1 |
#include <iostream>
|
2 |
#include <cmath>
|
3 |
#include <cassert>
|
4 |
#include <sstream>
|
5 |
|
6 |
#include <TGraph.h>
|
7 |
#include <TFile.h>
|
8 |
#include <TH1D.h>
|
9 |
#include <TCanvas.h>
|
10 |
#include <TF1.h>
|
11 |
#include <TMath.h>
|
12 |
#include <TROOT.h>
|
13 |
|
14 |
#include "binneddata.hh"
|
15 |
#include "fit.hh"
|
16 |
#include "statistics.hh"
|
17 |
|
18 |
////////////////////////////////////////////////////////////////////////////////
|
19 |
// magic numbers
|
20 |
////////////////////////////////////////////////////////////////////////////////
|
21 |
|
22 |
// number of pseudoexperiments
|
23 |
const int NPES=0;
|
24 |
|
25 |
// number of samples of nuisance parameters for Bayesian MC integration
|
26 |
const int NSAMPLES=2E5;
|
27 |
|
28 |
// alpha (1-alpha=confidence interval)
|
29 |
const double ALPHA=0.05;
|
30 |
|
31 |
// left side tail
|
32 |
const double LEFTSIDETAIL=0.0;
|
33 |
|
34 |
// output file name
|
35 |
const char* OUTPUTFILE="stats.root";
|
36 |
|
37 |
// input file name
|
38 |
const char* INPUTFILE="dijet_mass_HT_fat_1p010fbm1.txt";
|
39 |
|
40 |
// histogram binning
|
41 |
const int NBINS=34;
|
42 |
double BOUNDARIES[NBINS] = { 838,
|
43 |
890, 944, 1000, 1058, 1118, 1181, 1246, 1313, 1383,
|
44 |
1455, 1530, 1607, 1687, 1770, 1856, 1945, 2037, 2132,
|
45 |
2231, 2332, 2438, 2546, 2659, 2775, 2895, 3019, 3147,
|
46 |
3275, 3403, 3531, 3659, 3787, 3915 };
|
47 |
|
48 |
// parameters
|
49 |
double SIGMASS=0;
|
50 |
const int NPARS=8;
|
51 |
const int POIINDEX=0; // which parameter is "of interest"
|
52 |
const char* PAR_NAMES[8] = { "xs", "lumi", "jes", "jer", "bkg norm", "p1", "p2", "p3" };
|
53 |
const double PAR_GUESSES[8] = { 0.1, 1010., 1.0, 1.0, 5.6E-2, 7.4, 6.3, 0.2 };
|
54 |
const double PAR_MIN[8] = { 0.0, 0.0, 0.0, 0.0, 0., 0.0, 0.0, 0.0 };
|
55 |
const double PAR_MAX[8] = { 1.E6, 5000., 2.0, 2.0, 10.0, 100.0, 100.0, 10.0 };
|
56 |
const double PAR_ERR[8] = { 0.01, 40.4, 0.04, 0.10, 1.E-3, 1.0, 1.0, 0.1 };
|
57 |
const int PAR_TYPE[8] = { 1, 1, 1, 1, 0, 0, 0, 0 }; // 1 = signal, 0 = background
|
58 |
const int PAR_NUIS[8] = { 0, 0, 0, 0, 0, 0, 0, 0 }; // 1 = nuisance parameter, 0 = not varied (the POI is not a nuisance parameter)
|
59 |
|
60 |
TH1D* HIST=0; // signal histogram
|
61 |
TH1D* HISTCDF=0; // signal CDF
|
62 |
|
63 |
////////////////////////////////////////////////////////////////////////////////
|
64 |
// function definition (not really used; only the integral is used)
|
65 |
////////////////////////////////////////////////////////////////////////////////
|
66 |
double FCN(double *x, double *par)
|
67 |
{
|
68 |
double invmass=x[0];
|
69 |
double xs=par[0];
|
70 |
double lumi=par[1];
|
71 |
double jes=par[2];
|
72 |
double jer=par[3];
|
73 |
double norm=par[4];
|
74 |
double p1=par[5];
|
75 |
double p2=par[6];
|
76 |
double p3=par[7];
|
77 |
|
78 |
double bkg = norm*pow(1.0-invmass/7000.0,p1)/pow(invmass/7000.0,p2+p3*log(invmass/7000.0));
|
79 |
double mass=jes*(jer*(invmass-SIGMASS)+SIGMASS);
|
80 |
int bin=HIST->GetXaxis()->FindBin(mass);
|
81 |
double sig = xs*lumi*HIST->GetBinContent(bin);
|
82 |
return bkg+sig;
|
83 |
}
|
84 |
|
85 |
////////////////////////////////////////////////////////////////////////////////
|
86 |
// function integral
|
87 |
////////////////////////////////////////////////////////////////////////////////
|
88 |
double INTEGRAL(double *x0, double *xf, double *par)
|
89 |
{
|
90 |
double xs=par[0];
|
91 |
double lumi=par[1];
|
92 |
double jes=par[2];
|
93 |
double jer=par[3];
|
94 |
double norm=par[4];
|
95 |
double p1=par[5];
|
96 |
double p2=par[6];
|
97 |
double p3=par[7];
|
98 |
|
99 |
// uses Simpson's 3/8th rule to compute the background integral over a short interval
|
100 |
// also use a power series expansion to determine the intermediate intervals since the pow() call is expensive
|
101 |
|
102 |
double dx=(xf[0]-x0[0])/3./7000.;
|
103 |
double x=x0[0]/7000.0;
|
104 |
double logx=log(x);
|
105 |
|
106 |
double a=pow(1-x,p1)/pow(x,p2+p3*logx);
|
107 |
double b=dx*a/x/(x-1)*(p2+p1*x-p2*x-2*p3*(x-1)*logx);
|
108 |
double c=0.5*dx*dx*a*( (p1-1)*p1/(x-1)/(x-1) - 2*p1*(p2+2*p3*logx)/(x-1)/x + (p2+p2*p2-2*p3+2*p3*logx*(1+2*p2+2*p3*logx))/x/x );
|
109 |
double d=0.166666667*dx*dx*dx*a*( (p1-2)*(p1-1)*p1/(x-1)/(x-1)/(x-1) - 3*(p1-1)*p1*(p2+2*p3*logx)/(x-1)/(x-1)/x - (1+p2+2*p3*logx)*(p2*(2+p2) - 6*p3 + 4*p3*logx*(1+p2*p3*logx))/x/x/x + 3*p1*(p2+p2*p2-2*p3+2*p3*logx*(1+2*p2+2*p3*logx))/(x-1)/x/x );
|
110 |
|
111 |
double bkg=(xf[0]-x0[0])*norm*(a+0.375*(b+c+d)+0.375*(2*b+4*c+8*d)+0.125*(3*b+9*c+27*d));
|
112 |
|
113 |
if(xs==0.0) return bkg;
|
114 |
|
115 |
double xprimef=jes*(jer*(xf[0]-SIGMASS)+SIGMASS);
|
116 |
double xprime0=jes*(jer*(x0[0]-SIGMASS)+SIGMASS);
|
117 |
int bin1=HISTCDF->GetXaxis()->FindBin(xprimef);
|
118 |
int bin2=HISTCDF->GetXaxis()->FindBin(xprime0);
|
119 |
if(bin1<1) bin1=1;
|
120 |
if(bin1>HISTCDF->GetNbinsX()) bin1=HISTCDF->GetNbinsX();
|
121 |
if(bin2<1) bin1=1;
|
122 |
if(bin2>HISTCDF->GetNbinsX()) bin2=HISTCDF->GetNbinsX();
|
123 |
double sig=xs*lumi*(HISTCDF->GetBinContent(bin1)-HISTCDF->GetBinContent(bin2));
|
124 |
|
125 |
return bkg+sig;
|
126 |
}
|
127 |
|
128 |
////////////////////////////////////////////////////////////////////////////////
|
129 |
// main function
|
130 |
////////////////////////////////////////////////////////////////////////////////
|
131 |
|
132 |
int main(int argc, char* argv[])
|
133 |
{
|
134 |
if(argc<=1) {
|
135 |
std::cout << "Usage: stats signalmass" << std::endl;
|
136 |
return 0;
|
137 |
}
|
138 |
|
139 |
// setup the signal histogram
|
140 |
TFile* histfile=new TFile("Test_Resonance_Shapes.root");
|
141 |
histfile->cd();
|
142 |
SIGMASS = std::atof(argv[1]);
|
143 |
int masspoint = static_cast<int>(SIGMASS);
|
144 |
std::ostringstream histname, cdfname;
|
145 |
histname << "h_qstar_" << masspoint;
|
146 |
cdfname << "h_qstar_" << masspoint << "_cdf";
|
147 |
HIST=dynamic_cast<TH1D*>(gROOT->FindObject(histname.str().c_str()));
|
148 |
HISTCDF=dynamic_cast<TH1D*>(gROOT->FindObject(cdfname.str().c_str()));
|
149 |
assert(HIST && HISTCDF && SIGMASS>0);
|
150 |
HIST->Scale(5.); // proper normalization
|
151 |
|
152 |
// create the output file
|
153 |
TFile* rootfile=new TFile(OUTPUTFILE, "RECREATE"); rootfile->cd();
|
154 |
|
155 |
// get the data
|
156 |
TH1D* data=getData(INPUTFILE, "data_0", NBINS-1, BOUNDARIES);
|
157 |
|
158 |
// setup an initial fitter to perform a background-only fit
|
159 |
Fitter initfit(data, INTEGRAL);
|
160 |
for(int i=0; i<NPARS; i++) initfit.defineParameter(i, PAR_NAMES[i], PAR_GUESSES[i], PAR_ERR[i], PAR_MIN[i], PAR_MAX[i], PAR_NUIS[i]);
|
161 |
|
162 |
// do an initial background-only fit, first
|
163 |
for(int i=0; i<NPARS; i++) if(PAR_TYPE[i]==1) initfit.fixParameter(i);
|
164 |
initfit.setParameter(POIINDEX, 0.0); // set the POI value to 0
|
165 |
initfit.doFit();
|
166 |
initfit.calcPull("pull_bkg_init")->Write();
|
167 |
initfit.calcDiff("diff_bkg_init")->Write();
|
168 |
initfit.write("fit_bkg_init");
|
169 |
|
170 |
// setup the limit values
|
171 |
double observedLowerBound, observedUpperBound;
|
172 |
std::vector<double> expectedLowerBounds;
|
173 |
std::vector<double> expectedUpperBounds;
|
174 |
|
175 |
// perform the PEs (0 = data)
|
176 |
for(int pe=0; pe<=NPES; ++pe) {
|
177 |
|
178 |
std::cout << "*********** pe=" << pe << " ***********" << std::endl;
|
179 |
std::ostringstream pestr;
|
180 |
pestr << "_" << pe;
|
181 |
|
182 |
// setup the fitter with the input from the background-only fit
|
183 |
TH1D* hist = (pe==0) ? data : initfit.makePseudoData((std::string("data")+pestr.str()).c_str());
|
184 |
Fitter fit(hist, INTEGRAL);
|
185 |
fit.setPOIIndex(POIINDEX);
|
186 |
fit.setPrintLevel(0);
|
187 |
for(int i=0; i<NPARS; i++) fit.defineParameter(i, PAR_NAMES[i], initfit.getParameter(i), PAR_ERR[i], PAR_MIN[i], PAR_MAX[i], PAR_NUIS[i]);
|
188 |
|
189 |
// perform a background-only fit
|
190 |
for(int i=0; i<NPARS; i++) if(PAR_TYPE[i]==1) fit.fixParameter(i);
|
191 |
fit.setParameter(POIINDEX, 0.0); // set the POI value to 0
|
192 |
fit.doFit();
|
193 |
fit.calcPull((std::string("pull_bkg")+pestr.str()).c_str())->Write();
|
194 |
fit.calcDiff((std::string("diff_bkg")+pestr.str()).c_str())->Write();
|
195 |
fit.write((std::string("fit_bkg")+pestr.str()).c_str());
|
196 |
|
197 |
// fix the ranges for the background parameters before calculating the posterior
|
198 |
for(int i=0; i<NPARS; i++) {
|
199 |
if(PAR_TYPE[i]==0 && PAR_NUIS[i]==1) {
|
200 |
double val, err;
|
201 |
fit.getParameter(i, val, err);
|
202 |
fit.setParLimits(i, val-err, val+err);
|
203 |
}
|
204 |
}
|
205 |
|
206 |
observedLowerBound=0.;
|
207 |
observedUpperBound=fit.calculateUpperBoundWithCLs(NSAMPLES, ALPHA);
|
208 |
|
209 |
|
210 |
// put the ranges back in place
|
211 |
for(int i=0; i<NPARS; i++) {
|
212 |
if(PAR_TYPE[i]==0 && PAR_NUIS[i]==1) {
|
213 |
fit.setParLimits(i, PAR_MIN[i], PAR_MAX[i]);
|
214 |
}
|
215 |
}
|
216 |
|
217 |
// evaluate the limit
|
218 |
/* std::pair<double, double> bounds=evaluateInterval(post, ALPHA, LEFTSIDETAIL);
|
219 |
if(pe==0) {
|
220 |
observedLowerBound=bounds.first;
|
221 |
observedUpperBound=bounds.second;
|
222 |
} else {
|
223 |
expectedLowerBounds.push_back(bounds.first);
|
224 |
expectedUpperBounds.push_back(bounds.second);
|
225 |
}*/
|
226 |
}
|
227 |
|
228 |
////////////////////////////////////////////////////////////////////////////////
|
229 |
// print the results
|
230 |
////////////////////////////////////////////////////////////////////////////////
|
231 |
|
232 |
std::cout << "**********************************************************************" << std::endl;
|
233 |
for(unsigned int i=0; i<expectedLowerBounds.size(); i++)
|
234 |
std::cout << "expected bound(" << (i+1) << ") = [ " << expectedLowerBounds[i] << " , " << expectedUpperBounds[i] << " ]" << std::endl;
|
235 |
|
236 |
std::cout << "\nobserved bound = [ " << observedLowerBound << " , " << observedUpperBound << " ]" << std::endl;
|
237 |
|
238 |
if(LEFTSIDETAIL>0.0 && NPES>0) {
|
239 |
std::cout << "\n***** expected lower bounds *****" << std::endl;
|
240 |
double median;
|
241 |
std::pair<double, double> onesigma;
|
242 |
std::pair<double, double> twosigma;
|
243 |
getQuantiles(expectedLowerBounds, median, onesigma, twosigma);
|
244 |
std::cout << "median: " << median << std::endl;
|
245 |
std::cout << "+/-1 sigma band: [ " << onesigma.first << " , " << onesigma.second << " ] " << std::endl;
|
246 |
std::cout << "+/-2 sigma band: [ " << twosigma.first << " , " << twosigma.second << " ] " << std::endl;
|
247 |
}
|
248 |
|
249 |
if(LEFTSIDETAIL<1.0 && NPES>0) {
|
250 |
std::cout << "\n***** expected upper bounds *****" << std::endl;
|
251 |
double median;
|
252 |
std::pair<double, double> onesigma;
|
253 |
std::pair<double, double> twosigma;
|
254 |
getQuantiles(expectedUpperBounds, median, onesigma, twosigma);
|
255 |
std::cout << "median: " << median << std::endl;
|
256 |
std::cout << "+/-1 sigma band: [ " << onesigma.first << " , " << onesigma.second << " ] " << std::endl;
|
257 |
std::cout << "+/-2 sigma band: [ " << twosigma.first << " , " << twosigma.second << " ] " << std::endl;
|
258 |
}
|
259 |
|
260 |
// close the output file
|
261 |
rootfile->Close();
|
262 |
|
263 |
return 0;
|
264 |
}
|