1 |
algomez |
1.1 |
#include "statistics.hh"
|
2 |
|
|
|
3 |
|
|
#include <sstream>
|
4 |
|
|
#include <cassert>
|
5 |
|
|
|
6 |
|
|
#include <TGraph.h>
|
7 |
|
|
#include <TMath.h>
|
8 |
|
|
#include <TH1D.h>
|
9 |
|
|
#include <TF1.h>
|
10 |
|
|
|
11 |
|
|
int RandomPrior::counter_=0;
|
12 |
|
|
|
13 |
|
|
std::pair<double, double> evaluateInterval(TGraph* posterior, double alpha, double leftsidetail)
|
14 |
|
|
{
|
15 |
|
|
double lowerCutOff = leftsidetail * alpha;
|
16 |
|
|
double upperCutOff = 1. - (1.- leftsidetail) * alpha;
|
17 |
|
|
|
18 |
|
|
double upper = 0, lower = 0;
|
19 |
|
|
|
20 |
|
|
// normalize the interval, first
|
21 |
|
|
double normalization=0.0;
|
22 |
|
|
for(int i=0; i<posterior->GetN()-1; i++) {
|
23 |
|
|
double firstx, firsty;
|
24 |
|
|
double nextx, nexty;
|
25 |
|
|
posterior->GetPoint(i, firstx, firsty);
|
26 |
|
|
posterior->GetPoint(i+1, nextx, nexty);
|
27 |
|
|
|
28 |
|
|
double intervalIntegral=(nextx-firstx)*0.5*(firsty+nexty);
|
29 |
|
|
normalization+=intervalIntegral;
|
30 |
|
|
}
|
31 |
|
|
|
32 |
|
|
// now compute the intervals
|
33 |
|
|
double integral=0.0;
|
34 |
|
|
for(int i=0; i<posterior->GetN()-1; i++) {
|
35 |
|
|
double firstx, firsty;
|
36 |
|
|
double nextx, nexty;
|
37 |
|
|
posterior->GetPoint(i, firstx, firsty);
|
38 |
|
|
posterior->GetPoint(i+1, nextx, nexty);
|
39 |
|
|
|
40 |
|
|
double intervalIntegral=(nextx-firstx)*0.5*(firsty+nexty)/normalization;
|
41 |
|
|
|
42 |
|
|
// interpolate lower
|
43 |
|
|
if(integral<=lowerCutOff && (integral+intervalIntegral)>=lowerCutOff) {
|
44 |
|
|
lower=firstx;
|
45 |
|
|
}
|
46 |
|
|
if(integral<=upperCutOff && (integral+intervalIntegral)>=upperCutOff) {
|
47 |
|
|
double m=(nexty-firsty)/(nextx-firstx);
|
48 |
|
|
upper = firstx+(-firsty+sqrt(firsty*firsty+2*m*(upperCutOff-integral)*normalization))/m;
|
49 |
|
|
}
|
50 |
|
|
integral+=intervalIntegral;
|
51 |
|
|
}
|
52 |
|
|
|
53 |
|
|
std::pair<double, double> p(lower, upper);
|
54 |
|
|
return p;
|
55 |
|
|
}
|
56 |
|
|
|
57 |
|
|
void getQuantiles(std::vector<double>& limits, double &median_, std::pair<double, double>& onesigma_, std::pair<double, double>& twosigma_) {
|
58 |
|
|
unsigned int nit=limits.size();
|
59 |
|
|
if(nit==0) return;
|
60 |
|
|
|
61 |
|
|
// sort the vector with limits
|
62 |
|
|
std::sort(limits.begin(), limits.end());
|
63 |
|
|
|
64 |
|
|
// median for the expected limit
|
65 |
|
|
median_ = TMath::Median(nit, &limits[0]);
|
66 |
|
|
|
67 |
|
|
// quantiles for the expected limit bands
|
68 |
|
|
double prob[4]; // array with quantile boundaries
|
69 |
|
|
prob[0] = 0.021;
|
70 |
|
|
prob[1] = 0.159;
|
71 |
|
|
prob[2] = 0.841;
|
72 |
|
|
prob[3] = 0.979;
|
73 |
|
|
|
74 |
|
|
// array for the results
|
75 |
|
|
double quantiles[4];
|
76 |
|
|
TMath::Quantiles(nit, 4, &limits[0], quantiles, prob); // evaluate quantiles
|
77 |
|
|
onesigma_.first=quantiles[1];
|
78 |
|
|
onesigma_.second=quantiles[2];
|
79 |
|
|
twosigma_.first=quantiles[0];
|
80 |
|
|
twosigma_.second=quantiles[3];
|
81 |
|
|
|
82 |
|
|
return;
|
83 |
|
|
}
|
84 |
|
|
|
85 |
|
|
double lognormal(double *x, double *par)
|
86 |
|
|
{
|
87 |
|
|
if(par[0]<0.0) {
|
88 |
|
|
std::cout << "par[0] = " << par[0] << std::endl;
|
89 |
|
|
assert(0);
|
90 |
|
|
}
|
91 |
|
|
if(par[1]<0.0) {
|
92 |
|
|
std::cout << "par[1] = " << par[1] << std::endl;
|
93 |
|
|
assert(0);
|
94 |
|
|
}
|
95 |
|
|
|
96 |
|
|
double m0=par[0];
|
97 |
|
|
double k=par[1]/par[0]+1.;
|
98 |
|
|
double s=TMath::Log(k);
|
99 |
|
|
return TMath::LogNormal(x[0], s, 0.0, m0);
|
100 |
|
|
}
|
101 |
|
|
|
102 |
|
|
double gaussian(double *x, double *par)
|
103 |
|
|
{
|
104 |
|
|
if(par[1]<0.0) {
|
105 |
|
|
std::cout << "par[1] = " << par[1] << std::endl;
|
106 |
|
|
assert(0);
|
107 |
|
|
}
|
108 |
|
|
|
109 |
|
|
double m0=par[0];
|
110 |
|
|
double s=par[1];
|
111 |
|
|
return TMath::Gaus(x[0],m0,s,kTRUE);
|
112 |
|
|
}
|
113 |
|
|
|
114 |
|
|
double gamma(double *x, double *par)
|
115 |
|
|
{
|
116 |
|
|
if(par[0]<0.0) {
|
117 |
|
|
std::cout << "par[0] = " << par[0] << std::endl;
|
118 |
|
|
assert(0);
|
119 |
|
|
}
|
120 |
|
|
if(par[1]<0.0) {
|
121 |
|
|
std::cout << "par[1] = " << par[1] << std::endl;
|
122 |
|
|
assert(0);
|
123 |
|
|
}
|
124 |
|
|
|
125 |
|
|
double s=par[0]*par[0]/par[1]/par[1]+1.;
|
126 |
|
|
double tau = par[0]/par[1]/par[1];
|
127 |
|
|
return TMath::GammaDist(x[0], s, 0.0, 1./tau);
|
128 |
|
|
}
|
129 |
|
|
|
130 |
|
|
RandomPrior::RandomPrior(int priorType, double median, double variance, double min, double max)
|
131 |
|
|
{
|
132 |
|
|
// set the prior type
|
133 |
|
|
priorType_=priorType;
|
134 |
|
|
|
135 |
|
|
// create function
|
136 |
|
|
std::ostringstream oss;
|
137 |
|
|
if(priorType==1) // Lognormal
|
138 |
|
|
{
|
139 |
|
|
oss << "_Random_Lognormal__priorfcn_" << (counter_++);
|
140 |
|
|
priorfcn_ = new TF1(oss.str().c_str(), lognormal, std::max(0., (min<(median-5*variance) ? (median-5*variance) : min)), (max>(median+5*variance) ? (median+5*variance) : max), 2);
|
141 |
|
|
priorfcn_->SetParameter(0, median);
|
142 |
|
|
priorfcn_->SetParameter(1, variance);
|
143 |
|
|
}
|
144 |
|
|
else if(priorType==2) // Gaussian
|
145 |
|
|
{
|
146 |
|
|
oss << "_Random_Gaussian__priorfcn_" << (counter_++);
|
147 |
|
|
priorfcn_ = new TF1(oss.str().c_str(), gaussian, (min<(median-5*variance) ? (median-5*variance) : min), (max>(median+5*variance) ? (median+5*variance) : max), 2);
|
148 |
|
|
priorfcn_->SetParameter(0, median);
|
149 |
|
|
priorfcn_->SetParameter(1, variance);
|
150 |
|
|
}
|
151 |
|
|
else if(priorType==3) // Gamma
|
152 |
|
|
{
|
153 |
|
|
oss << "_Random_Gamma__priorfcn_" << (counter_++);
|
154 |
|
|
priorfcn_ = new TF1(oss.str().c_str(), gamma, std::max(0., (min<(median-5*variance) ? (median-5*variance) : min)), (max>(median+5*variance) ? (median+5*variance) : max), 2);
|
155 |
|
|
priorfcn_->SetParameter(0, median);
|
156 |
|
|
priorfcn_->SetParameter(1, variance);
|
157 |
|
|
}
|
158 |
|
|
else // Uniform
|
159 |
|
|
{
|
160 |
|
|
oss << "_Random_Uniform__priorfcn_" << (counter_++);
|
161 |
|
|
priorfcn_ = new TF1(oss.str().c_str(), "pol0", min, max);
|
162 |
|
|
priorfcn_->SetParameter(0, 1./(max-min));
|
163 |
|
|
}
|
164 |
|
|
}
|
165 |
|
|
|
166 |
|
|
RandomPrior::~RandomPrior()
|
167 |
|
|
{
|
168 |
|
|
delete priorfcn_;
|
169 |
|
|
}
|
170 |
|
|
|
171 |
|
|
double RandomPrior::getRandom(void) const
|
172 |
|
|
{
|
173 |
|
|
return priorfcn_->GetRandom();
|
174 |
|
|
}
|
175 |
|
|
|
176 |
|
|
double RandomPrior::getXmin(void) const
|
177 |
|
|
{
|
178 |
|
|
return priorfcn_->GetXmin();
|
179 |
|
|
}
|
180 |
|
|
|
181 |
|
|
double RandomPrior::getXmax(void) const
|
182 |
|
|
{
|
183 |
|
|
return priorfcn_->GetXmax();
|
184 |
|
|
}
|
185 |
|
|
|
186 |
|
|
double RandomPrior::eval(double x) const
|
187 |
|
|
{
|
188 |
|
|
return priorfcn_->Eval(x);
|
189 |
|
|
}
|
190 |
|
|
|
191 |
|
|
int RandomPrior::getPriorType(void) const
|
192 |
|
|
{
|
193 |
|
|
return priorType_;
|
194 |
|
|
}
|