ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/OSPAS2011/results.tex
Revision: 1.4
Committed: Mon Jun 13 18:08:56 2011 UTC (13 years, 11 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
CVS Tags: v1
Changes since 1.3: +2 -2 lines
Log Message:
Lots of updates

File Contents

# User Rev Content
1 benhoob 1.1 \section{Results}
2     \label{sec:results}
3    
4 benhoob 1.2 The data is displayed in the plane of \MET\ vs. \Ht\ in Fig.~\ref{fig:met_ht}.
5     We find 4 (3) events in the high \MET\ (high \Ht) signal regions, consistent
6     with the MC expectations.
7    
8     \begin{figure}[tbh]
9     \begin{center}
10 benhoob 1.3 \includegraphics[width=0.65\linewidth]{plots_final/met_ht_349pb.pdf}
11 benhoob 1.2 \caption{\label{fig:met_ht}\protect Distributions of \MET\ vs.\ \HT\
12     for data. The high \MET\ (high \Ht) signal region is indicated with the
13     blue dotted (red striped) region.}
14     \end{center}
15     \end{figure}
16    
17     Next, we apply the ABCD' method to predict the yields in the high \met\ and high \Ht\
18     signal regions. The $y$ vs. \Ht\ distributions for data are displayed in
19     Fig.~\ref{fig:abcdprimedata}. The signal regions are indicated, as well as the control
20     regions used to measure the $f(y)$ and $g(H_T)$ distributions. For the high \met\
21     signal region, we find a predicted yield of 1.2 $\pm$ 0.4 (stat) $\pm$ 0.5 (syst),
22     in reasonable agreement with the MC prediction. For the high \Ht\ signal region, we
23     do not find any events in the control region used to extract $g(H_T)$ with \Ht\ $>$ 600 GeV,
24     and the ABCD' background estimate is therefore 0. To assess the statistical uncertainty
25     in this prediction, we add a single event ``by hand'' to the $g(H_T)$ distributiion
26     at $H_T = 600$ GeV, leading to a predicted yield of 0.0 $\pm$ 0.6 (stat) $\pm$ 0.3 (syst).
27    
28 benhoob 1.3
29     \begin{figure}[hbt]
30     \begin{center}
31     \includegraphics[width=0.48\linewidth]{plots_final/abcdprime_349pb_highmet.pdf}
32     \includegraphics[width=0.48\linewidth]{plots_final/abcdprime_349pb_highht.pdf}
33     \caption{\label{fig:abcdprimedata}\protect
34     Distributions of $y$ vs. \Ht\ in data. The signal regions \met\ $>$ 275 GeV, \Ht\ $>$ 300 GeV (left)
35     and \met\ $>$ 200 GeV, \Ht\ $>$ 600 GeV (right) are indicated with thick black lines.
36     The $f(y)$ and $g(H_T)$
37     functions are measured using events in the green and red shaded areas, respectively.
38     }
39     \end{center}
40     \end{figure}
41    
42 benhoob 1.2 Next, we use the \ptll\ template method to predict the background in the 2 signal regions.
43     For each signal region D, we count the number of events falling in the region D', which is
44 benhoob 1.4 defined using the same requirements as D but replacing the \MET\ requirement with a \ptll\
45 benhoob 1.2 requirement. We subtract off the expected DY contribution using the data-driven $R_{out/in}$
46 benhoob 1.4 technique. We scale this yield by 2 corrections factors: $K$, the \met\ acceptance
47 benhoob 1.2 correction factor, and $K_C$, the correction factor determined in Sec.~\ref{sec:datadriven}.
48     Our final prediction $N_P$ is given by:
49    
50     \begin{center}
51     $ N_P = (N(D')-N(DY)) \times K \times K_C$.
52     \end{center}
53 benhoob 1.1
54    
55 benhoob 1.2 \begin{figure}[hbt]
56 benhoob 1.1 \begin{center}
57 benhoob 1.2 \includegraphics[width=0.48\linewidth]{plots_final/victory_met275_ht300_349pb.pdf}
58     \includegraphics[width=0.48\linewidth]{plots_final/victory_met200_ht600_349pb.pdf}
59     \caption{\label{fig:victory}\protect
60     Distributions of \ptll\ scaled by the \MET\ acceptance correction factor $K$ (predicted)
61     and \met\ (observed) for SM MC and data. The high \MET\ (high \Ht) signal region
62     is indicated by the vertical line in the left (right) plot.
63     }
64 benhoob 1.1 \end{center}
65     \end{figure}
66    
67 benhoob 1.2 The predicted and observed \MET\ distributions in the 2 signal regions are displayed
68     in Fig.~\ref{fig:victory}. For the high \MET\ (high \Ht) signal regions we predict
69     a background yield of 5.4 $\pm$ 3.8 (stat) $\pm$ 1.7 (syst)
70     (1.7 $\pm$ 1.7 (stat) $\pm$ 0.4 (syst)) events, consistent with the observed yields
71     and with the predictions of the ABCD' method.
72    
73     As a validation of the $\pt(\ell\ell)$ method in a region which is dominated by
74     background, we also apply the $\pt(\ell\ell)$ method in a control region by restricting
75     \HT\ to be in the range 125--300~\GeV. Here we predict 6.5 $\pm$ 4.4 events with
76     \MET\ $>$ 200 GeV, and observe 6 events in this region.
77    
78     Our third background estimate is based on the OF subtraction technique. We observe
79     2 $ee$ + 1 $e\mu$ (1 $ee$ + 1 $e\mu$) events in the high \MET\ (high \Ht) signal
80     regions outside of the $Z$ mass region 76--106~GeV. This gives
81     $\Delta = $ 1.3 $\pm$ 1.9 (stat) $\pm$ 0.1 (syst)
82     (0.1 $\pm$ 1.5 (stat) $\pm$ 0.0 (syst)) for the high \MET\ (high \Ht) signal regions,
83     respectively.
84    
85     A summary of our results is presented in Table~\ref{tab:results}. For both signal regions,
86     the observed yield is consistent with the predictions from MC and from the background estimates
87     based on data. We conclude that no evidence for non-SM contributions to the signal regions
88     is observed.