1 |
benhoob |
1.1 |
#include <cstdlib>
|
2 |
|
|
#include <vector>
|
3 |
|
|
#include <iostream>
|
4 |
|
|
#include <map>
|
5 |
|
|
#include <string>
|
6 |
|
|
|
7 |
|
|
#include "TFile.h"
|
8 |
|
|
#include "TH1.h"
|
9 |
|
|
#include "TTree.h"
|
10 |
|
|
#include "TString.h"
|
11 |
|
|
#include "TSystem.h"
|
12 |
|
|
#include "TROOT.h"
|
13 |
|
|
#include "TStopwatch.h"
|
14 |
|
|
#include "TChain.h"
|
15 |
|
|
#include "TMath.h"
|
16 |
|
|
#include "TChainElement.h"
|
17 |
|
|
#include "TCanvas.h"
|
18 |
|
|
#include "TCut.h"
|
19 |
|
|
#include "TStyle.h"
|
20 |
|
|
#include "TLegend.h"
|
21 |
|
|
#include "RooGaussian.h"
|
22 |
|
|
#include "RooNumConvPdf.h"
|
23 |
|
|
#include "RooGenericPdf.h"
|
24 |
|
|
#include "RooRealVar.h"
|
25 |
|
|
#include "RooPlot.h"
|
26 |
|
|
#include "RooDataHist.h"
|
27 |
|
|
#include "RooFitResult.h"
|
28 |
|
|
#include "RooHistPdf.h"
|
29 |
|
|
#include "RooAddPdf.h"
|
30 |
|
|
#include "RooDataSet.h"
|
31 |
|
|
|
32 |
|
|
using namespace std;
|
33 |
|
|
using namespace RooFit;
|
34 |
|
|
|
35 |
benhoob |
1.2 |
|
36 |
benhoob |
1.1 |
void fitMVA(){
|
37 |
|
|
|
38 |
benhoob |
1.2 |
//-------------------------------
|
39 |
|
|
// user parameters
|
40 |
|
|
//-------------------------------
|
41 |
|
|
|
42 |
|
|
const int nTrials = 1000; // number of trials in fit validation
|
43 |
|
|
const bool display = false; // display fit? Set to false for large nTrials
|
44 |
|
|
const bool printgif = true; // print canvases to gif files?
|
45 |
benhoob |
1.1 |
|
46 |
|
|
//---------------------------------------
|
47 |
|
|
// name of MVA branch in ntuple
|
48 |
|
|
//---------------------------------------
|
49 |
|
|
|
50 |
benhoob |
1.2 |
//const char* mvaname = "nn_hww160_ww";
|
51 |
|
|
const char* mvaname = "bdt_hww160_ww";
|
52 |
benhoob |
1.1 |
|
53 |
|
|
//-----------------------------------------
|
54 |
|
|
// selection to apply to sig, bkg samples
|
55 |
|
|
//-----------------------------------------
|
56 |
|
|
|
57 |
|
|
TCut jet("njets == 0");
|
58 |
|
|
TCut mll100("dilep->mass() < 100");
|
59 |
|
|
TCut OS("lq1*lq2 < 0");
|
60 |
|
|
TCut pt2010("lep1->pt() >= 20 && lep2->pt() >= 10");
|
61 |
|
|
TCut pmet1("pmet >= 20 && (type == 1 || type == 2)");
|
62 |
|
|
TCut pmet2("pmet >= 35 && (type == 0 || type == 3)");
|
63 |
|
|
TCut pmet = pmet1 || pmet2;
|
64 |
benhoob |
1.2 |
TCut lid("lid3 == 0");
|
65 |
|
|
TCut lowptb("jetLowBtag <= 2.1");
|
66 |
|
|
TCut softmu("nSoftMuons == 0");
|
67 |
|
|
TCut sel160("lep1.pt()>30 && lep2.pt()>25 && dilep.mass()<50 && dPhi<1.05");
|
68 |
benhoob |
1.1 |
|
69 |
benhoob |
1.2 |
TCut sel = jet + mll100 + OS + pt2010 + pmet;
|
70 |
|
|
TCut weight = "0.5 * scale1fb";
|
71 |
benhoob |
1.1 |
TCut selweight = sel*weight;
|
72 |
|
|
|
73 |
|
|
//--------------------------------------------------
|
74 |
benhoob |
1.2 |
// get sig and bkg samples
|
75 |
benhoob |
1.1 |
//--------------------------------------------------
|
76 |
|
|
|
77 |
|
|
char* babyPath = "/smurf/benhoob/MVA/SmurfTraining/hww160_ww/output";
|
78 |
|
|
|
79 |
|
|
TChain* sig = new TChain("tree");
|
80 |
|
|
sig->Add(Form("%s/hww160.root",babyPath));
|
81 |
|
|
|
82 |
|
|
TChain* bkg = new TChain("tree");
|
83 |
|
|
bkg->Add(Form("%s/ww.root",babyPath));
|
84 |
|
|
|
85 |
benhoob |
1.2 |
//------------------------------------
|
86 |
|
|
// set binning
|
87 |
|
|
//------------------------------------
|
88 |
|
|
|
89 |
|
|
int nbins = 0;
|
90 |
|
|
float xmin = 0.;
|
91 |
|
|
float xmax = 0.;
|
92 |
|
|
|
93 |
|
|
if( strcmp( mvaname , "nn_hww160_ww" ) == 0 ){
|
94 |
|
|
nbins = 20;
|
95 |
|
|
xmin = -0.5;
|
96 |
|
|
xmax = 1.5;
|
97 |
|
|
}
|
98 |
|
|
else if( strcmp( mvaname , "bdt_hww160_ww" ) == 0 ){
|
99 |
|
|
nbins = 30;
|
100 |
|
|
xmin = -1.0;
|
101 |
|
|
xmax = 0.5;
|
102 |
|
|
}else{
|
103 |
|
|
cout << "Unrecognized MVA " << mvaname << ", quitting" << endl;
|
104 |
|
|
exit(0);
|
105 |
|
|
}
|
106 |
|
|
|
107 |
benhoob |
1.1 |
//------------------------
|
108 |
|
|
// declare variables
|
109 |
|
|
//------------------------
|
110 |
|
|
|
111 |
|
|
RooRealVar nsig ("nsig" , "Signal Yield" , 50 , 0 , 1000 );
|
112 |
|
|
RooRealVar nbkg ("nbkg" , "Background Yield" , 300 , 0 , 1000 );
|
113 |
|
|
RooRealVar mva ("mva" , "MVA Output" , xmin , xmax );
|
114 |
|
|
|
115 |
|
|
nsig.setVal(50);
|
116 |
|
|
nbkg.setVal(300);
|
117 |
|
|
mva.setBins(nbins);
|
118 |
|
|
|
119 |
|
|
//---------------------------------------------------
|
120 |
|
|
// get MVA output distributions from sig, bkg samp
|
121 |
|
|
//---------------------------------------------------
|
122 |
|
|
|
123 |
|
|
TH1F* mva_sig = new TH1F("mva_sig","MVA Output for Signal" , nbins , xmin , xmax );
|
124 |
|
|
TH1F* mva_bkg = new TH1F("mva_bkg","MVA Output for Background" , nbins , xmin , xmax );
|
125 |
|
|
|
126 |
|
|
mva_sig->Sumw2();
|
127 |
|
|
mva_bkg->Sumw2();
|
128 |
|
|
|
129 |
|
|
TCanvas *ctemp = new TCanvas();
|
130 |
benhoob |
1.2 |
ctemp->cd();
|
131 |
benhoob |
1.1 |
sig->Draw(Form("%s >> mva_sig",mvaname),selweight);
|
132 |
|
|
bkg->Draw(Form("%s >> mva_bkg",mvaname),selweight);
|
133 |
benhoob |
1.2 |
delete ctemp;
|
134 |
benhoob |
1.1 |
|
135 |
|
|
float nsigtrue = mva_sig->Integral();
|
136 |
|
|
float nbkgtrue = mva_bkg->Integral();
|
137 |
|
|
|
138 |
|
|
//---------------------------------------------------
|
139 |
|
|
// convert MVA distributions to RooHistPdf objects
|
140 |
|
|
//---------------------------------------------------
|
141 |
|
|
|
142 |
|
|
RooDataHist sigpdfhist("sigpdfhist","Signal PDF Hist" , RooArgSet(mva),mva_sig);
|
143 |
|
|
RooDataHist bkgpdfhist("bkgpdfhist","Background PDF Hist" , RooArgSet(mva),mva_bkg);
|
144 |
|
|
|
145 |
|
|
RooHistPdf sigpdf("sigpdf", "Signal PDF" , RooArgSet(mva), sigpdfhist);
|
146 |
|
|
RooHistPdf bkgpdf("bkgpdf", "Background PDF" , RooArgSet(mva), bkgpdfhist);
|
147 |
|
|
|
148 |
|
|
nsig.setVal( nsigtrue );
|
149 |
|
|
nbkg.setVal( nbkgtrue );
|
150 |
|
|
|
151 |
|
|
RooAddPdf datapdf("datapdf", "Data PDF", RooArgList(sigpdf,bkgpdf), RooArgList(nsig,nbkg));
|
152 |
|
|
|
153 |
benhoob |
1.2 |
//-------------------------------------------------
|
154 |
|
|
// perform fit (nTrials iterations)
|
155 |
|
|
//-------------------------------------------------
|
156 |
|
|
|
157 |
benhoob |
1.1 |
float nsigfit[nTrials];
|
158 |
|
|
float nbkgfit[nTrials];
|
159 |
|
|
float nsigerrfit[nTrials];
|
160 |
|
|
float nbkgerrfit[nTrials];
|
161 |
|
|
float significance[nTrials];
|
162 |
benhoob |
1.2 |
TCanvas *can[nTrials];
|
163 |
benhoob |
1.1 |
|
164 |
|
|
TH1F* hsig = new TH1F("hsig","Sig Yield",100,0,100);
|
165 |
benhoob |
1.2 |
TH1F* hbkg = new TH1F("hbkg","Bkg Yield",100,0,200);
|
166 |
benhoob |
1.1 |
TH1F* hsigpull = new TH1F("hsigpull","Sig Pull",100,-5,5);
|
167 |
|
|
TH1F* hbkgpull = new TH1F("hbkgpull","Bkg Pull",100,-5,5);
|
168 |
|
|
TH1F* hsignificance = new TH1F("hsignificance","Significance",100,0,10);
|
169 |
|
|
|
170 |
benhoob |
1.2 |
for( int i = 0 ; i < nTrials ; ++i ){
|
171 |
benhoob |
1.1 |
|
172 |
|
|
nsig.setVal( nsigtrue );
|
173 |
|
|
nbkg.setVal( nbkgtrue );
|
174 |
|
|
|
175 |
benhoob |
1.2 |
//-------------------------------------
|
176 |
|
|
// generate pseudo-dataset from PDF
|
177 |
|
|
//-------------------------------------
|
178 |
|
|
|
179 |
benhoob |
1.1 |
RooDataSet *gendata = datapdf.generate(RooArgList(mva),nsigtrue+nbkgtrue,Extended(kTRUE));
|
180 |
|
|
|
181 |
benhoob |
1.2 |
//-------------------------------------
|
182 |
|
|
// perform fit with nsig fixed to 0
|
183 |
|
|
//-------------------------------------
|
184 |
|
|
|
185 |
benhoob |
1.1 |
nsig.setVal(0);
|
186 |
benhoob |
1.2 |
nbkg.setVal(gendata->sumEntries());
|
187 |
benhoob |
1.1 |
nsig.setConstant();
|
188 |
benhoob |
1.2 |
|
189 |
|
|
RooAbsReal* mynll_bkg = bkgpdf.createNLL( *gendata );
|
190 |
|
|
RooAbsReal* mynll_tot = datapdf.createNLL( *gendata );
|
191 |
benhoob |
1.1 |
|
192 |
benhoob |
1.2 |
cout << "nll_bkg " << mynll_bkg->getVal() << endl;
|
193 |
|
|
cout << "nll_tot " << mynll_tot->getVal() << endl;
|
194 |
|
|
|
195 |
|
|
cout << endl;
|
196 |
|
|
cout << "-------------------------------------------" << endl;
|
197 |
|
|
cout << "Performing fit with signal yield fixed to 0" << endl;
|
198 |
|
|
cout << "-------------------------------------------" << endl;
|
199 |
|
|
cout << endl;
|
200 |
|
|
|
201 |
benhoob |
1.1 |
RooFitResult *bkg_result = datapdf.fitTo( *gendata , Save() , Extended(kTRUE) );
|
202 |
benhoob |
1.2 |
|
203 |
|
|
/*
|
204 |
|
|
TCanvas *bkgcan = new TCanvas("bkgcan","bkgcan",600,600);
|
205 |
|
|
bkgcan->cd();
|
206 |
|
|
|
207 |
|
|
RooPlot* bkgframe = mva.frame();
|
208 |
|
|
bkgframe->SetXTitle(mvaname);
|
209 |
|
|
gendata->plotOn(bkgframe);
|
210 |
|
|
datapdf.plotOn(bkgframe,Components(sigpdf));
|
211 |
|
|
datapdf.plotOn(bkgframe,Components(bkgpdf),LineColor(kRed));
|
212 |
|
|
datapdf.plotOn(bkgframe,LineColor(kOrange));
|
213 |
|
|
bkgframe->Draw();
|
214 |
|
|
*/
|
215 |
|
|
|
216 |
|
|
//-------------------------------------
|
217 |
|
|
// perform fit with nsig floated in fit
|
218 |
|
|
//-------------------------------------
|
219 |
benhoob |
1.1 |
|
220 |
benhoob |
1.2 |
//nsig.setVal(50);
|
221 |
benhoob |
1.1 |
nsig.setConstant(kFALSE);
|
222 |
benhoob |
1.2 |
|
223 |
|
|
cout << endl;
|
224 |
|
|
cout << "----------------------------------------" << endl;
|
225 |
|
|
cout << "Performing fit with signal yield floated" << endl;
|
226 |
|
|
cout << "----------------------------------------" << endl;
|
227 |
|
|
cout << endl;
|
228 |
|
|
|
229 |
benhoob |
1.1 |
RooFitResult *result = datapdf.fitTo( *gendata , Save() , Extended(kTRUE) );
|
230 |
|
|
|
231 |
benhoob |
1.2 |
if( display ){
|
232 |
|
|
|
233 |
|
|
can[i] = new TCanvas(Form("can_%i",i),Form("can_%i",i),600,600);
|
234 |
|
|
can[i]->cd();
|
235 |
benhoob |
1.1 |
|
236 |
benhoob |
1.2 |
RooPlot* frame = mva.frame();
|
237 |
|
|
frame->SetXTitle(mvaname);
|
238 |
|
|
gendata->plotOn(frame);
|
239 |
|
|
datapdf.plotOn(frame,Components(sigpdf));
|
240 |
|
|
datapdf.plotOn(frame,Components(bkgpdf),LineColor(kRed));
|
241 |
|
|
datapdf.plotOn(frame,LineColor(kOrange));
|
242 |
|
|
frame->Draw();
|
243 |
|
|
|
244 |
|
|
if( printgif ) can[i]->Print(Form("plots/%s_%i.gif",mvaname,i));
|
245 |
|
|
}
|
246 |
|
|
|
247 |
|
|
//---------------------------------------------
|
248 |
|
|
// print output to screen
|
249 |
|
|
//---------------------------------------------
|
250 |
|
|
|
251 |
benhoob |
1.1 |
float nll = result->minNll();
|
252 |
|
|
float bkg_nll = bkg_result->minNll();
|
253 |
|
|
float signif = sqrt( -2 * ( nll - bkg_nll ) );
|
254 |
|
|
|
255 |
|
|
cout << endl << endl;
|
256 |
|
|
cout << "Fit Results-------------------------------------------" << endl;
|
257 |
|
|
cout << "gen events = " << gendata->sumEntries() << endl;
|
258 |
|
|
cout << "nll (BKG) = " << bkg_nll << endl;
|
259 |
|
|
cout << "nll = " << nll << endl;
|
260 |
|
|
cout << "sig = " << signif << endl;
|
261 |
|
|
cout << "nsig = " << nsig.getVal() << " +/- " << nsig.getError() << endl;
|
262 |
|
|
cout << "nsig(true) = " << nsigtrue << endl;
|
263 |
|
|
cout << "nbkg = " << nbkg.getVal() << " +/- " << nbkg.getError() << endl;
|
264 |
|
|
cout << "nbkg(true) = " << nbkgtrue << endl;
|
265 |
|
|
cout << "------------------------------------------------------" << endl;
|
266 |
|
|
cout << endl << endl;
|
267 |
|
|
|
268 |
|
|
|
269 |
|
|
nsigfit[i] = nsig.getVal();
|
270 |
|
|
nsigerrfit[i] = nsig.getError();
|
271 |
|
|
nbkgfit[i] = nbkg.getVal();
|
272 |
|
|
nbkgerrfit[i] = nbkg.getError();
|
273 |
|
|
significance[i] = signif;
|
274 |
|
|
|
275 |
|
|
hsig->Fill( nsigfit[i] );
|
276 |
|
|
hsigpull->Fill( ( nsigfit[i] - nsigtrue ) / nsigerrfit[i] );
|
277 |
|
|
hbkg->Fill( nbkgfit[i] );
|
278 |
|
|
hbkgpull->Fill( ( nbkgfit[i] - nbkgtrue ) / nbkgerrfit[i] );
|
279 |
|
|
hsignificance->Fill( significance[i] );
|
280 |
|
|
}
|
281 |
|
|
|
282 |
benhoob |
1.2 |
gStyle->SetOptFit(0111);
|
283 |
benhoob |
1.1 |
|
284 |
benhoob |
1.2 |
TCanvas *c1 = new TCanvas("c1","",1200,800);
|
285 |
|
|
c1->Divide(3,2);
|
286 |
benhoob |
1.1 |
|
287 |
benhoob |
1.2 |
c1->cd(1);
|
288 |
benhoob |
1.1 |
hsig->GetXaxis()->SetTitle("Sig Yield");
|
289 |
|
|
hsig->Draw();
|
290 |
|
|
hsig->Fit("gaus");
|
291 |
|
|
|
292 |
benhoob |
1.2 |
c1->cd(2);
|
293 |
benhoob |
1.1 |
hsigpull->GetXaxis()->SetTitle("Sig Pull");
|
294 |
|
|
hsigpull->Draw();
|
295 |
|
|
hsigpull->Fit("gaus");
|
296 |
|
|
|
297 |
benhoob |
1.2 |
c1->cd(4);
|
298 |
benhoob |
1.1 |
hbkg->GetXaxis()->SetTitle("Bkg Yield");
|
299 |
|
|
hbkg->Draw();
|
300 |
|
|
hbkg->Fit("gaus");
|
301 |
|
|
|
302 |
benhoob |
1.2 |
c1->cd(5);
|
303 |
benhoob |
1.1 |
hbkgpull->GetXaxis()->SetTitle("Bkg Pull");
|
304 |
|
|
hbkgpull->Draw();
|
305 |
|
|
hbkgpull->Fit("gaus");
|
306 |
|
|
|
307 |
benhoob |
1.2 |
c1->cd(3);
|
308 |
benhoob |
1.1 |
hsignificance->GetXaxis()->SetTitle("Significance");
|
309 |
|
|
hsignificance->Draw();
|
310 |
|
|
hsignificance->Fit("gaus");
|
311 |
|
|
|
312 |
benhoob |
1.2 |
if( printgif ) c1->Print(Form("plots/%s_fitval.gif",mvaname));
|
313 |
benhoob |
1.1 |
|
314 |
|
|
|
315 |
|
|
}
|