ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/auterman/scripts/CLs/cls.cc
Revision: 1.1.1.1 (vendor branch)
Committed: Thu Apr 1 15:14:10 2010 UTC (15 years, 1 month ago) by auterman
Content type: text/plain
Branch: CLs, MAIN
CVS Tags: start, HEAD
Changes since 1.1: +0 -0 lines
Error occurred while calculating annotation data.
Log Message:
some cls demo plots

File Contents

# Content
1 //system
2 #include <iostream>
3 #include <cmath>
4 //root
5 #include "TCanvas.h"
6 #include "TH1F.h"
7 #include "TF1.h"
8 #include "TLegend.h"
9 #include "TStyle.h"
10 #include "TRandom3.h"
11 #include "TGraph.h"
12 #include "TLatex.h"
13 #include "TLine.h"
14 #include "TLimit.h"
15 #include "TLimitDataSource.h"
16 #include "TConfidenceLevel.h"
17
18 int _plotindex=0;
19 TH1F * MakeBackground(int evts=1000, int bins=40, double min=100, double max=500)
20 {
21 char * name = new char[100];
22 sprintf(name,"backgd%d",_plotindex++);
23 TH1F * result = new TH1F(name,";(pseudo) MET [GeV];(pseudo) events",bins, min,max);
24 result->Sumw2();
25 TF1 *fa = new TF1("fa","1.0*exp(-0.01*x)",100,500);
26 for (int i=0; i<evts; ++i)
27 result->Fill( fa->GetRandom(), 0.1 );
28 return result;
29 }
30
31 TH1F * MakeSignal(double mass, double width, int evts=100, int bins=40, double min=100, double max=500)
32 {
33 char * name = new char[100];
34 sprintf(name,"signal_m%f_%d",mass,_plotindex++);
35 TH1F * result = new TH1F(name,";(pseudo) MET [GeV];(pseudo) events",bins, min,max);
36 result->Sumw2();
37 sprintf(name,"fb_m%f",mass);
38 TF1 *fb = new TF1(name,"gaus(0)",100,500);
39 fb->SetParameter(0,1);
40 fb->SetParameter(1, mass );
41 fb->SetParameter(2, width );
42 for (int i=0; i<evts; ++i)
43 result->Fill( fb->GetRandom(), 0.1 );
44 return result;
45
46 }
47
48 TH1F * MakeData(TH1F*b, TH1F*s=0)
49 {
50 char * name = new char[100];
51 sprintf(name,"data%d",_plotindex++);
52 TH1F * result = new TH1F(name,";(pseudo) MET [GeV];(pseudo) events",
53 b->GetNbinsX(), b->GetXaxis()->GetXmin(),b->GetXaxis()->GetXmax());
54 TRandom3 * rand = new TRandom3(0);
55 for (int i=0; i<=b->GetNbinsX(); ++i){
56 double entry;
57 if (s==0)
58 entry = rand->Poisson( b->GetBinContent(i) );
59 else
60 entry = rand->Poisson( b->GetBinContent(i)+s->GetBinContent(i) );
61 result->SetBinContent(i,entry);
62 result->SetBinError(i,sqrt(entry));
63 }
64 return result;
65 }
66
67 int main()
68 {
69 gStyle->SetHistFillColor(0);
70 gStyle->SetPalette(1);
71 //gStyle->SetFillColor(0);
72 //gStyle->SetOptStat(kFALSE);
73 gStyle->SetCanvasColor(0);
74 gStyle->SetCanvasBorderMode(0);
75 gStyle->SetPadColor(0);
76 gStyle->SetPadBorderMode(0);
77 gStyle->SetFrameBorderMode(0);
78
79 gStyle->SetTitleFillColor(0);
80 gStyle->SetTitleBorderSize(0);
81 gStyle->SetTitleX(0.10);
82 gStyle->SetTitleY(0.98);
83 gStyle->SetTitleW(0.8);
84 gStyle->SetTitleH(0.06);
85
86 gStyle->SetErrorX(0);
87 gStyle->SetStatColor(0);
88 gStyle->SetStatBorderSize(0);
89 gStyle->SetStatX(0);
90 gStyle->SetStatY(0);
91 gStyle->SetStatW(0);
92 gStyle->SetStatH(0);
93
94 gStyle->SetTitleFont(22);
95 gStyle->SetLabelFont(22,"X");
96 gStyle->SetLabelFont(22,"Y");
97 gStyle->SetLabelFont(22,"Z");
98 gStyle->SetLabelSize(0.03,"X");
99 gStyle->SetLabelSize(0.03,"Y");
100 gStyle->SetLabelSize(0.03,"Z");
101
102 TH1F * backgd = MakeBackground(5000);
103 TH1F * signal = MakeSignal(300,sqrt(300), 200);
104 TH1F * data = MakeData( backgd );//, signal );
105
106 //Draw MET for background, signal & data:
107 TCanvas * c1 = new TCanvas("","",600,600);
108 signal->SetLineColor(2);
109 data->SetMarkerStyle(8);
110 backgd->Draw("h");
111 signal->Draw("h,same");
112 data->Draw("pe,same");
113 c1->SetLogy(1);
114 c1->SaveAs("backgd.eps");
115
116 //cout the CL's:
117 int fNMC = 50000;
118 TLimitDataSource* mydatasource = new TLimitDataSource(signal,backgd,data);
119 TConfidenceLevel *myconfidence = TLimit::ComputeLimit(mydatasource,fNMC);
120 std::cout << " CLs : " << myconfidence->CLs() << "\n"
121 << " CLsb : " << myconfidence->CLsb() << "\n"
122 << " CLb : " << myconfidence->CLb() << "\n"
123 << "< CLs > : " << myconfidence->GetExpectedCLs_b() << "\n"
124 << "< CLsb > : " << myconfidence->GetExpectedCLsb_b() << "\n"
125 << "< CLb > : " << myconfidence->GetExpectedCLb_b() << "\n"
126 << " -2 ln Q : " << myconfidence->GetStatistic() << "\n"
127 << std::endl;
128
129 //Draw the expected and observed test statistics:
130 TH1F h("TConfidenceLevel_Draw","",50,0,0);
131 Int_t i;
132 double * fTSB = myconfidence->GetTestStatistic_B();
133 double * fTSS = myconfidence->GetTestStatistic_SB();
134 for (i=0; i<fNMC; i++) {
135 h.Fill(-2*(fTSB[i]-myconfidence->GetStot() ));
136 h.Fill(-2*(fTSS[i]-myconfidence->GetStot() ));
137 }
138 TH1F* b_hist = new TH1F("b_hist", ";-2 ln Q;normalized p.d.f.",50,h.GetXaxis()->GetXmin(),h.GetXaxis()->GetXmax());
139 TH1F* sb_hist = new TH1F("sb_hist",";-2 ln Q;normalized p.d.f.",50,h.GetXaxis()->GetXmin(),h.GetXaxis()->GetXmax());
140 for (i=0; i<fNMC; i++) {
141 b_hist->Fill(-2*(fTSB[i]-myconfidence->GetStot() ));
142 sb_hist->Fill(-2*(fTSS[i]-myconfidence->GetStot() ));
143 }
144 b_hist->Scale(1.0/b_hist->Integral());
145 sb_hist->Scale(1.0/sb_hist->Integral());
146 b_hist->GetYaxis()->SetTitleOffset(1.3);
147 b_hist->SetMinimum(0.001);
148 b_hist->SetMaximum(3*b_hist->GetMaximum());
149 b_hist->SetLineWidth(3);
150 sb_hist->SetLineWidth(3);
151 b_hist->SetLineColor(kBlue);
152 sb_hist->SetLineColor( 28 );
153 TLine * line = new TLine(myconfidence->GetStatistic(),b_hist->GetMinimum(),
154 myconfidence->GetStatistic(),0.6*b_hist->GetMaximum() );
155 line->SetLineWidth(3);
156 TLegend * leg = new TLegend(0.11,0.78,0.48,0.89);
157 leg->SetBorderSize(0);
158 leg->SetFillColor(0);
159 leg->AddEntry(line,"Observed ","l");
160 leg->AddEntry(b_hist,"Expected background-only ","l");
161 leg->AddEntry(sb_hist,"Expected signal+background ","l");
162 b_hist->Draw("h");
163 line->Draw();
164 leg->Draw("same");
165 sb_hist->Draw("h,same");
166 c1->SaveAs("conf.eps");
167
168 //CLs vs mass:
169 int nmass = 40;
170 TH1F * cls_obs = new TH1F("cls_obs", ";(pseudo) mass [GeV];CLs",nmass,100,500);
171 TH1F * cls_exp = new TH1F("cls_exp", ";(pseudo) mass [GeV];CLs",nmass,100,500);
172 TH1F * lnQ_obs = new TH1F("lnQ_obs", ";(pseudo) mass [GeV];-2 ln Q",nmass,100,500);
173 TH1F * lnQ_exp_b = new TH1F("lnQ_exp_b", ";(pseudo) mass [GeV];-2 ln Q",nmass,100,500);
174 TH1F * lnQ_exp_sb = new TH1F("lnQ_exp_sb", ";(pseudo) mass [GeV];-2 ln Q",nmass,100,500);
175 double y_cls_exp1[nmass*2];
176 double x_cls_exp[nmass*2];
177 double y_cls_exp2[nmass*2];
178 double y_lnQ_exp1[nmass*2];
179 double y_lnQ_exp2[nmass*2];
180 fNMC = 2000;
181
182 for (int i=0; i<=nmass; ++i){
183
184 TH1F sig( *signal );
185 sig.Scale( 4*exp(-i/8.) );
186 std::cout << i*10 << " GeV: n_signal = "<<sig.Integral()<<std::endl;
187
188 TLimitDataSource * source = new TLimitDataSource(&sig,backgd,data);
189 TConfidenceLevel * conf = TLimit::ComputeLimit(source,fNMC);
190
191 cls_obs->SetBinContent(i, conf->CLs() );
192 cls_exp->SetBinContent(i, conf->GetExpectedCLs_b() );
193 y_cls_exp1[i] = conf->GetExpectedCLs_b( 1);
194 y_cls_exp1[nmass*2-i] = conf->GetExpectedCLs_b(-1);
195 y_cls_exp2[i] = conf->GetExpectedCLs_b( 2);
196 y_cls_exp2[nmass*2-i] = conf->GetExpectedCLs_b(-2);
197 x_cls_exp[i] = 100+10*i;
198 x_cls_exp[nmass*2-i] = 100+10*i;
199
200 lnQ_obs->SetBinContent( i, conf->GetStatistic() );
201 lnQ_exp_b->SetBinContent( i, conf->GetExpectedStatistic_b() );
202 lnQ_exp_sb->SetBinContent( i, conf->GetExpectedStatistic_sb() );
203 y_lnQ_exp1[i] = conf->GetExpectedStatistic_b(1);
204 y_lnQ_exp1[nmass*2-i] = conf->GetExpectedStatistic_b(-1);
205 y_lnQ_exp2[i] = conf->GetExpectedStatistic_b(2);
206 y_lnQ_exp2[nmass*2-i] = conf->GetExpectedStatistic_b(-2);
207
208 delete conf;
209 delete source;
210 }
211 TGraph * cls_exp1 = new TGraph(2*nmass,x_cls_exp,y_cls_exp1);
212 TGraph * cls_exp2 = new TGraph(2*nmass,x_cls_exp,y_cls_exp2);
213 cls_exp2->SetLineColor(5);
214 cls_exp2->SetFillColor(5);
215 cls_exp1->SetLineColor(3);
216 cls_exp1->SetFillColor(3);
217 cls_obs->SetLineColor(kRed);
218 cls_exp->SetLineColor(kBlue);
219 cls_exp->SetLineStyle(3);
220 cls_exp->SetLineWidth(3);
221 cls_obs->SetLineWidth(3);
222 cls_obs->SetMinimum(0.00001);
223 TLegend * lg = new TLegend(0.5,0.28,0.89,0.4);
224 lg->SetBorderSize(0);
225 lg->SetFillColor(0);
226 lg->AddEntry(cls_obs,"Observed ","l");
227 lg->AddEntry(cls_exp,"Expected background-only ","l");
228 cls_obs->Draw("c");
229 lg->Draw("same");
230 cls_exp2->Draw("lf,same");
231 cls_exp1->Draw("lf,same");
232 cls_exp->Draw("c,same");
233 cls_obs->Draw("c,same");
234 line->SetLineWidth(2);
235 line->DrawLine(100,0.05,500,0.05);
236 c1->SaveAs("cls.eps");
237
238
239 //-2 ln Q vs mass:
240 TGraph * lnQ_exp1 = new TGraph(2*nmass,x_cls_exp,y_lnQ_exp1);
241 TGraph * lnQ_exp2 = new TGraph(2*nmass,x_cls_exp,y_lnQ_exp2);
242 lnQ_exp2->SetLineColor(5);
243 lnQ_exp2->SetFillColor(5);
244 lnQ_exp1->SetLineColor(3);
245 lnQ_exp1->SetFillColor(3);
246 c1->SetLogy(0);
247 lnQ_obs->SetLineColor(kRed);
248 lnQ_obs->SetLineWidth(3);
249 lnQ_exp_b->SetLineColor(kBlue);
250 lnQ_exp_b->SetLineStyle(3);
251 lnQ_exp_b->SetLineWidth(3);
252 lnQ_exp_sb->SetLineColor( 28 );
253 lnQ_exp_sb->SetLineStyle(3);
254 lnQ_exp_sb->SetLineWidth(3);
255 lnQ_obs->SetMinimum(-20);
256 line->SetLineWidth(1);
257 lnQ_obs->Draw("c");
258 lnQ_exp2->Draw("lf,same");
259 lnQ_exp1->Draw("lf,same");
260 lnQ_obs->Draw("c,same");
261 line->DrawLine(100,0.0,500,0.0);
262 lnQ_exp_b->Draw("c,same");
263 lnQ_exp_sb->Draw("c,same");
264 c1->SaveAs("lnQ.eps");
265
266 return 0;
267 }