ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/HCP2012/ss.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/HCP2012/ss.tex (file contents):
Revision 1.2 by benhoob, Tue Mar 5 14:54:35 2013 UTC vs.
Revision 1.9 by benhoob, Sun Mar 10 17:00:31 2013 UTC

# Line 1 | Line 1
1   \section{Search in the Same-sign Dilepton Final State}
2   \label{sec:ss}
3  
4 + \begin{figure*}[!ht]
5 + \centering
6 + %\begin{center}
7 + \begin{tabular}{cc}
8 + \subfloat[] {\includegraphics[width=0.5\textwidth]{HCPPlots/SS_B1.pdf}} &
9 + \subfloat[] {\includegraphics[width=0.4\textwidth]{HCPPlots/T2bb_interpretation.pdf}} \\
10 + \end{tabular}
11 + \caption{
12 + Interpretation of the results of the search in (a) the same-sign dilepton final state for
13 + bottom squark pair production with $\tilde{b}\to t\chim$ depicted in Fig.~\ref{fig:diagrams}(d), and (b)
14 + the all-hadronic final state for bottom squark pair production with $\tilde{b}\to b\lsp$ depicted in Fig.~\ref{fig:diagrams}(c).
15 + \label{fig:ss_interpretation}
16 + }
17 + %\end{center}
18 + \end{figure*}
19 +
20   This section presents a search in the same-sign (SS) dilepton final state, based on 10.5 fb$^{-1}$.
21 < A wide variety of new physics processes may produce events with SS leptons, which provide a very clean
21 > A wide variety of new physics scenarios may produce events with SS leptons, which provide a very clean
22   final state due to low SM background expectations. In particular, this final state is sensitive to
23 < direct pair production of bottom squarks with $\tilde{b}\to t \chi^{\pm}\to t W \lsp$ depicted in Fig.~\ref{fig:diagrams}(d),
23 > direct pair production of bottom squarks with $\tilde{b}\to t \chim \to t W \lsp$ depicted in Fig.~\ref{fig:diagrams}(d),
24   as well as to gluino-mediated production of top and bottom squarks.
25  
26   We select events with two leptons (e or $\mu$) with \pt\ $>$ 20 GeV and dilepton invariant mass $m_{\ell\ell}>8$ GeV.
# Line 18 | Line 34 | lepton is produced in the decay of one o
34   b-tagged jets (using CSVM). The requirement that both b-jets are identified and well-separated from the selected leptons
35   reduces the \ttljets\ background by an order of magnitude.
36  
37 +
38   There are three sources of SM background passing the above preselection.
39   The first background source is referred to as ``fake leptons'' and includes leptons from heavy-flavor decay,
40   misidentified hadrons, muons from meson decay in flight, or electrons from unidentified photon conversions.
# Line 27 | Line 44 | for a fake lepton satisfying the loose s
44   on studies of fake
45   leptons in jet events. The second background, estimated from MC, consists of rare SM processes and is dominated
46   by $t\bar{t}$W and $t\bar{t}$Z. The systematic uncertainty on both the fake lepton and rare backgrounds is 50\%.
47 < A third, small background contributions is from ``charge flips'' and consists of events with opposite-sign leptons
48 < where one of the leptons is an electron whose charge is misreconstructed. This background is based on MC predictions,
49 < which are validated using a sample of Z$\to e^+e^-$ events.
47 > A third, small background contribution is from ``charge flips'' and consists of events with opposite-sign (OS) leptons
48 > where one of the leptons is an electron whose charge is misreconstructed.
49 > This background is estimated from an OS dilepton data sample, weighted by the electron charge misreconstruction probability,
50 > which is extracted from studies of Z$\to$ee events in data and MC.
51 > %This background is based on MC predictions, which are validated using a sample of Z$\to e^+e^-$ events.
52  
53   Signal regions are defined by placing additional requirements on the jet multiplicity, b-tagged jet multiplicity,
54 < \met, and $H_T$, defined as the scalar sum of the transverse momenta of selected jets. The observed data yields
55 < in these signal regions are compared to the SM background expectations in
56 < Table~\ref{tab:ss}. Good agreement is observed between the data and the expected background in all signal regions.
57 <
58 < In Fig.~\ref{fig:ss_interpretation}(a),tThe results are interpreted using the model of bottom squark pair
59 < production with $\tilde{b}\to t \chi^{\pm}$ depicted in Fig.~\ref{fig:diagrams}(d).
60 < The most sensitive signal region in most of the model parameter space is SR3 (see Table~\ref{tab:ss}).
61 < These results probe bottom squarks with masses up to 450 GeV.
62 < The constraint on the bottom squark mass from naturalness is similar to that on the top squark, requiring
63 < a mass less than 500-700~GeV. Several additional interpretations for models with gluino-mediated top and
54 > \met, and $H_T$, defined as the scalar sum of the transverse momenta of selected jets.
55 > The observed data yields in all signal regions are in good agreement with the SM background expectations;
56 > see Ref.~\cite{ref:ss} for the full quantitative results. The signal region that is most sensitive to
57 > bottom squark pair production with $\tilde{b}\to t \chim$ depicted in Fig.~\ref{fig:diagrams}(d)
58 > has at least four jets, \met\ $>$ 120 GeV and
59 > $H_T$ $>$ 200 GeV. In this region we observe 1 event in data and predict 2.22 $\pm$ 0.96 events.
60 > The results are used to exclude a region of the model parameter space in Fig.~\ref{fig:ss_interpretation}(a),
61 > which demonstrates that our search probes bottom squarks with masses up to 450 GeV.
62 > Naturalness considerations favor a bottom squark with mass not exceeding 500--700 GeV, similar to the constraint
63 > on the top squark mass.
64 > Several additional interpretations for models with gluino-mediated top and
65   bottom squark production are presented in Ref.~\cite{ref:ss}.
66  
67 < \begin{figure*}
48 < \centering
49 < %\begin{center}
50 < \begin{tabular}{cc}
51 < \subfloat[] {\includegraphics[width=0.5\textwidth]{HCPPlots/SS_B1.pdf}} &
52 < \subfloat[] {\includegraphics[width=0.4\textwidth]{HCPPlots/T2bb_interpretation.pdf}} \\
53 < \end{tabular}
54 < \caption{
55 < Interpretation of the results of the search in (a) the same-sign dilepton final state for
56 < bottom squark pair production with $\tilde{b}\to t\chip$ depicted in Fig.~\ref{fig:diagrams}(d), and (b)
57 < the all-hadronic final state for bottom squark pair production with $\tilde{b}\to b\lsp$ depicted in Fig.~\ref{fig:diagrams}(c).
58 < \label{fig:ss_interpretation}
59 < }
60 < %\end{center}
61 < \end{figure*}
67 > %\input{ss_table.tex}
68  
69 + %compared to the SM background expectations in
70 + %Table~\ref{tab:ss}. Good agreement is observed between the data and the expected background in all signal regions.
71  
72   %\begin{table}
73   %\centering
# Line 76 | Line 84 | the all-hadronic final state for bottom
84   %\vspace*{5cm}  % with the correct table height
85   %\end{table}
86  
79
80 \begin{table*}
81 \centering
82  \caption{\label{tab:ss} Summary of the results of the search in the same-sign dilepton final state.
83    Several signal regions (SR) are indicated, including the kinematic requirements, the prediction of the three background (BG) contributions,
84    the total background, and the observed yield in data. The jet multiplicity requirement in the first row includes both b-tagged and untagged jets. The uncertainty includes the statistical and systematic components.}
85  \tabcolsep 2.7pt
86  \begin{scriptsize}
87    \begin{tabular}{l|c|c|c|c|c|c|c|c|c}
88 \hline
89 \hline
90 & SR0 & SR1 & SR2 & SR3 & SR4 & SR5 & SR6 & SR7 & SR8 \\
91      \hline
92      No. of jets            & $\geq 2$               & $\geq 2$               & $\geq 2$               & $\geq 4$               & $\geq 4$               & $\geq 4$               & $\geq 4$               & $\geq 3$               & $\geq 4$       \\
93      No. of btags           & $\geq 2$               & $\geq 2$               & $\geq 2$               & $\geq 2$               & $\geq 2$               & $\geq 2$               & $\geq 2$               & $\geq 3$               & $\geq 2$       \\
94      Lepton charges         & $++/--$                & $++/--$                & $++$                   & $++/--$                & $++/--$                & $++/--$                & $++/--$                & $++/--$                & $++/--$        \\
95      \met                 & $> 0$ GeV             & $> 30$ GeV            & $> 30$ GeV            & $> 120$ GeV           & $> 50$ GeV            & $> 50$ GeV            & $> 120$ GeV           & $> 50$ GeV            & $> 0$ GeV     \\
96      $H_T$                  & $> 80$ GeV            & $> 80$ GeV            & $> 80$ GeV            & $> 200$ GeV           & $> 200$ GeV           & $> 320$ GeV           & $> 320$ GeV           & $> 200$ GeV           & $> 320$ GeV   \\
97      \hline
98      Charge-flip BG         & $3.35 \pm 0.67$ & $2.70 \pm 0.54$ & $1.35 \pm 0.27$ & $0.04 \pm 0.01$ & $0.21 \pm 0.05$ & $0.14 \pm 0.03$ & $0.04 \pm 0.01$ & $0.03 \pm 0.01$ & $0.21 \pm 0.05$\\
99      Fake BG                & $24.77 \pm 12.62$ & $19.18 \pm 9.83$ & $9.59 \pm 5.02$ & $0.99 \pm 0.69$ & $4.51 \pm 2.85$ & $2.88 \pm 1.69$ & $0.67 \pm 0.48$ & $0.71 \pm 0.47$ & $4.39 \pm 2.64$  \\
100      Rare SM BG             & $11.75 \pm 5.89$ & $10.46 \pm 5.25$ & $6.73 \pm 3.39$ & $1.18 \pm 0.67$ & $3.35 \pm 1.84$ & $2.66 \pm 1.47$ & $1.02 \pm 0.60$ & $0.44 \pm 0.39$ & $3.50 \pm 1.92$  \\
101      \hline
102      Total BG               & $39.87 \pm 13.94$ & $32.34 \pm 11.16$ & $17.67 \pm 6.06$ & $2.22 \pm 0.96$ & $8.07 \pm 3.39$ & $5.67 \pm 2.24$ & $1.73 \pm 0.77$ & $1.18 \pm 0.61$ & $8.11 \pm 3.26$  \\
103      Event yield            & 43                & 38                & 14                & 1                & 10                & 7                & 1                & 1                & 9              \\
104      \hline
105 %      $N_{{UL}}$ (13\% unc.) & 27.2   &26.0   &9.9    &3.6    &10.8   &8.6    &3.6    &3.7    &9.6 \\
106 %      $N_{{UL}}$ (20\% unc.) & 28.2   &27.2   &10.2   &3.6    &11.2   &8.9    &3.7    &3.8    &9.9 \\
107 %      $N_{{UL}}$ (30\% unc.) & 30.4   &29.6   &10.7   &3.8    &12.0   &9.6    &3.9    &4.0    &10.5 \\
108      \hline
109    \end{tabular}
110  \end{scriptsize}
111 \end{table*}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines