ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/CR4.tex
Revision: 1.1
Committed: Thu Oct 4 07:24:29 2012 UTC (12 years, 7 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Log Message:
claudio

File Contents

# User Rev Content
1 claudioc 1.1 \subsection{Dilepton studies in CR4}
2     \label{sec:cr4}
3    
4     [DO WE NEED TO BETTER SPECIFY THE SELECTION FOR THIS REGION???]
5    
6     \subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events}
7     \label{sec:jetmultiplicity}
8    
9     [THIS SUBSUBSECTION IS DONE...MODULO THE LATEST PLOTS AND THE LATEST
10     NUMBERS IN THE TABLE]
11    
12     Dilepton \ttbar\ events have 2 jets from the top decays, so additional
13     jets from radiation or higher order contributions are required to
14     enter the signal sample. The modeling of addtional jets in \ttbar\
15     events is checked in a \ttll\ control sample,
16     selected by requiring
17     \begin{itemize}
18     \item exactly 2 selected electrons or muons with \pt $>$ 20 GeV
19     \item \met\ $>$ 100 GeV
20     \item $\geq1$ b-tagged jet
21     \item Z-veto
22     \end{itemize}
23     Figure~\ref{fig:dileptonnjets} shows a comparison of the jet
24     multiplicity distribution in data and MC for this two-lepton control
25     sample. After requiring at least 1 b-tagged jet, most of the
26     events have 2 jets, as expected from the dominant process \ttll. There is also a
27     significant fraction of events with additional jets.
28     The 3-jet sample is mainly comprised of \ttbar\ events with 1 additional
29     emission and similarly the $\ge4$-jet sample contains primarily
30     $\ttbar+\ge2$ jet events.
31     %Even though the primary \ttbar\
32     %Madgraph sample used includes up to 3 additional partons at the Matrix
33     %Element level, which are intended to describe additional hard jets,
34     %Figure~\ref{fig:dileptonnjets} shows a slight mis-modeling of the
35     %additional jets.
36    
37    
38     \begin{figure}[hbt]
39     \begin{center}
40     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf}
41     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}%
42     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf}
43     \caption{
44     \label{fig:dileptonnjets}%\protect
45     Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
46     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
47     \end{center}
48     \end{figure}
49    
50     It should be noted that in the case of \ttll\ events
51     with a single reconstructed lepton, the other lepton may be
52     mis-reconstructed as a jet. For example, a hadronic tau may be
53     mis-identified as a jet (since no $\tau$ identification is used).
54     In this case only 1 additional jet from radiation may suffice for
55     a \ttll\ event to enter the signal sample. As a result, both the
56     samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for
57     estimating the top dilepton bkg in the signal region.
58    
59     %In this section we discuss a correction to $ N_{2 lep}^{MC} $ in Equation XXX
60     %due to differences in the modelling of the jet multiplicity in data versus MC.
61     %The same correction also enters $ N_{peak}^{MC}$ in Equation XXX to the extend that the
62     %dilepton contributions to $ N_{peak}^{MC}$ gets corrected.
63    
64     %The dilepton control sample is defined by the following requirements:
65     %\begin{itemize}
66     %\item Exactly 2 selected electrons or muons with \pt $>$ 20 GeV
67     %\item \met\ $>$ 50 GeV
68     %\item $\geq1$ b-tagged jet
69     %\end{itemize}
70     %
71     %This sample is dominated by \ttll. The distribution of \njets\ for data and MC passing this selection is displayed in Fig.~\ref{fig:dilepton_njets}.
72     %We use this distribution to derive scale factors which reweight the \ttll\ MC \njets\ distribution to match the data. We define the following
73     %quantities
74     %
75     %\begin{itemize}
76     %\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
77     %\item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
78     %\item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
79     %\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
80     %\item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
81     %\item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
82     %\end{itemize}
83     %
84     %We use these yields to define 3 scale factors, which quantify the data/MC ratio in the 3 \njets\ bins:
85     %
86     %\begin{itemize}
87     %\item $SF_2 = N_2 / M_2$
88     %\item $SF_3 = N_3 / M_3$
89     %\item $SF_4 = N_4 / M_4$
90     %\end{itemize}
91     %
92     %And finally, we define the scale factors $K_3$ and $K_4$:
93     %
94     %\begin{itemize}
95     %\item $K_3 = SF_3 / SF_2$
96     %\item $K_4 = SF_4 / SF_2$
97     %\end{itemize}
98     %
99     %The scale factor $K_3$ is extracted from dilepton \ttbar\ events with \njets = 3, which have exactly 1 ISR jet.
100     %The scale factor $K_4$ is extracted from dilepton \ttbar\ events with \njets $\geq$ 4, which have at least 2 ISR jets.
101     %Both of these scale factors are needed since dilepton \ttbar\ events which fall in our signal region (including
102     %the \njets $\geq$ 4 requirement) may require exactly 1 ISR jet, in the case that the second lepton is reconstructed
103     %as a jet, or at least 2 ISR jets, in the case that the second lepton is not reconstructed as a jet. These scale
104     %factors are applied to the dilepton \ttbar\ MC only. For a given MC event, we determine whether to use $K_3$ or $K_4$
105     %by counting the number of reconstructed jets in the event ($N_{\rm{jets}}^R$) , and subtracting off any reconstructed
106     %jet which is matched to the second lepton at generator level ($N_{\rm{jets}}^\ell$); $N_{\rm{jets}}^{\rm{cor}} = N_{\rm{jets}}^R - N_{\rm{jets}}^\ell$.
107     %For events with $N_{\rm{jets}}^{\rm{cor}}=3$ the factor $K_3$ is applied, while for events with $N_{\rm{jets}}^{\rm{cor}}\geq4$ the factor $K_4$ is applied.
108     %For all subsequent steps, the scale factors $K_3$ and $K_4$ have been
109     %applied to the \ttll\ MC.
110    
111    
112     Table~\ref{tab:njetskfactors} shows scale factors ($K_3$ and $K_4$)
113     used to correct the
114     fraction of events with additional jets in MC to the observed fraction
115     in data. These scale factors are calculated from Fig.~\ref{fig:dileptonnjets}
116     as follows:
117     \begin{itemize}
118     \item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
119     \item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
120     \item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
121     \item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
122     \item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
123     \item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
124     \end{itemize}
125     \noindent then
126     \begin{itemize}
127     \item $SF_2 = N_2 / M_2$
128     \item $SF_3 = N_3 / M_3$
129     \item $SF_4 = N_4 / M_4$
130     \item $K_3 = SF_3 / SF_2$
131     \item $K_4 = SF_4 / SF_2$
132     \end{itemize}
133     \noindent This insures that $K_3 M_3/(M_2 + K_3 M_3 + K_4 M_4) = N_3 /
134     (N_2+N_3+N_4)$ and similarly for the $\geq 4$ jet bin.
135    
136    
137     The factors $K_3$ and $K_4$ are applied to the \ttll\ MC throughout the
138     entire analysis, i.e.
139     whenever \ttll\ MC is used to estimate or subtract
140     a yield or distribution.
141     %
142     In order to do so, it is first necessary to count the number of
143     additional jets from radiation and exclude leptons mis-identified as
144     jets. A jet is considered a mis-identified lepton if it is matched to a
145     generator-level second lepton with sufficient energy to satisfy the jet
146     \pt\ requirement ($\pt>30~\GeV$). Then \ttll\ events that need two
147     radiation jets to enter our selection are scaled by $K_4$,
148     while those that only need one radiation jet are scaled by $K_3$.
149    
150     \begin{table}[!ht]
151     \begin{center}
152     \begin{tabular}{l|c}
153     \hline
154     Jet Multiplicity Sample
155     & Data/MC Scale Factor \\
156     \hline
157     \hline
158     N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation) &
159     $K_3 = 0.97 \pm 0.03$\\
160     N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation)
161     & $K_4 = 0.91 \pm 0.04$\\
162     \hline
163     \end{tabular}
164     \caption{Data/MC scale factors used to account for differences in the
165     fraction of events with additional hard jets from radiation in
166     \ttll\ events. \label{tab:njetskfactors}}
167     \end{center}
168     \end{table}
169    
170     \clearpage
171    
172    
173    
174     \subsubsection{Validation of the ``Physics'' Modelling of the \ttdl\
175     MC in CR4}
176     \subsubsection{sec:CR4-valid}
177    
178     [THE TEXT IN THIS SUBSECTION IS ESSENTIALLY COMPLETE]
179    
180     As mentioned above, $t\bar{t} \to $ dileptons where one of the leptons
181     is somehow lost constitutes the main background.
182     The object of this test is to validate the $M_T$ distribution of this
183     background by looking at the $M_T$ distribution of well identified
184     dilepton events.
185     We construct a transverse mass variable from the leading lepton and
186     the \met\. We distinguish between events with leading electrons and
187     leading muons.
188    
189     The $t\bar{t}$ MC is corrected using the $K_3$ and $K_4$ factors
190     from Section~\ref{sec:jetmultiplicity}. It is also normalized to the
191     total data yield separately for the \met\ requirements of signal
192     regions A, B, C, and D. These normalization factors are listed
193     in Table~\ref{tab:cr4mtsf} and are close to unity.
194    
195     The underlying \met\ and $M_T$ distributions are shown in
196     Figures~\ref{fig:cr4met} and~\ref{fig:cr4rest}. The data-MC agreement
197     is quite good. Quantitatively, this is also shown in Table~\ref{tab:cr4yields}.
198    
199    
200     \begin{table}[!h]
201     \begin{center}
202     \begin{tabular}{l||c|c|c|c}
203     \hline
204     Sample & CR4A & CR4B & CR4C & CR4D \\
205     \hline
206     \hline
207     Muon Data/MC-SF & $0.91 \pm 0.04$ & $0.94 \pm 0.07$ & $1.06 \pm 0.13$ & $1.03 \pm 0.22$ \\
208     \hline
209     \hline
210     Electron Data/MC-SF & $0.95 \pm 0.04$ & $1.00 \pm 0.08$ & $0.85 \pm 0.12$ & $0.83 \pm 0.19$ \\
211     \hline
212     \end{tabular}
213     \caption{ Data/MC scale factors for total yields, applied to compare
214     the shapes of the distributions.
215     The uncertainties are statistical only.
216     \label{tab:cr4mtsf}}
217     \end{center}
218     \end{table}
219    
220    
221     \begin{table}[!h]
222     \begin{center}
223     \begin{tabular}{l||c|c|c|c}
224     \hline
225     Sample & CR4A & CR4B & CR4C & CR4D \\
226     \hline
227     \hline
228     Muon MC & $199 \pm 7$ & $102 \pm 6$ & $29 \pm 3$ & $8 \pm 1$ \\
229     Muon Data & $187$ & $108$ & $34$ & $9$ \\
230     \hline
231     Muon Data/MC SF & $0.94 \pm 0.08$ & $1.06 \pm 0.12$ & $1.17 \pm 0.23$ & $1.09 \pm 0.40$ \\
232     \hline
233     \hline
234     Electron MC & $203 \pm 8$ & $97 \pm 5$ & $26 \pm 2$ & $8 \pm 1$ \\
235     Electron Data & $201$ & $102$ & $25$ & $5$ \\
236     \hline
237     Electron Data/MC SF & $0.99 \pm 0.08$ & $1.06 \pm 0.12$ & $0.97 \pm 0.21$ & $0.60 \pm 0.29$ \\
238     \hline
239     \end{tabular}
240     \caption{ Yields in \mt\ tail comparing the MC prediction (after
241     applying SFs) to data. The uncertainties are statistical only.
242     \label{tab:cr4yields}}
243     \end{center}
244     \end{table}
245    
246     \begin{figure}[hbt]
247     \begin{center}
248     \includegraphics[width=0.5\linewidth]{plots/CR4plots/met_met50_leadmuo_nj4.pdf}%
249     \includegraphics[width=0.5\linewidth]{plots/CR4plots/met_met50_leadele_nj4.pdf}
250     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met100_leadmuo_nj4.pdf}%
251     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met100_leadele_nj4.pdf}
252     \caption{
253     Comparison of the \met\ (top) and \mt\ for $\met>100$ (bottom) distributions in data vs. MC for events
254     with a leading muon (left) and leading electron (right)
255     satisfying the requirements of CR4.
256     \label{fig:cr4met}
257     }
258     \end{center}
259     \end{figure}
260    
261     \begin{figure}[hbt]
262     \begin{center}
263     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met150_leadmuo_nj4.pdf}%
264     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met150_leadele_nj4.pdf}
265     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met200_leadmuo_nj4.pdf}%
266     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met200_leadele_nj4.pdf}
267     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met250_leadmuo_nj4.pdf}%
268     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met250_leadele_nj4.pdf}
269     \caption{
270     Comparison of the \mt\ distribution in data vs. MC for events
271     with a leading muon (left) and leading electron (right)
272     satisfying the requirements of CR4. The \met\ requirements used are
273     150 GeV (top), 200 GeV (middle) and 250 GeV (bottom).
274     \label{fig:cr4mtrest}
275     }
276     \end{center}
277     \end{figure}
278    
279    
280     \clearpage