ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/CR1.tex
Revision: 1.12
Committed: Thu Oct 18 22:41:51 2012 UTC (12 years, 6 months ago) by linacre
Content type: application/x-tex
Branch: MAIN
Changes since 1.11: +6 -6 lines
Log Message:
typos etc

File Contents

# User Rev Content
1 claudioc 1.1 \subsection{W+Jets MC Modelling Validation from CR1}
2     \label{sec:cr1}
3    
4    
5     The estimate of the uncertainty on this background is based on CR1,
6 burkett 1.2 defined by applying the full signal selection, including the isolated track veto, but requiring 0 b-tags
7     (CSV medium working point as described in Sec.~\ref{sec:selection}).
8 claudioc 1.1 The sample is dominanted by \wjets\ and is thus used to validate the MC modelling of this background.
9    
10 linacre 1.12 In Table~\ref{tab:cr1mtsf} we show the amount that we need to scale the \wjets\ MC
11 claudioc 1.1 by in order to have agreement between data and Monte Carlo in the $M_T$ peak
12 claudioc 1.9 region, defined as $50 < M_T < 80$ GeV, for the
13     different signal regions. (Recall, the signal regions have different
14     \met\ requirements). These scale factors are not terribly
15 vimartin 1.4 important, but it is reassuring that they are not too different from
16 claudioc 1.9 1.
17 claudioc 1.1
18    
19     \begin{table}[!h]
20     \begin{center}
21 vimartin 1.7 {\footnotesize
22     \begin{tabular}{l||c||c|c|c|c|c|c|c}
23 claudioc 1.1 \hline
24 vimartin 1.7 Sample & CR1PRESEL & CR1A & CR1B & CR1C & CR1D & CR1E &
25     CR1F & CR1G\\
26 claudioc 1.1 \hline
27     \hline
28 vimartin 1.7 $\mu$ \mt-SF & $0.92 \pm 0.02$ & $0.97 \pm 0.03$ & $0.90 \pm 0.04$ & $0.91 \pm 0.06$ & $0.93 \pm 0.09$ & $0.98 \pm 0.13$ & $0.94 \pm 0.18$ & $0.96 \pm 0.25$ \\
29 claudioc 1.1 \hline
30     \hline
31 vimartin 1.7 e \mt-SF & $0.94 \pm 0.02$ & $0.90 \pm 0.04$ & $0.84 \pm 0.05$ & $0.80 \pm 0.07$ & $0.83 \pm 0.10$ & $0.77 \pm 0.13$ & $0.86 \pm 0.20$ & $0.87 \pm 0.29$ \\
32 claudioc 1.1 \hline
33 vimartin 1.7 \end{tabular}}
34 linacre 1.12 \caption{ \mt\ peak Data/MC scale factors applied to \wjets\
35     samples. No scaling is made for backgrounds from rare
36 claudioc 1.1 processes. CR1PRESEL refers to a sample with $\met>50$ GeV.
37     The uncertainties are statistical only.
38     \label{tab:cr1mtsf}}
39     \end{center}
40     \end{table}
41    
42 claudioc 1.9 Next, in Fig~\ref{fig:cr1met},~\ref{fig:cr1mtrest},
43     and~\ref{fig:cr1mtrest2}, we show plots of \met\ and then $M_T$
44 benhoob 1.10 for different \met\ requirements corresponding to those defining our signal regions.
45 claudioc 1.9 It is clear that there are more events in the $M_T$ tail than
46     predicted
47 linacre 1.12 from MC. This implies that we need to rescale the MC \wjets\
48 claudioc 1.9 background
49     in the tail region.
50 vimartin 1.7
51 claudioc 1.1 \begin{table}[!h]
52     \begin{center}
53 vimartin 1.3 {\footnotesize
54 vimartin 1.7 \begin{tabular}{l||c||c|c|c|c|c|c|c}
55     \hline
56     Sample & CR1PRESEL & CR1A & CR1B & CR1C & CR1D & CR1E &
57     CR1F & CR1G\\
58     \hline
59     \hline
60     $\mu$ MC & $480 \pm 22$ & $173 \pm 5$ & $114 \pm 4$ & $40 \pm 2$ & $16 \pm 1$ & $8 \pm 1$ & $4 \pm 1$ & $2 \pm 1$ \\
61     $\mu$ Data & $629$ & $238$ & $139$ & $45$ & $12$ & $8$ & $3$ & $2$ \\
62     \hline
63     $\mu$ Data/MC & $1.31 \pm 0.08$ & $1.37 \pm 0.10$ & $1.22 \pm 0.11$ & $1.12 \pm 0.18$ & $0.75 \pm 0.23$ & $0.99 \pm 0.37$ & $0.75 \pm 0.45$ & $0.96 \pm 0.72$ \\
64     \hline
65     \hline
66     e MC & $330 \pm 8$ & $118 \pm 4$ & $79 \pm 3$ & $29 \pm 2$ & $13 \pm 1$ & $5 \pm 1$ & $3 \pm 1$ & $2 \pm 0$ \\
67     e Data & $473$ & $174$ & $100$ & $36$ & $16$ & $5$ & $5$ & $2$ \\
68     \hline
69     e Data/MC & $1.43 \pm 0.07$ & $1.47 \pm 0.12$ & $1.27 \pm 0.14$ & $1.23 \pm 0.22$ & $1.26 \pm 0.34$ & $1.07 \pm 0.51$ & $1.80 \pm 0.91$ & $1.26 \pm 0.97$ \\
70 claudioc 1.1 \hline
71     \hline
72 vimartin 1.7 $\mu$+e MC & $810 \pm 23$ & $291 \pm 7$ & $192 \pm 5$ & $69 \pm 3$ & $29 \pm 2$ & $13 \pm 1$ & $7 \pm 1$ & $4 \pm 1$ \\
73     $\mu$+e Data & $1102$ & $412$ & $239$ & $81$ & $28$ & $13$ & $8$ & $4$ \\
74 claudioc 1.1 \hline
75 vimartin 1.7 $\mu$+e Data/MC & $1.36 \pm 0.08$ & $1.42 \pm 0.13$ & $1.24 \pm 0.15$ & $1.17 \pm 0.23$ & $0.97 \pm 0.31$ & $1.02 \pm 0.51$ & $1.18 \pm 0.69$ & $1.09 \pm 0.96$ \\
76 claudioc 1.1 \hline
77     \hline
78     \hline
79 vimartin 1.7 $\mu$ W MC & $300 \pm 23$ & $84 \pm 5$ & $52 \pm 4$ & $20 \pm 2$ & $9 \pm 2$ & $5 \pm 1$ & $3 \pm 1$ & $1 \pm 1$ \\
80     $\mu$ W Data & $449 \pm 26$ & $149 \pm 16$ & $78 \pm 12$ & $25 \pm 7$ & $5 \pm 4$ & $5 \pm 3$ & $2 \pm 2$ & $1 \pm 1$ \\
81 claudioc 1.1 \hline
82 vimartin 1.7 $\mu$ W Data/MC & $1.50 \pm 0.14$ & $1.77 \pm 0.21$ & $1.49 \pm 0.26$ & $1.25 \pm 0.38$ & $0.56 \pm 0.39$ & $0.98 \pm 0.62$ & $0.60 \pm 0.73$ & $0.94 \pm 1.14$ \\
83 claudioc 1.1 \hline
84 vimartin 1.6 \hline
85 vimartin 1.7 e W MC & $192 \pm 8$ & $55 \pm 4$ & $36 \pm 3$ & $14 \pm 2$ & $6 \pm 1$ & $3 \pm 1$ & $2 \pm 1$ & $1 \pm 0$ \\
86     e W Data & $335 \pm 22$ & $111 \pm 13$ & $58 \pm 10$ & $20 \pm 6$ & $10 \pm 4$ & $3 \pm 2$ & $4 \pm 2$ & $1 \pm 1$ \\
87     \hline
88     e W Data/MC & $1.74 \pm 0.14$ & $2.02 \pm 0.29$ & $1.58 \pm 0.32$ & $1.49 \pm 0.50$ & $1.50 \pm 0.70$ & $1.10 \pm 0.80$ & $2.27 \pm 1.55$ & $1.51 \pm 1.96$ \\
89 vimartin 1.6 \hline
90     \hline
91 vimartin 1.7 $\mu$+e W MC & $493 \pm 24$ & $139 \pm 6$ & $89 \pm 5$ & $33 \pm 3$ & $16 \pm 2$ & $8 \pm 1$ & $4 \pm 1$ & $2 \pm 1$ \\
92     $\mu$+e W Data & $785 \pm 59$ & $260 \pm 37$ & $135 \pm 28$ & $45 \pm 16$ & $15 \pm 9$ & $8 \pm 7$ & $6 \pm 5$ & $3 \pm 3$ \\
93 vimartin 1.6 \hline
94 vimartin 1.7 $\mu$+e W Data/MC & $1.59 \pm 0.14$ & $1.87 \pm 0.28$ & $1.53 \pm 0.33$ & $1.35 \pm 0.50$ & $0.95 \pm 0.58$ & $1.03 \pm 0.83$ & $1.29 \pm 1.13$ & $1.16 \pm 1.65$ \\
95 vimartin 1.6 \hline
96     \hline
97     \hline
98 vimartin 1.8 $SFR_{wjet}$ & $1.48 \pm 0.26$ & $1.64 \pm 0.38$ & $1.38 \pm 0.30$ & $1.26 \pm 0.39$ & $0.96 \pm 0.45$ & $1.02 \pm 0.67$ & $1.23 \pm 0.92$ & $1.12 \pm 1.31$ \\
99 vimartin 1.6 \hline
100     \end{tabular}}
101 vimartin 1.7 \caption{ Yields in \mt\ tail comparing the MC prediction (after
102     applying SFs) to data. CR1PRESEL refers to a sample with $\met>50$
103 claudioc 1.9 GeV and $\mt>150$ GeV. See text for details.
104     % The uncertainties are statistical only.
105 vimartin 1.7 \label{tab:cr1yields}}
106 vimartin 1.6 \end{center}
107     \end{table}
108    
109    
110 claudioc 1.9 The rescaling is explored
111     in Table~\ref{tab:cr1yields},
112 linacre 1.12 where we compare the data and MC yields in the $M_T$ signal regions
113 claudioc 1.9 and in a looser control region. Note that the
114     MC is normalized in the $M_T$ peak region by rescaling
115     the \wjets\ component according to Table~\ref{tab:cr1mtsf}.
116    
117     We also derive data/MC scale factors.
118     These are derived in two different ways, separately for muons and
119 linacre 1.12 electrons and then combined, as follows:
120 claudioc 1.9 \begin{itemize}
121 claudioc 1.11 \item For the first three sets of scale factors, above the triple horizontal
122 claudioc 1.9 line, we calculate the scale factor as the amount by which we would
123     need to rescale {\bf all} MC (\wjets\ , \ttbar\ , single top, rare) in
124     order to have data-MC agreement in the $M_T$ tail.
125     \item For the next three set of scale factors, below the triple horizontal
126     line, we calculate the scale factor as the amount by which we would
127     need
128     to scale \wjets\ keeping all other
129     components fixed in order to have data-MC agreement in the tail.
130     \end{itemize}
131     \noindent The true \wjets\ scale factor is somewhere in between these
132     two extremes. We also note that there is no statistically significant
133     difference between the electron and muon samples. We use these data
134     to extract a data/MC scale factor for \wjets\ which will be used to
135     rescale the \wjets\ MC tail. This scale factor is listed in the last
136     line of the Table, and is called $SFR_{wjets}$. It is calculated as
137     follows.
138     \begin{itemize}
139     \item Separately for each signal region
140     \item As the average of the two methods described above
141     \item Including the statistical uncertainty
142     \item Adding in quadrature to the uncertainty one-half of the
143     deviation from 1.0
144     \end{itemize}
145    
146    
147    
148    
149    
150    
151 claudioc 1.1 \begin{figure}[hbt]
152     \begin{center}
153     \includegraphics[width=0.5\linewidth]{plots/CR1plots/met_met50_leadmuo_nj4.pdf}%
154     \includegraphics[width=0.5\linewidth]{plots/CR1plots/met_met50_leadele_nj4.pdf}
155     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met100_leadmuo_nj4.pdf}%
156     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met100_leadele_nj4.pdf}
157     \caption{
158     Comparison of the \met\ (top) and \mt\ for $\met>100$ (bottom) distributions in data vs. MC for events
159     with a leading muon (left) and leading electron (right)
160     satisfying the requirements of CR1.
161     \label{fig:cr1met}
162     }
163     \end{center}
164     \end{figure}
165    
166    
167     \begin{figure}[hbt]
168     \begin{center}
169     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met150_leadmuo_nj4.pdf}%
170     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met150_leadele_nj4.pdf}
171     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met200_leadmuo_nj4.pdf}%
172     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met200_leadele_nj4.pdf}
173     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met250_leadmuo_nj4.pdf}%
174     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met250_leadele_nj4.pdf}
175     \caption{
176     Comparison of the \mt\ distribution in data vs. MC for events
177     with a leading muon (left) and leading electron (right)
178     satisfying the requirements of CR1. The \met\ requirements used are
179     150 GeV (top), 200 GeV (middle) and 250 GeV (bottom).
180     \label{fig:cr1mtrest}
181     }
182     \end{center}
183     \end{figure}
184    
185 vimartin 1.7 \begin{figure}[hbt]
186     \begin{center}
187     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met300_leadmuo_nj4.pdf}%
188     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met300_leadele_nj4.pdf}
189     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met350_leadmuo_nj4.pdf}%
190     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met350_leadele_nj4.pdf}
191     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met400_leadmuo_nj4.pdf}%
192     \includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met400_leadele_nj4.pdf}
193     \caption{
194     Comparison of the \mt\ distribution in data vs. MC for events
195     with a leading muon (left) and leading electron (right)
196     satisfying the requirements of CR1. The \met\ requirements used are
197     300 GeV (top), 350 GeV (middle) and 400 GeV (bottom).
198     \label{fig:cr1mtrest2}
199     }
200     \end{center}
201     \end{figure}
202    
203    
204 benhoob 1.10 \clearpage