1 |
// @(#)root/hist:$Id: TConfidenceLevel.cxx 27713 2009-03-07 08:12:02Z brun $
|
2 |
// Author: Christophe.Delaere@cern.ch 21/08/2002
|
3 |
|
4 |
///////////////////////////////////////////////////////////////////////////
|
5 |
//
|
6 |
// TConfidenceLevel
|
7 |
//
|
8 |
// Class to compute 95% CL limits
|
9 |
//
|
10 |
///////////////////////////////////////////////////////////////////////////
|
11 |
|
12 |
/*************************************************************************
|
13 |
* C.Delaere *
|
14 |
* adapted from the mclimit code from Tom Junk *
|
15 |
* see http://cern.ch/thomasj/searchlimits/ecl.html *
|
16 |
*************************************************************************/
|
17 |
|
18 |
#include "TConfidenceLevel.h"
|
19 |
#include "TH1F.h"
|
20 |
#include "TMath.h"
|
21 |
#include "Riostream.h"
|
22 |
|
23 |
ClassImp(TConfidenceLevel)
|
24 |
|
25 |
Double_t const TConfidenceLevel::fgMCLM2S = 0.025;
|
26 |
Double_t const TConfidenceLevel::fgMCLM1S = 0.16;
|
27 |
Double_t const TConfidenceLevel::fgMCLMED = 0.5;
|
28 |
Double_t const TConfidenceLevel::fgMCLP1S = 0.84;
|
29 |
Double_t const TConfidenceLevel::fgMCLP2S = 0.975;
|
30 |
// LHWG "one-sided" definition
|
31 |
Double_t const TConfidenceLevel::fgMCL3S1S = 2.6998E-3;
|
32 |
Double_t const TConfidenceLevel::fgMCL5S1S = 5.7330E-7;
|
33 |
// the other definition (not chosen by the LHWG)
|
34 |
Double_t const TConfidenceLevel::fgMCL3S2S = 1.349898E-3;
|
35 |
Double_t const TConfidenceLevel::fgMCL5S2S = 2.866516E-7;
|
36 |
|
37 |
|
38 |
//______________________________________________________________________________
|
39 |
TConfidenceLevel::TConfidenceLevel()
|
40 |
{
|
41 |
// Default constructor
|
42 |
|
43 |
fStot = 0;
|
44 |
fBtot = 0;
|
45 |
fDtot = 0;
|
46 |
fTSD = 0;
|
47 |
fTSB = 0;
|
48 |
fTSS = 0;
|
49 |
fLRS = 0;
|
50 |
fLRB = 0;
|
51 |
fNMC = 0;
|
52 |
fNNMC = 0;
|
53 |
fISS = 0;
|
54 |
fISB = 0;
|
55 |
fMCL3S = fgMCL3S1S;
|
56 |
fMCL5S = fgMCL5S1S;
|
57 |
}
|
58 |
|
59 |
|
60 |
//______________________________________________________________________________
|
61 |
TConfidenceLevel::TConfidenceLevel(Int_t mc, bool onesided)
|
62 |
{
|
63 |
// a constructor that fix some conventions:
|
64 |
// mc is the number of Monte Carlo experiments
|
65 |
// while onesided specifies if the intervals are one-sided or not.
|
66 |
|
67 |
fStot = 0;
|
68 |
fBtot = 0;
|
69 |
fDtot = 0;
|
70 |
fTSD = 0;
|
71 |
fTSB = 0;
|
72 |
fTSS = 0;
|
73 |
fLRS = 0;
|
74 |
fLRB = 0;
|
75 |
fNMC = mc;
|
76 |
fNNMC = mc;
|
77 |
fISS = new Int_t[mc];
|
78 |
fISB = new Int_t[mc];
|
79 |
fMCL3S = onesided ? fgMCL3S1S : fgMCL3S2S;
|
80 |
fMCL5S = onesided ? fgMCL5S1S : fgMCL5S2S;
|
81 |
}
|
82 |
|
83 |
|
84 |
//______________________________________________________________________________
|
85 |
TConfidenceLevel::~TConfidenceLevel()
|
86 |
{
|
87 |
// The destructor
|
88 |
|
89 |
if (fISS)
|
90 |
delete[]fISS;
|
91 |
if (fISB)
|
92 |
delete[]fISB;
|
93 |
if (fTSB)
|
94 |
delete[]fTSB;
|
95 |
if (fTSS)
|
96 |
delete[]fTSS;
|
97 |
if (fLRS)
|
98 |
delete[]fLRS;
|
99 |
if (fLRB)
|
100 |
delete[]fLRB;
|
101 |
}
|
102 |
|
103 |
|
104 |
//______________________________________________________________________________
|
105 |
Double_t TConfidenceLevel::GetExpectedStatistic_b(Int_t sigma) const
|
106 |
{
|
107 |
// Get the expected statistic value in the background only hypothesis
|
108 |
|
109 |
switch (sigma) {
|
110 |
case -2:
|
111 |
return (-2 *((fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP2S)))]]) - fStot));
|
112 |
case -1:
|
113 |
return (-2 *((fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP1S)))]]) - fStot));
|
114 |
case 0:
|
115 |
return (-2 *((fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLMED)))]]) - fStot));
|
116 |
case 1:
|
117 |
return (-2 *((fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM1S)))]]) - fStot));
|
118 |
case 2:
|
119 |
return (-2 *((fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM2S)))]]) - fStot));
|
120 |
default:
|
121 |
return 0;
|
122 |
}
|
123 |
}
|
124 |
|
125 |
|
126 |
//______________________________________________________________________________
|
127 |
Double_t TConfidenceLevel::GetExpectedStatistic_sb(Int_t sigma) const
|
128 |
{
|
129 |
// Get the expected statistic value in the signal plus background hypothesis
|
130 |
|
131 |
switch (sigma) {
|
132 |
case -2:
|
133 |
return (-2 *((fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP2S)))]]) - fStot));
|
134 |
case -1:
|
135 |
return (-2 *((fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP1S)))]]) - fStot));
|
136 |
case 0:
|
137 |
return (-2 *((fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLMED)))]]) - fStot));
|
138 |
case 1:
|
139 |
return (-2 *((fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM1S)))]]) - fStot));
|
140 |
case 2:
|
141 |
return (-2 *((fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM2S)))]]) - fStot));
|
142 |
default:
|
143 |
return 0;
|
144 |
}
|
145 |
}
|
146 |
|
147 |
|
148 |
//______________________________________________________________________________
|
149 |
Double_t TConfidenceLevel::CLb(bool use_sMC) const
|
150 |
{
|
151 |
// Get the Confidence Level for the background only
|
152 |
|
153 |
Double_t result = 0;
|
154 |
switch (use_sMC) {
|
155 |
case kFALSE:
|
156 |
{
|
157 |
for (Int_t i = 0; i < fNMC; i++)
|
158 |
if (fTSB[fISB[i]] < fTSD)
|
159 |
result = (Double_t(i + 1)) / fNMC;
|
160 |
return result;
|
161 |
}
|
162 |
case kTRUE:
|
163 |
{
|
164 |
for (Int_t i = 0; i < fNMC; i++)
|
165 |
if (fTSS[fISS[i]] < fTSD)
|
166 |
result += (1 / (fLRS[fISS[i]] * fNMC));
|
167 |
return result;
|
168 |
}
|
169 |
}
|
170 |
return result;
|
171 |
}
|
172 |
|
173 |
|
174 |
//______________________________________________________________________________
|
175 |
Double_t TConfidenceLevel::CLsb(bool use_sMC) const
|
176 |
{
|
177 |
// Get the Confidence Level for the signal plus background hypothesis
|
178 |
|
179 |
Double_t result = 0;
|
180 |
switch (use_sMC) {
|
181 |
case kFALSE:
|
182 |
{
|
183 |
for (Int_t i = 0; i < fNMC; i++)
|
184 |
if (fTSB[fISB[i]] <= fTSD)
|
185 |
result += (fLRB[fISB[i]]) / fNMC;
|
186 |
return result;
|
187 |
}
|
188 |
case kTRUE:
|
189 |
{
|
190 |
for (Int_t i = 0; i < fNMC; i++)
|
191 |
if (fTSS[fISS[i]] <= fTSD)
|
192 |
result = i / fNMC;
|
193 |
return result;
|
194 |
}
|
195 |
}
|
196 |
return result;
|
197 |
}
|
198 |
|
199 |
|
200 |
//______________________________________________________________________________
|
201 |
Double_t TConfidenceLevel::CLs(bool use_sMC) const
|
202 |
{
|
203 |
// Get the Confidence Level defined by CLs = CLsb/CLb.
|
204 |
// This quantity is stable w.r.t. background fluctuations.
|
205 |
|
206 |
Double_t clb = CLb(kFALSE);
|
207 |
Double_t clsb = CLsb(use_sMC);
|
208 |
if(clb==0) { cout << "Warning: clb = 0 !" << endl; return 0;}
|
209 |
else return clsb/clb;
|
210 |
}
|
211 |
|
212 |
|
213 |
//______________________________________________________________________________
|
214 |
Double_t TConfidenceLevel::GetExpectedCLsb_b(Int_t sigma) const
|
215 |
{
|
216 |
// Get the expected Confidence Level for the signal plus background hypothesis
|
217 |
// if there is only background.
|
218 |
|
219 |
Double_t result = 0;
|
220 |
switch (sigma) {
|
221 |
case -2:
|
222 |
{
|
223 |
for (Int_t i = 0; i < fNMC; i++)
|
224 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP2S)))]])
|
225 |
result += fLRB[fISB[i]] / fNMC;
|
226 |
return result;
|
227 |
}
|
228 |
case -1:
|
229 |
{
|
230 |
for (Int_t i = 0; i < fNMC; i++)
|
231 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP1S)))]])
|
232 |
result += fLRB[fISB[i]] / fNMC;
|
233 |
return result;
|
234 |
}
|
235 |
case 0:
|
236 |
{
|
237 |
for (Int_t i = 0; i < fNMC; i++)
|
238 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLMED)))]])
|
239 |
result += fLRB[fISB[i]] / fNMC;
|
240 |
return result;
|
241 |
}
|
242 |
case 1:
|
243 |
{
|
244 |
for (Int_t i = 0; i < fNMC; i++)
|
245 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM1S)))]])
|
246 |
result += fLRB[fISB[i]] / fNMC;
|
247 |
return result;
|
248 |
}
|
249 |
case 2:
|
250 |
{
|
251 |
for (Int_t i = 0; i < fNMC; i++)
|
252 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM2S)))]])
|
253 |
result += fLRB[fISB[i]] / fNMC;
|
254 |
return result;
|
255 |
}
|
256 |
default:
|
257 |
return 0;
|
258 |
}
|
259 |
}
|
260 |
|
261 |
|
262 |
//______________________________________________________________________________
|
263 |
Double_t TConfidenceLevel::GetExpectedCLb_sb(Int_t sigma) const
|
264 |
{
|
265 |
// Get the expected Confidence Level for the background only
|
266 |
// if there is signal and background.
|
267 |
|
268 |
Double_t result = 0;
|
269 |
switch (sigma) {
|
270 |
case 2:
|
271 |
{
|
272 |
for (Int_t i = 0; i < fNMC; i++)
|
273 |
if (fTSS[fISS[i]] <= fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP2S)))]])
|
274 |
result += fLRS[fISS[i]] / fNMC;
|
275 |
return result;
|
276 |
}
|
277 |
case 1:
|
278 |
{
|
279 |
for (Int_t i = 0; i < fNMC; i++)
|
280 |
if (fTSS[fISS[i]] <= fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP1S)))]])
|
281 |
result += fLRS[fISS[i]] / fNMC;
|
282 |
return result;
|
283 |
}
|
284 |
case 0:
|
285 |
{
|
286 |
for (Int_t i = 0; i < fNMC; i++)
|
287 |
if (fTSS[fISS[i]] <= fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLMED)))]])
|
288 |
result += fLRS[fISS[i]] / fNMC;
|
289 |
return result;
|
290 |
}
|
291 |
case -1:
|
292 |
{
|
293 |
for (Int_t i = 0; i < fNMC; i++)
|
294 |
if (fTSS[fISS[i]] <= fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM1S)))]])
|
295 |
result += fLRS[fISS[i]] / fNMC;
|
296 |
return result;
|
297 |
}
|
298 |
case -2:
|
299 |
{
|
300 |
for (Int_t i = 0; i < fNMC; i++)
|
301 |
if (fTSS[fISS[i]] <= fTSS[fISS[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM2S)))]])
|
302 |
result += fLRS[fISS[i]] / fNMC;
|
303 |
return result;
|
304 |
}
|
305 |
default:
|
306 |
return 0;
|
307 |
}
|
308 |
}
|
309 |
|
310 |
|
311 |
//______________________________________________________________________________
|
312 |
Double_t TConfidenceLevel::GetExpectedCLb_b(Int_t sigma) const
|
313 |
{
|
314 |
// Get the expected Confidence Level for the background only
|
315 |
// if there is only background.
|
316 |
|
317 |
Double_t result = 0;
|
318 |
switch (sigma) {
|
319 |
case 2:
|
320 |
{
|
321 |
for (Int_t i = 0; i < fNMC; i++)
|
322 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM2S)))]])
|
323 |
result = (i + 1) / double (fNMC);
|
324 |
return result;
|
325 |
}
|
326 |
case 1:
|
327 |
{
|
328 |
for (Int_t i = 0; i < fNMC; i++)
|
329 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLM1S)))]])
|
330 |
result = (i + 1) / double (fNMC);
|
331 |
return result;
|
332 |
}
|
333 |
case 0:
|
334 |
{
|
335 |
for (Int_t i = 0; i < fNMC; i++)
|
336 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLMED)))]])
|
337 |
result = (i + 1) / double (fNMC);
|
338 |
return result;
|
339 |
}
|
340 |
case -1:
|
341 |
{
|
342 |
for (Int_t i = 0; i < fNMC; i++)
|
343 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP1S)))]])
|
344 |
result = (i + 1) / double (fNMC);
|
345 |
return result;
|
346 |
}
|
347 |
case -2:
|
348 |
{
|
349 |
for (Int_t i = 0; i < fNMC; i++)
|
350 |
if (fTSB[fISB[i]] <= fTSB[fISB[TMath::Min((Int_t) fNMC,(Int_t) TMath::Max((Int_t) 1,(Int_t) (fNMC * fgMCLP2S)))]])
|
351 |
result = (i + 1) / double (fNMC);
|
352 |
return result;
|
353 |
}
|
354 |
}
|
355 |
return result;
|
356 |
}
|
357 |
|
358 |
|
359 |
//______________________________________________________________________________
|
360 |
Double_t TConfidenceLevel::GetAverageCLsb() const
|
361 |
{
|
362 |
// Get average CLsb.
|
363 |
|
364 |
Double_t result = 0;
|
365 |
Double_t psumsb = 0;
|
366 |
for (Int_t i = 0; i < fNMC; i++) {
|
367 |
psumsb += fLRB[fISB[i]] / fNMC;
|
368 |
result += psumsb / fNMC;
|
369 |
}
|
370 |
return result;
|
371 |
}
|
372 |
|
373 |
|
374 |
//______________________________________________________________________________
|
375 |
Double_t TConfidenceLevel::GetAverageCLs() const
|
376 |
{
|
377 |
// Get average CLs.
|
378 |
|
379 |
Double_t result = 0;
|
380 |
Double_t psumsb = 0;
|
381 |
for (Int_t i = 0; i < fNMC; i++) {
|
382 |
psumsb += fLRB[fISB[i]] / fNMC;
|
383 |
result += ((psumsb / fNMC) / ((i + 1) / fNMC));
|
384 |
}
|
385 |
return result;
|
386 |
}
|
387 |
|
388 |
|
389 |
//______________________________________________________________________________
|
390 |
Double_t TConfidenceLevel::Get3sProbability() const
|
391 |
{
|
392 |
// Get 3s probability.
|
393 |
|
394 |
Double_t result = 0;
|
395 |
Double_t psumbs = 0;
|
396 |
for (Int_t i = 0; i < fNMC; i++) {
|
397 |
psumbs += 1 / (Double_t) (fLRS[(fISS[(Int_t) (fNMC - i)])] * fNMC);
|
398 |
if (psumbs <= fMCL3S)
|
399 |
result = i / fNMC;
|
400 |
}
|
401 |
return result;
|
402 |
}
|
403 |
|
404 |
|
405 |
//______________________________________________________________________________
|
406 |
Double_t TConfidenceLevel::Get5sProbability() const
|
407 |
{
|
408 |
// Get 5s probability.
|
409 |
|
410 |
Double_t result = 0;
|
411 |
Double_t psumbs = 0;
|
412 |
for (Int_t i = 0; i < fNMC; i++) {
|
413 |
psumbs += 1 / (Double_t) (fLRS[(fISS[(Int_t) (fNMC - i)])] * fNMC);
|
414 |
if (psumbs <= fMCL5S)
|
415 |
result = i / fNMC;
|
416 |
}
|
417 |
return result;
|
418 |
}
|
419 |
|
420 |
//______________________________________________________________________________
|
421 |
void TConfidenceLevel::Draw(const Option_t*)
|
422 |
{
|
423 |
// Display sort of a "canonical" -2lnQ plot.
|
424 |
// This results in a plot with 2 elements:
|
425 |
// - The histogram of -2lnQ for background hypothesis (full)
|
426 |
// - The histogram of -2lnQ for signal and background hypothesis (dashed)
|
427 |
// The 2 histograms are respectively named b_hist and sb_hist.
|
428 |
|
429 |
TH1F h("TConfidenceLevel_Draw","",50,0,0);
|
430 |
Int_t i;
|
431 |
for (i=0; i<fNMC; i++) {
|
432 |
h.Fill(-2*(fTSB[i]-fStot));
|
433 |
h.Fill(-2*(fTSS[i]-fStot));
|
434 |
}
|
435 |
TH1F* b_hist = new TH1F("b_hist", "-2lnQ",50,h.GetXaxis()->GetXmin(),h.GetXaxis()->GetXmax());
|
436 |
TH1F* sb_hist = new TH1F("sb_hist","-2lnQ",50,h.GetXaxis()->GetXmin(),h.GetXaxis()->GetXmax());
|
437 |
for (i=0; i<fNMC; i++) {
|
438 |
b_hist->Fill(-2*(fTSB[i]-fStot));
|
439 |
sb_hist->Fill(-2*(fTSS[i]-fStot));
|
440 |
}
|
441 |
b_hist->Draw();
|
442 |
sb_hist->Draw("Same");
|
443 |
sb_hist->SetLineStyle(3);
|
444 |
}
|
445 |
|
446 |
|
447 |
//______________________________________________________________________________
|
448 |
void TConfidenceLevel::SetTSB(Double_t * in)
|
449 |
{
|
450 |
// Set the TSB.
|
451 |
fTSB = in;
|
452 |
TMath::Sort(fNNMC, fTSB, fISB, 0);
|
453 |
}
|
454 |
|
455 |
|
456 |
//______________________________________________________________________________
|
457 |
void TConfidenceLevel::SetTSS(Double_t * in)
|
458 |
{
|
459 |
// Set the TSS.
|
460 |
fTSS = in;
|
461 |
TMath::Sort(fNNMC, fTSS, fISS, 0);
|
462 |
}
|