate
114     and the MET in the event must exceed 50 GeV,
115     \item event must have only one electron candidate that satisfies loose identification requirements with $p_T > 20$ GeV,
116     isolated from the muon candidate by $\Delta R > 0.1$,
117     \item muon and electron must have the same charge to suppress $t\bar{t}$ events with real muon and electrons from \W
118     boson decays.
119     \end{itemize}
120     The ``tight'' criteria is just an application of the above-mentioned requirements with an additional criterion
121     on the electron candidate to pass ``tight'' electron identification criteria.
122    
123     The probability $p_{fake}$ is then measured as the ratio of the $p_T$ distribution of the ``tight'' electron
124     candidates to the $p_T$ distribution of the ``loose'' electron candidates in the original sample. This
125     probability agrees well with the one obtained from the multi-jet sample and is given in Fig.~\ref{fig:pfake_w}.
126     The errors correspond to statistical errors expected for a data sample with integrated luminosity of 300 \invpb.
127     Thus, it is possible to extract $p_{fake}$ with $\sim$10\% accuracy with early CMS data.
128     \begin{figure}[hbt]
129 vuko 1.14 \begin{center}
130 ymaravin 1.29 \scalebox{0.6}{\includegraphics{figs/pFake_300pb_WX_TTbar.eps}}
131     \caption{Probability of a misidentified jet from \W+jet processes that passed ``loose'' electron identification
132     requirements to also pass tight ones as function of the candidate's $p_T$. The errors correspond to
133     statistical errors expected for a 300 \invpb integrated luminosity. The distribution is also fit to a
134     constant to extract the flat $p_{fake}$ factor. }
135     \label{fig:pfake_w}
136 vuko 1.14 \end{center}
137     \end{figure}
138    
139 ymaravin 1.29 A similar method can be used to extract the $p_{fake}$ for the muon misidentification as well.
140 vuko 1.14
141 ymaravin 1.29 \subsubsection{Cross-check of the $p_{fake}$ using multi-jet sample}
142 vuko 1.14
143 ymaravin 1.29 In the following we perform an additional cross-check of $p_{fake}$ measured
144     in different control sample, enriched with multi-jet processes. In the sample,
145     selected with jet triggers, we select a ``loose'' electron candidates that are
146     separated from the jet that satisfied the trigger requirement. These candidates
147     are dominated by the misidentified light quark and gluon jets. The admixture
148     of converted photons from $\gamma + jets$ is small at the low-$p_T$ range and is
149     neglected.
150     The $p_{fake}$ function of $p_T$ and $\eta$ is obtained by dividing the $p_T$ and $\eta$
151     distributions for the electron candidate that satisfied ``tight''
152 ymaravin 1.10 electron identification requirements to that for electron candidates
153 ymaravin 1.29 that satisfied ``loose''. We estimate the $p_{fake}=0.32 \pm 0.04$ for
154 vuko 1.20 electrons.
155    
156 vuko 1.17 For muons, a similar procedure has been applied. Since the bulk
157     of background muons is coming from heavy quark decays, we select
158     a $b\bar{b}$ sample as control sample. As an exercise, we selected
159     electron-triggered events on a $b\bar{b}$ Monte Carlo sample,
160     required one ``loose electron'' in the event and looked for
161     for muon candidates that are not close to the electron candidate,
162 ymaravin 1.25 and determined $p_{fake}$ on this sample of muons. The $p_T$ spectrum
163 vuko 1.17 for ``loose'' and ``tight'' muons and their ratio is shown in
164 vuko 1.20 Figure~\ref{fig:mu_pfake}. The factor $p_{fake}$ for muons estimated
165     in this way amounts to $0.08 \pm 0.01$.
166 vuko 1.17
167    
168 ymaravin 1.29 \begin{figure}[bt]
169     \begin{center}
170     \scalebox{0.6}{\includegraphics{figs/tight_eff_gumbo.eps}}
171     \caption{Fraction of electron candidates passing the ``tight'' criteria
172     in multi-jet event. No trigger requirement has been applied.}
173     \label{fig:qcd_efftight_noHLT}
174     \end{center}
175     \end{figure}
176 beaucero 1.22
177 beaucero 1.18 \begin{figure}[!bt]
178     \begin{center}
179 ymaravin 1.29 \scalebox{0.6}{\includegraphics{figs/p0_p_fake_mu_fit.eps}}
180     \caption{Determination of $p_{fake}$ for muons. Top plot: $p_T$ spectrum
181     of muons passing the ``loose'' and ``tight'' criteria in $b\bar{b}$ events
182     in the ``Stew'' soup that corresponds to 20 \invpb of integrated luminosity,
183     accepted by electron triggers; bottom plot: fraction of muon candidates
184     passing the ``tight'' criteria. A constant fit is overlayed.}
185     \label{fig:mu_pfake}
186 beaucero 1.18 \end{center}
187     \end{figure}
188 vuko 1.21
189    
190 ymaravin 1.29
191     \subsubsection{Background determination results}
192    
193     \begin{table}[h]
194     \begin{center}
195     \begin{tabular}{lcccc} \hline \hline
196     & 3e &2e1$\mu$ & 2$\mu$1e &3$\mu$\\ \hline
197 beaucero 1.30 $N$ - ZZ - Z$\gamma$ - W+jets - $t\bar{t}$ & 18.1$\pm$1.7 & 17.7$\pm$6.2 & 22.3$\pm$1.4 & 20.0$\pm$5.9\\ \hline
198     $N^{genuine~Z}$ (matrix method) & 10.1 $\pm$3.2 & 9.4 $\pm$6.7 & 14.5 $\pm$2.9 & 9.4 $\pm$6.4\\ \hline
199     $N^{WZ}$ & 8.0 $\pm$3.6 & 8.3 $\pm$9.1 & 7.8 $\pm$3.2 & 10.6 $\pm$8.7\\ \hline
200 ymaravin 1.29 \WZ from MC &8.1&9.0& 9.2 &11.3\\
201     \hline
202     \end{tabular}
203     \caption{Expected number of events for an integrated luminosity of 300 \invpb for the signal
204     and estimated background for 81 GeV $< M_Z < $ 101 GeV with ``loose'' \W lepton criteria.}
205     \label{tab:FinalNoFitloose}
206     \end{center}
207     \end{table}
208    
209     \begin{table}[h]
210     \begin{center}
211     \begin{tabular}{lcccc} \hline \hline
212     & 3e &2e1$\mu$ &2$\mu$1e &3$\mu$\\ \hline
213 beaucero 1.30 $N$ - ZZ -Z$\gamma$ - W+jets - $t\bar{t}$ &11.1$\pm$1.3 &8.2$\pm$0.9 &12.1$\pm$1.2 &10.5$\pm$0.8\\ \hline
214     $N^{genuine~Z}$ (matrix method) &3.2 $\pm$1.7 &0.6 $\pm$0.8 &4.6 $\pm$2.0 &0.6 $\pm$0.9\\ \hline
215     $N^{\WZ}$ &7.9 $\pm$2.1 &7.6 $\pm$1.2 &7.5 $\pm$2.3 &10.0$\pm$1.2\\ \hline
216 ymaravin 1.29 \WZ from MC &7.9&8.1& 9.0 &10.1\\ \hline
217     \end{tabular}
218     \caption{Expected number of events for an integrated luminosity of 300 \invpb for the signal
219     and estimated background for 81 GeV $< M_Z < $ 101 GeV and ``tight'' \W lepton requirement.}
220     \label{tab:FinalNoFit}
221     \end{center}
222     \end{table}
223    
224     Using the values of $\epsilon_{tight}$ and $p_{fake}$ obtained
225     from the methods described in the previous sections, we estimated
226     the backgrounds from genuine \Z decays by solving Eqs.~\ref{eq:matrixEq1}
227     and \ref{eq:matrixEq2} for $N_j$. The comparisons between predicted and true MC
228     backgrounds are given in Tables~\ref{tab:FinalNoFitloose} and \ref{tab:FinalNoFit}
229     for ``loose'' and ``tight'' \W lepton, respectively.
230     The agreement between estimated and MC true backgrounds is excellent.
231    
232    
233 beaucero 1.30 \clearpage