ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/CR2.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/CR2.tex (file contents):
Revision 1.5 by vimartin, Wed Oct 10 04:51:53 2012 UTC vs.
Revision 1.11 by claudioc, Sun Oct 21 03:37:26 2012 UTC

# Line 2 | Line 2
2   \subsection{Single Lepton Top MC Modelling Validation from CR2}
3   \label{sec:cr2}
4  
5 IS THIS GOING TO BE DONE WITH A BVETO OR NOT.  IF SO, IS IT GOING TO
6 BE CSVL OR CSVM?  NEED TO DISCUSS THIS.
5  
6   The \mt\ tail for single-lepton top events (\ttsl\ and single top) is dominated by jet resolution effects. The \W\ cannot be far off-shell because $\mW < \mtop$.
7 < The modeling of the \mt\ tail from jet resolution effects is studied using \zjets\ data and MC samples.
8 < \Z\ events are selection by requiring 2 good leptons (satisfying ID and isolation requirements) and requiring the \mll\ to be in the range $81-101$ GeV.
9 < The negative lepton is treated as a neutrino and so is added to the MET: \met\ $\rightarrow$ \pt(\Lepm) + \met,
10 < and the \mt\ is recalculated with the positive lepton \mt(\Lepp, \met).
7 > The modeling of the \mt\ tail from jet resolution effects can be studied
8 > using \zjets\ data and MC samples.   However, as we will show below,
9 > this test is statistically limited and can only be performed for the
10 > \met\ requirements corresponding to SRA and SRB.
11 >
12 > \Z\ events are selected by requiring exactly 2 good leptons (satisfying ID
13 > and isolation requirements) and requiring the \mll\ to be in the range
14 > $81-101$ GeV.
15 > Events with additional isolated tracks are vetoed, as in Section~\ref{sec:tkveto}.
16 > To reduce \ttbar\ backgrounds, events with a CSVM tag %H
17 > are removed.
18 > The positive lepton is treated as a neutrino and so is added to the MET: \met\ $\rightarrow$ \pt(\Lepp) + \met,
19 > and the \mt\ is recalculated with the negative lepton: \mt(\Lepm, \met).
20   The resulting ``pseudo-\mt'' is dominated by jet resolution effects, since no off-shell
21   \Z\ production enters the sample due to the \mll\ requirement.
22   This section describes how well the MC predicts the tail of ``pseudo-\mt''.
23  
24 < The underlying distributions are shown in Fig.~\ref{fig:cr2met}
25 < and~\ref{fig:cr2mtrest}.  The comparison of data and MC event counts
26 < is shown in Table~\ref{tab:cr2yields}.  From this table we extract
27 < the data to MC scale factors $SFR^{e}_{top}$ and  $SFR^{\mu}_{top}$.
24 > The underlying distributions are shown in Fig.~\ref{fig:cr2met}.
25 > %and~\ref{fig:cr2mtrest}.  
26 > We then perform the exact same type of Data/MC comparison and analysis as
27 > described for CR1 in Section~\ref{sec:cr1}.  For CR1 we collected
28 > the data/MC tail information in
29 > Table~\ref{tab:cr1yields}; the equivalent for CR2 is
30 > Table~\ref{tab:cr2yields} (for CR2 the statistics are not sufficient to split electrons and muons).
31 > The last line of Table~\ref{tab:cr2yields} gives the data/MC scale factors
32 > for the \ttbar\ lepton $+$ jets $M_T$ tail ($SFR_{top}$).  This is
33 > calculated in the same way as $SFR_{wjets}$ of Table~\ref{tab:cr1yields}.
34 > Just as in CR1, there is an excess of data in the tails, as reflected
35 > in the values of $SFR_{top}$. There are insufficient events to derive scale factors for
36 > $\met\ > 150$~GeV. As a result, the scale factors derived from CR2 are
37 > not used for the central prediction of the single-lepton top
38 > background. They serve as a valuable cross check of the predictions
39 > described in Section~\ref{sec:ttp}. The single lepton top predictions
40 > obtained for SRA and SRB using the $SFR_{top}$ values described here
41 > are consistent with the default predictions.
42  
43  
44   \begin{table}[!h]
45   \begin{center}
46   {\footnotesize
47 < \begin{tabular}{l||c|c||c|c|c|c|c}
47 > \begin{tabular}{l||c|c||c|c}
48   \hline
49 < Sample              & CR2PRESEL0 &CR2PRESEL1 & CR2A & CR2B & CR2C &
29 < CR2D & CR2E \\
49 > Sample              & CR2PRESEL0 &CR2PRESEL1 & CR2A & CR2B \\
50   \hline
51   \hline
52 < MC                & $36 \pm 2$ & $30 \pm 2$ & $18 \pm 1$ & $30 \pm 2$ & $13 \pm 1$ & $5 \pm 0$ & $2 \pm 0$ \\
53 < Data              & $56$ & $43$ & $32$ & $40$ & $21$ & $12$ & $2$ \\
52 > MC                & $32 \pm 2$ & $28 \pm 2$ & $10 \pm 1$ & $10 \pm 1$ \\
53 > Data              & $50$ & $45$ & $17$ & $17$ \\
54   \hline
55 < Data/MC           & $1.56 \pm 0.23$ & $1.44 \pm 0.24$ & $1.77 \pm 0.34$ & $1.32 \pm 0.22$ & $1.65 \pm 0.37$ & $2.65 \pm 0.79$ & $0.99 \pm 0.71$ \\
55 > Data/MC           & $1.56 \pm 0.24$ & $1.63 \pm 0.27$ & $1.68 \pm 0.45$ & $1.74 \pm 0.48$ \\
56   \hline
57   \hline
58   \hline
59 < DY MC             & $27 \pm 2$ & $23 \pm 2$ & $14 \pm 2$ & $25 \pm 3$ & $11 \pm 2$ & $3 \pm 1$ & $1 \pm 1$ \\
60 < DY Data           & $47 \pm 8$ & $36 \pm 7$ & $28 \pm 6$ & $35 \pm 6$ & $19 \pm 5$ & $11 \pm 3$ & $1 \pm 1$ \\
59 > DY MC             & $25 \pm 2$ & $20 \pm 2$ & $5 \pm 1$ & $5 \pm 1$ \\
60 > DY Data           & $42 \pm 7$ & $38 \pm 7$ & $12 \pm 4$ & $12 \pm 4$ \\
61   \hline
62 < DY Data/MC        & $1.75 \pm 0.31$ & $1.58 \pm 0.32$ & $2.00 \pm 0.47$ & $1.38 \pm 0.31$ & $1.78 \pm 0.56$ & $3.29 \pm 1.73$ & $0.98 \pm 1.20$ \\
62 > DY Data/MC        & $1.73 \pm 0.32$ & $1.85 \pm 0.37$ & $2.37 \pm 0.96$ & $2.58 \pm 1.16$ \\
63   \hline
64   \hline
65   \hline
66 < $SFR_{top}$       & $1.66 \pm 0.40$ & $1.51 \pm 0.35$ & $1.89 \pm 0.56$ & $1.35 \pm 0.28$ & $1.71 \pm 0.51$ & $2.97 \pm 1.26$ & $0.98 \pm 0.71$ \\
66 > $SFR_{top}$       & $1.64 \pm 0.40$ & $1.74 \pm 0.46$ & $2.02 \pm 0.68$ & $2.16 \pm 0.75$ \\
67   \hline
68   \end{tabular}}
69   \caption{ Yields in \mt\ tail comparing the \zjets\ MC prediction (after
70 <  applying SFs) to data after subtracting the non-\zjets\ components.
70 >  applying SFs) to data without subtracting the non-\zjets\ components (top table) and with subtracting the non-\zjets\ components (bottom table).
71    CR2PRESEL refers to a sample with $\met>50$ GeV and $\mt>150$ GeV.
52  The uncertainties are statistical only.  NEED TO ADD THE SYMBOLS
53  DEFINED IN THE TEXT FOR THESE SCALE FACTORS.  IS THIS GOING TO BE
54  DONE SEPARATELY FOR MUONS AND ELECTRONS???
55  MAYBE WANT TO REMOVE LAST ENTRIES WHERE STATS ARE VERY LOW
72   \label{tab:cr2yields}}
73   \end{center}
74   \end{table}
75  
76 + %\hline
77 + %$N_{1l-top}$ SF          & - & - & $172 \pm 58$ & $119 \pm 42$ \\
78 + %\hline
79 + %$N_{1l-top}$ Opt/Pess    & - & - & $256 \pm 131$ & $120 \pm  50$ \\
80 +
81  
82   \begin{figure}[hbt]
83    \begin{center}
# Line 67 | Line 88 | $SFR_{top}$      & $1.66 \pm 0.40$ & $1.51
88          \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met100_nj4_emucomb.pdf}
89  
90      \caption{
91 <      Comparison of the pseudo\-\met\ (top, left), pseudo\-\mt\ (top,
91 >      Comparison of the pseudo-\met\ (top, left), pseudo-\mt\ (top,
92        right and bottom) distributions in data vs. MC for events
93        satisfying the requirements of CR2, combining both the muon and
94 <      electron channels. The pseudo\-\mt\ distributions are shown
94 >      electron channels. The pseudo-\mt\ distributions are shown
95        before any additional requirements (top, right) and after
96 <      requiring pseudo\-\met>50 GeV (bottom, left) and pseudo\-\met>100 GeV (bottom, right) .
96 >      requiring pseudo-\met $>$50 GeV (bottom, left) and pseudo-\met
97 >      $>$ 100 GeV (bottom, right).
98   \label{fig:cr2met}
99   }  
100        \end{center}
101   \end{figure}
102  
103 < \begin{figure}[hbt]
104 <  \begin{center}
105 <        \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met150_nj4_emucomb.pdf}%
106 <        \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met200_nj4_emucomb.pdf}
107 <        \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met250_nj4_emucomb.pdf}%
108 <        \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met300_nj4_emucomb.pdf}
109 <    \caption{
110 <      Comparison of the \mt\ distribution in data vs. MC for events
111 <      satisfying the requirements of CR2, combining both the muon and
112 <      electron channels. The pseudo-\met\ requirements used are
113 <      150 GeV (top, left), 200 GeV (top, right), 250 GeV (bottom,
114 <      left) and 300 GeV (bottom, right).
115 < \label{fig:cr2mtrest}
116 < }  
117 <      \end{center}
118 < \end{figure}
119 < \clearpage
103 > %\begin{figure}[hbt]
104 > %  \begin{center}
105 > %       \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met150_nj4_emucomb.pdf}%
106 > %       \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met200_nj4_emucomb.pdf}
107 > %       \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met250_nj4_emucomb.pdf}%
108 > %       \includegraphics[width=0.5\linewidth]{plots/CR2plots/mt_lepcor_scaled_met300_nj4_emucomb.pdf}
109 > %    \caption{
110 > %      Comparison of the \mt\ distribution in data vs. MC for events
111 > %      satisfying the requirements of CR2, combining both the muon and
112 > %      electron channels. The pseudo-\met\ requirements used are
113 > %      150 GeV (top, left), 200 GeV (top, right), 250 GeV (bottom,
114 > %      left) and 300 GeV (bottom, right).
115 > %\label{fig:cr2mtrest}
116 > %}  
117 > %      \end{center}
118 > %\end{figure}
119 > \clearpage

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines