1 |
#include "binneddata.hh"
|
2 |
#include "fit.hh"
|
3 |
|
4 |
#include <cassert>
|
5 |
#include <iostream>
|
6 |
#include <fstream>
|
7 |
|
8 |
#include <TFile.h>
|
9 |
#include <TH1D.h>
|
10 |
|
11 |
TH1D* getData(const std::vector<std::string>& filenames, const char* histname, int nbins, double* bins)
|
12 |
{
|
13 |
TH1D* hist=new TH1D("normalized_data", "normalized data", nbins, bins);
|
14 |
|
15 |
unsigned nFiles = filenames.size();
|
16 |
|
17 |
TFile *files[nFiles];
|
18 |
TH1D *hists[nFiles];
|
19 |
|
20 |
// open input files and get input histograms
|
21 |
for(unsigned i=0; i<nFiles; ++i)
|
22 |
{
|
23 |
files[i] = new TFile(filenames[i].c_str());
|
24 |
hists[i] = (TH1D*)files[i]->Get(histname);
|
25 |
}
|
26 |
|
27 |
// normalize the data in the histogram
|
28 |
for(int i=1; i<=hist->GetNbinsX(); ++i)
|
29 |
{
|
30 |
|
31 |
int bin_min = hists[0]->GetXaxis()->FindBin(hist->GetXaxis()->GetBinLowEdge(i)+0.5);
|
32 |
int bin_max = hists[0]->GetXaxis()->FindBin(hist->GetXaxis()->GetBinUpEdge(i)-0.5);
|
33 |
double val=hists[0]->Integral(bin_min,bin_max);
|
34 |
double err=Fitter::histError(val);
|
35 |
double width=hist->GetBinWidth(i);
|
36 |
hist->SetBinContent(i, val/width);
|
37 |
hist->SetBinError(i, err/width);
|
38 |
|
39 |
// for simultaneous fit in 3 distribution (used in di-b-jet analysis, currently commented out)
|
40 |
//if(hist->GetXaxis()->GetBinUpEdge(i)<=5890.)
|
41 |
//{
|
42 |
// double offset = 0.;
|
43 |
// int bin_min = hists[0]->GetXaxis()->FindBin(hist->GetXaxis()->GetBinLowEdge(i)-offset+0.5);
|
44 |
// int bin_max = hists[0]->GetXaxis()->FindBin(hist->GetXaxis()->GetBinUpEdge(i)-offset-0.5);
|
45 |
// double val=hists[0]->Integral(bin_min,bin_max);
|
46 |
// double err=Fitter::histError(val);
|
47 |
// double width=hist->GetBinWidth(i);
|
48 |
// hist->SetBinContent(i, val/width);
|
49 |
// hist->SetBinError(i, err/width);
|
50 |
//}
|
51 |
//else if(hist->GetXaxis()->GetBinUpEdge(i)>5890. && hist->GetXaxis()->GetBinUpEdge(i)<=10890. && nFiles>1)
|
52 |
//{
|
53 |
// double offset = 5000.;
|
54 |
// int bin_min = hists[1]->GetXaxis()->FindBin(hist->GetXaxis()->GetBinLowEdge(i)-offset+0.5);
|
55 |
// int bin_max = hists[1]->GetXaxis()->FindBin(hist->GetXaxis()->GetBinUpEdge(i)-offset-0.5);
|
56 |
// double val=hists[1]->Integral(bin_min,bin_max);
|
57 |
// double err=Fitter::histError(val);
|
58 |
// double width=hist->GetBinWidth(i);
|
59 |
// hist->SetBinContent(i, val/width);
|
60 |
// hist->SetBinError(i, err/width);
|
61 |
//}
|
62 |
//else if(hist->GetXaxis()->GetBinUpEdge(i)>10890. && nFiles>2)
|
63 |
//{
|
64 |
// double offset = 10000.;
|
65 |
// int bin_min = hists[2]->GetXaxis()->FindBin(hist->GetXaxis()->GetBinLowEdge(i)-offset+0.5);
|
66 |
// int bin_max = hists[2]->GetXaxis()->FindBin(hist->GetXaxis()->GetBinUpEdge(i)-offset-0.5);
|
67 |
// double val=hists[2]->Integral(bin_min,bin_max);
|
68 |
// double err=Fitter::histError(val);
|
69 |
// double width=hist->GetBinWidth(i);
|
70 |
// hist->SetBinContent(i, val/width);
|
71 |
// hist->SetBinError(i, err/width);
|
72 |
//}
|
73 |
}
|
74 |
|
75 |
// do some checks
|
76 |
if(hist->GetBinContent(0)>0.0 || hist->GetBinContent(hist->GetNbinsX()+1)>0.0)
|
77 |
{
|
78 |
std::cerr << "There is an underflow/overflow. This should be fixed. Please rebin!" << std::endl;
|
79 |
assert(0);
|
80 |
}
|
81 |
if(hist->GetBinContent(1)<=0.0)
|
82 |
{
|
83 |
std::cerr << "The first data bin is empty. This will give incorrect results. Please rebin!" << std::endl;
|
84 |
assert(0);
|
85 |
}
|
86 |
|
87 |
for(unsigned i=0; i<nFiles; ++i)
|
88 |
{
|
89 |
files[i]->Close();
|
90 |
}
|
91 |
|
92 |
return hist;
|
93 |
}
|
94 |
|
95 |
|
96 |
TH1D* getSignalCDF(const char* filename1, const char* histname1, const char* filename2, const char* histname2, const double BR, const double eff_h, const double eff_l, const std::string& postfix)
|
97 |
{
|
98 |
TH1D* h_pdf=new TH1D("h_pdf", "Resonance Shape", 14000, 0, 14000);
|
99 |
TH1D* h_cdf=new TH1D(("h_cdf"+postfix).c_str(), "Resonance Shape CDF", 14000, 0, 14000);
|
100 |
|
101 |
TFile* histfile1=new TFile(filename1);
|
102 |
TFile* histfile2=new TFile(filename2);
|
103 |
|
104 |
TH1D* hist1=(TH1D*)histfile1->Get(histname1);
|
105 |
TH1D* hist2=(TH1D*)histfile2->Get(histname2);
|
106 |
|
107 |
hist1->Scale(eff_h*BR);
|
108 |
hist2->Scale(eff_l*(1-BR));
|
109 |
hist1->Add(hist2); // this adds together two resonance shapes with appropriate branching fractions and efficiencies
|
110 |
|
111 |
for(int i=1; i<=hist1->GetNbinsX(); i++)
|
112 |
{
|
113 |
|
114 |
int bin_min = h_pdf->GetXaxis()->FindBin(hist1->GetXaxis()->GetBinLowEdge(i)+0.5);
|
115 |
int bin_max = h_pdf->GetXaxis()->FindBin(hist1->GetXaxis()->GetBinUpEdge(i)-0.5);
|
116 |
double bin_content = hist1->GetBinContent(i)/double(bin_max-bin_min+1);
|
117 |
if(bin_content<0.) bin_content=0.; // some extrapolated resonance shapes can have a small negative bin content in some of the bins. this protects against such cases
|
118 |
for(int b=bin_min; b<=bin_max; b++){
|
119 |
h_pdf->SetBinContent(b, bin_content);
|
120 |
}
|
121 |
}
|
122 |
|
123 |
h_pdf->Scale(1./h_pdf->Integral()); // normalize final PDF
|
124 |
|
125 |
// produce CDF from the normalized PDF
|
126 |
for(int i=1; i<=h_cdf->GetNbinsX(); i++)
|
127 |
{
|
128 |
int bin_min = h_pdf->GetXaxis()->FindBin(h_cdf->GetXaxis()->GetBinLowEdge(i)+0.5);
|
129 |
int bin_max = h_pdf->GetXaxis()->FindBin(h_cdf->GetXaxis()->GetBinUpEdge(i)-0.5);
|
130 |
|
131 |
double curr = 0;
|
132 |
for(int b=bin_min; b<=bin_max; b++){
|
133 |
curr+=h_pdf->GetBinContent(b);
|
134 |
}
|
135 |
|
136 |
double prev=h_cdf->GetBinContent(i-1);
|
137 |
|
138 |
h_cdf->SetBinContent(i, prev+curr);
|
139 |
}
|
140 |
|
141 |
histfile1->Close();
|
142 |
histfile2->Close();
|
143 |
delete h_pdf;
|
144 |
|
145 |
return h_cdf;
|
146 |
}
|