9 |
|
|
10 |
|
In Table~\ref{tab:cr1mtsf} we show the amount that we need to scale the Wjets MC |
11 |
|
by in order to have agreement between data and Monte Carlo in the $M_T$ peak |
12 |
< |
region, defined as $60 < M_T < 100$ GeV. These scale factors are not terribly |
13 |
< |
important, but it is reassuring that they are not too different from 1. (ARE THESE |
14 |
< |
SCALED FOR TRIGGER EFFICIENCY???) |
12 |
> |
region, defined as $50 < M_T < 80$ GeV, for the |
13 |
> |
different signal regions. (Recall, the signal regions have different |
14 |
> |
\met\ requirements). These scale factors are not terribly |
15 |
> |
important, but it is reassuring that they are not too different from |
16 |
> |
1. |
17 |
|
|
18 |
|
|
19 |
|
\begin{table}[!h] |
20 |
|
\begin{center} |
21 |
< |
\begin{tabular}{l||c||c|c|c|c|c} |
21 |
> |
{\footnotesize |
22 |
> |
\begin{tabular}{l||c||c|c|c|c|c|c|c} |
23 |
|
\hline |
24 |
< |
Sample & CR1PRESEL & CR1A & CR1B & CR1C & CR1D & CR1E\\ |
24 |
> |
Sample & CR1PRESEL & CR1A & CR1B & CR1C & CR1D & CR1E & |
25 |
> |
CR1F & CR1G\\ |
26 |
|
\hline |
27 |
|
\hline |
28 |
< |
Muon \mt-SF & $0.75 \pm 0.01$ & $0.77 \pm 0.02$ & $0.78 \pm 0.03$ & $0.79 \pm 0.05$ & $0.88 \pm 0.08$ & $0.91 \pm 0.12$ \\ |
28 |
> |
$\mu$ \mt-SF & $0.92 \pm 0.02$ & $0.97 \pm 0.03$ & $0.90 \pm 0.04$ & $0.91 \pm 0.06$ & $0.93 \pm 0.09$ & $0.98 \pm 0.13$ & $0.94 \pm 0.18$ & $0.96 \pm 0.25$ \\ |
29 |
|
\hline |
30 |
|
\hline |
31 |
< |
Electron \mt-SF & $0.84 \pm 0.02$ & $0.83 \pm 0.03$ & $0.80 \pm 0.04$ & $0.78 \pm 0.06$ & $0.76 \pm 0.09$ & $0.73 \pm 0.12$ \\ |
31 |
> |
e \mt-SF & $0.94 \pm 0.02$ & $0.90 \pm 0.04$ & $0.84 \pm 0.05$ & $0.80 \pm 0.07$ & $0.83 \pm 0.10$ & $0.77 \pm 0.13$ & $0.86 \pm 0.20$ & $0.87 \pm 0.29$ \\ |
32 |
|
\hline |
33 |
< |
\end{tabular} |
34 |
< |
\caption{ \mt\ peak Data/MC scale factors applied to the single lepton |
35 |
< |
samples and \ttdl. The raw MC is used for backgrounds from rare |
33 |
> |
\end{tabular}} |
34 |
> |
\caption{ \mt\ peak Data/MC scale factors applied to Wjets |
35 |
> |
samples. The MC is used for backgrounds from rare |
36 |
|
processes. CR1PRESEL refers to a sample with $\met>50$ GeV. |
37 |
|
The uncertainties are statistical only. |
38 |
|
\label{tab:cr1mtsf}} |
39 |
|
\end{center} |
40 |
|
\end{table} |
41 |
|
|
42 |
< |
|
43 |
< |
In Table~\ref{tab:cr1yields} we compare the data and MC yields in the four $M_T$ signal regions |
44 |
< |
and in a looser control region. We also derive the data/MC scale factors |
45 |
< |
$SFR^{e}_{wjet}$ and $SFR^{\mu}_{wjet}$. The underlying \met\ and $M_T$ distributions |
46 |
< |
are shown in Fig.~\ref{fig:cr1met} and~\ref{fig:cr1mtrest} |
42 |
> |
Next, in Fig~\ref{fig:cr1met},~\ref{fig:cr1mtrest}, |
43 |
> |
and~\ref{fig:cr1mtrest2}, we show plots of \met\ and then $M_T$ |
44 |
> |
for different signal regions, i.e., for different \met\ requirements. |
45 |
> |
It is clear that there are more events in the $M_T$ tail than |
46 |
> |
predicted |
47 |
> |
from MC. This implies that we need to rescale the MC Wjets |
48 |
> |
background |
49 |
> |
in the tail region. |
50 |
|
|
51 |
|
\begin{table}[!h] |
52 |
|
\begin{center} |
53 |
|
{\footnotesize |
54 |
< |
\begin{tabular}{l||c||c|c|c|c|c} |
54 |
> |
\begin{tabular}{l||c||c|c|c|c|c|c|c} |
55 |
> |
\hline |
56 |
> |
Sample & CR1PRESEL & CR1A & CR1B & CR1C & CR1D & CR1E & |
57 |
> |
CR1F & CR1G\\ |
58 |
> |
\hline |
59 |
> |
\hline |
60 |
> |
$\mu$ MC & $480 \pm 22$ & $173 \pm 5$ & $114 \pm 4$ & $40 \pm 2$ & $16 \pm 1$ & $8 \pm 1$ & $4 \pm 1$ & $2 \pm 1$ \\ |
61 |
> |
$\mu$ Data & $629$ & $238$ & $139$ & $45$ & $12$ & $8$ & $3$ & $2$ \\ |
62 |
> |
\hline |
63 |
> |
$\mu$ Data/MC & $1.31 \pm 0.08$ & $1.37 \pm 0.10$ & $1.22 \pm 0.11$ & $1.12 \pm 0.18$ & $0.75 \pm 0.23$ & $0.99 \pm 0.37$ & $0.75 \pm 0.45$ & $0.96 \pm 0.72$ \\ |
64 |
> |
\hline |
65 |
> |
\hline |
66 |
> |
e MC & $330 \pm 8$ & $118 \pm 4$ & $79 \pm 3$ & $29 \pm 2$ & $13 \pm 1$ & $5 \pm 1$ & $3 \pm 1$ & $2 \pm 0$ \\ |
67 |
> |
e Data & $473$ & $174$ & $100$ & $36$ & $16$ & $5$ & $5$ & $2$ \\ |
68 |
> |
\hline |
69 |
> |
e Data/MC & $1.43 \pm 0.07$ & $1.47 \pm 0.12$ & $1.27 \pm 0.14$ & $1.23 \pm 0.22$ & $1.26 \pm 0.34$ & $1.07 \pm 0.51$ & $1.80 \pm 0.91$ & $1.26 \pm 0.97$ \\ |
70 |
> |
\hline |
71 |
> |
\hline |
72 |
> |
$\mu$+e MC & $810 \pm 23$ & $291 \pm 7$ & $192 \pm 5$ & $69 \pm 3$ & $29 \pm 2$ & $13 \pm 1$ & $7 \pm 1$ & $4 \pm 1$ \\ |
73 |
> |
$\mu$+e Data & $1102$ & $412$ & $239$ & $81$ & $28$ & $13$ & $8$ & $4$ \\ |
74 |
> |
\hline |
75 |
> |
$\mu$+e Data/MC & $1.36 \pm 0.08$ & $1.42 \pm 0.13$ & $1.24 \pm 0.15$ & $1.17 \pm 0.23$ & $0.97 \pm 0.31$ & $1.02 \pm 0.51$ & $1.18 \pm 0.69$ & $1.09 \pm 0.96$ \\ |
76 |
> |
\hline |
77 |
> |
\hline |
78 |
> |
\hline |
79 |
> |
$\mu$ W MC & $300 \pm 23$ & $84 \pm 5$ & $52 \pm 4$ & $20 \pm 2$ & $9 \pm 2$ & $5 \pm 1$ & $3 \pm 1$ & $1 \pm 1$ \\ |
80 |
> |
$\mu$ W Data & $449 \pm 26$ & $149 \pm 16$ & $78 \pm 12$ & $25 \pm 7$ & $5 \pm 4$ & $5 \pm 3$ & $2 \pm 2$ & $1 \pm 1$ \\ |
81 |
> |
\hline |
82 |
> |
$\mu$ W Data/MC & $1.50 \pm 0.14$ & $1.77 \pm 0.21$ & $1.49 \pm 0.26$ & $1.25 \pm 0.38$ & $0.56 \pm 0.39$ & $0.98 \pm 0.62$ & $0.60 \pm 0.73$ & $0.94 \pm 1.14$ \\ |
83 |
> |
\hline |
84 |
|
\hline |
85 |
< |
Sample & CR1PRESEL & CR1A & CR1B & CR1C & CR1D & CR1E\\ |
85 |
> |
e W MC & $192 \pm 8$ & $55 \pm 4$ & $36 \pm 3$ & $14 \pm 2$ & $6 \pm 1$ & $3 \pm 1$ & $2 \pm 1$ & $1 \pm 0$ \\ |
86 |
> |
e W Data & $335 \pm 22$ & $111 \pm 13$ & $58 \pm 10$ & $20 \pm 6$ & $10 \pm 4$ & $3 \pm 2$ & $4 \pm 2$ & $1 \pm 1$ \\ |
87 |
|
\hline |
88 |
+ |
e W Data/MC & $1.74 \pm 0.14$ & $2.02 \pm 0.29$ & $1.58 \pm 0.32$ & $1.49 \pm 0.50$ & $1.50 \pm 0.70$ & $1.10 \pm 0.80$ & $2.27 \pm 1.55$ & $1.51 \pm 1.96$ \\ |
89 |
|
\hline |
52 |
– |
Muon MC & $481 \pm 20$ & $176 \pm 5$ & $121 \pm 4$ & $42 \pm 2$ & $18 \pm 2$ & $9 \pm 1$ \\ |
53 |
– |
Muon Data & $629$ & $238$ & $139$ & $45$ & $12$ & $8$ \\ |
90 |
|
\hline |
91 |
< |
Muon Data/MC SF: ($SFR^{\mu}_{wjet}$) & $1.31 \pm 0.08$ & $1.35 \pm 0.10$ & $1.15 \pm 0.11$ & $1.06 \pm 0.17$ & $0.68 \pm 0.21$ & $0.92 \pm 0.35$ \\ |
91 |
> |
$\mu$+e W MC & $493 \pm 24$ & $139 \pm 6$ & $89 \pm 5$ & $33 \pm 3$ & $16 \pm 2$ & $8 \pm 1$ & $4 \pm 1$ & $2 \pm 1$ \\ |
92 |
> |
$\mu$+e W Data & $785 \pm 59$ & $260 \pm 37$ & $135 \pm 28$ & $45 \pm 16$ & $15 \pm 9$ & $8 \pm 7$ & $6 \pm 5$ & $3 \pm 3$ \\ |
93 |
|
\hline |
94 |
+ |
$\mu$+e W Data/MC & $1.59 \pm 0.14$ & $1.87 \pm 0.28$ & $1.53 \pm 0.33$ & $1.35 \pm 0.50$ & $0.95 \pm 0.58$ & $1.03 \pm 0.83$ & $1.29 \pm 1.13$ & $1.16 \pm 1.65$ \\ |
95 |
|
\hline |
58 |
– |
Electron MC & $322 \pm 7$ & $119 \pm 4$ & $81 \pm 3$ & $30 \pm 2$ & $13 \pm 1$ & $5 \pm 1$ \\ |
59 |
– |
Electron Data & $487$ & $181$ & $103$ & $38$ & $16$ & $6$ \\ |
96 |
|
\hline |
97 |
< |
Electron Data/MC SF: ($SFR^e_{wjet}$) & $1.51 \pm 0.08$ & $1.53 \pm 0.13$ & $1.28 \pm 0.14$ & $1.25 \pm 0.22$ & $1.25 \pm 0.34$ & $1.26 \pm 0.56$ \\ |
97 |
> |
\hline |
98 |
> |
$SFR_{wjet}$ & $1.48 \pm 0.26$ & $1.64 \pm 0.38$ & $1.38 \pm 0.30$ & $1.26 \pm 0.39$ & $0.96 \pm 0.45$ & $1.02 \pm 0.67$ & $1.23 \pm 0.92$ & $1.12 \pm 1.31$ \\ |
99 |
|
\hline |
100 |
|
\end{tabular}} |
101 |
|
\caption{ Yields in \mt\ tail comparing the MC prediction (after |
102 |
|
applying SFs) to data. CR1PRESEL refers to a sample with $\met>50$ |
103 |
< |
GeV and $\mt>150$ GeV. |
104 |
< |
The uncertainties are statistical only. |
103 |
> |
GeV and $\mt>150$ GeV. See text for details. |
104 |
> |
% The uncertainties are statistical only. |
105 |
|
\label{tab:cr1yields}} |
106 |
|
\end{center} |
107 |
|
\end{table} |
108 |
|
|
109 |
|
|
110 |
+ |
The rescaling is explored |
111 |
+ |
in Table~\ref{tab:cr1yields}, |
112 |
+ |
Here we compare the data and MC yields in the $M_T$ signal regions |
113 |
+ |
and in a looser control region. Note that the |
114 |
+ |
MC is normalized in the $M_T$ peak region by rescaling |
115 |
+ |
the \wjets\ component according to Table~\ref{tab:cr1mtsf}. |
116 |
+ |
|
117 |
+ |
We also derive data/MC scale factors. |
118 |
+ |
These are derived in two different ways, separately for muons and |
119 |
+ |
electrons and then combined, as follows; |
120 |
+ |
\begin{itemize} |
121 |
+ |
\item For first three sets of scale factors, above the triple horizontal |
122 |
+ |
line, we calculate the scale factor as the amount by which we would |
123 |
+ |
need to rescale {\bf all} MC (\wjets\ , \ttbar\ , single top, rare) in |
124 |
+ |
order to have data-MC agreement in the $M_T$ tail. |
125 |
+ |
\item For the next three set of scale factors, below the triple horizontal |
126 |
+ |
line, we calculate the scale factor as the amount by which we would |
127 |
+ |
need |
128 |
+ |
to scale \wjets\ keeping all other |
129 |
+ |
components fixed in order to have data-MC agreement in the tail. |
130 |
+ |
\end{itemize} |
131 |
+ |
\noindent The true \wjets\ scale factor is somewhere in between these |
132 |
+ |
two extremes. We also note that there is no statistically significant |
133 |
+ |
difference between the electron and muon samples. We use these data |
134 |
+ |
to extract a data/MC scale factor for \wjets\ which will be used to |
135 |
+ |
rescale the \wjets\ MC tail. This scale factor is listed in the last |
136 |
+ |
line of the Table, and is called $SFR_{wjets}$. It is calculated as |
137 |
+ |
follows. |
138 |
+ |
\begin{itemize} |
139 |
+ |
\item Separately for each signal region |
140 |
+ |
\item As the average of the two methods described above |
141 |
+ |
\item Including the statistical uncertainty |
142 |
+ |
\item Adding in quadrature to the uncertainty one-half of the |
143 |
+ |
deviation from 1.0 |
144 |
+ |
\end{itemize} |
145 |
+ |
|
146 |
+ |
|
147 |
+ |
|
148 |
+ |
|
149 |
+ |
|
150 |
+ |
|
151 |
|
\begin{figure}[hbt] |
152 |
|
\begin{center} |
153 |
|
\includegraphics[width=0.5\linewidth]{plots/CR1plots/met_met50_leadmuo_nj4.pdf}% |
182 |
|
\end{center} |
183 |
|
\end{figure} |
184 |
|
|
185 |
+ |
\begin{figure}[hbt] |
186 |
+ |
\begin{center} |
187 |
+ |
\includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met300_leadmuo_nj4.pdf}% |
188 |
+ |
\includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met300_leadele_nj4.pdf} |
189 |
+ |
\includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met350_leadmuo_nj4.pdf}% |
190 |
+ |
\includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met350_leadele_nj4.pdf} |
191 |
+ |
\includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met400_leadmuo_nj4.pdf}% |
192 |
+ |
\includegraphics[width=0.5\linewidth]{plots/CR1plots/mt_met400_leadele_nj4.pdf} |
193 |
+ |
\caption{ |
194 |
+ |
Comparison of the \mt\ distribution in data vs. MC for events |
195 |
+ |
with a leading muon (left) and leading electron (right) |
196 |
+ |
satisfying the requirements of CR1. The \met\ requirements used are |
197 |
+ |
300 GeV (top), 350 GeV (middle) and 400 GeV (bottom). |
198 |
+ |
\label{fig:cr1mtrest2} |
199 |
+ |
} |
200 |
+ |
\end{center} |
201 |
+ |
\end{figure} |
202 |
+ |
|
203 |
+ |
|
204 |
|
\clearpage |