ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/CR4.tex
Revision: 1.6
Committed: Wed Oct 10 04:03:33 2012 UTC (12 years, 7 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
Changes since 1.5: +12 -12 lines
Log Message:
added new signal regions

File Contents

# User Rev Content
1 claudioc 1.1 \subsection{Dilepton studies in CR4}
2     \label{sec:cr4}
3    
4     \subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events}
5     \label{sec:jetmultiplicity}
6    
7     [THIS SUBSUBSECTION IS DONE...MODULO THE LATEST PLOTS AND THE LATEST
8     NUMBERS IN THE TABLE]
9    
10     Dilepton \ttbar\ events have 2 jets from the top decays, so additional
11     jets from radiation or higher order contributions are required to
12     enter the signal sample. The modeling of addtional jets in \ttbar\
13     events is checked in a \ttll\ control sample,
14     selected by requiring
15     \begin{itemize}
16     \item exactly 2 selected electrons or muons with \pt $>$ 20 GeV
17     \item \met\ $>$ 100 GeV
18     \item $\geq1$ b-tagged jet
19 burkett 1.2 \item Z-veto ($|m_{\ell\ell} - 91| > 15$ GeV)
20 claudioc 1.1 \end{itemize}
21     Figure~\ref{fig:dileptonnjets} shows a comparison of the jet
22     multiplicity distribution in data and MC for this two-lepton control
23     sample. After requiring at least 1 b-tagged jet, most of the
24     events have 2 jets, as expected from the dominant process \ttll. There is also a
25     significant fraction of events with additional jets.
26     The 3-jet sample is mainly comprised of \ttbar\ events with 1 additional
27     emission and similarly the $\ge4$-jet sample contains primarily
28     $\ttbar+\ge2$ jet events.
29     %Even though the primary \ttbar\
30     %Madgraph sample used includes up to 3 additional partons at the Matrix
31     %Element level, which are intended to describe additional hard jets,
32     %Figure~\ref{fig:dileptonnjets} shows a slight mis-modeling of the
33     %additional jets.
34    
35    
36     \begin{figure}[hbt]
37     \begin{center}
38     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf}
39     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}%
40     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf}
41     \caption{
42     \label{fig:dileptonnjets}%\protect
43     Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
44     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
45     \end{center}
46     \end{figure}
47    
48     It should be noted that in the case of \ttll\ events
49     with a single reconstructed lepton, the other lepton may be
50     mis-reconstructed as a jet. For example, a hadronic tau may be
51     mis-identified as a jet (since no $\tau$ identification is used).
52     In this case only 1 additional jet from radiation may suffice for
53     a \ttll\ event to enter the signal sample. As a result, both the
54     samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for
55 burkett 1.2 estimating the top dilepton background in the signal region.
56 claudioc 1.1
57     %In this section we discuss a correction to $ N_{2 lep}^{MC} $ in Equation XXX
58     %due to differences in the modelling of the jet multiplicity in data versus MC.
59     %The same correction also enters $ N_{peak}^{MC}$ in Equation XXX to the extend that the
60     %dilepton contributions to $ N_{peak}^{MC}$ gets corrected.
61    
62     %The dilepton control sample is defined by the following requirements:
63     %\begin{itemize}
64     %\item Exactly 2 selected electrons or muons with \pt $>$ 20 GeV
65     %\item \met\ $>$ 50 GeV
66     %\item $\geq1$ b-tagged jet
67     %\end{itemize}
68     %
69     %This sample is dominated by \ttll. The distribution of \njets\ for data and MC passing this selection is displayed in Fig.~\ref{fig:dilepton_njets}.
70     %We use this distribution to derive scale factors which reweight the \ttll\ MC \njets\ distribution to match the data. We define the following
71     %quantities
72     %
73     %\begin{itemize}
74     %\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
75     %\item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
76     %\item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
77     %\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
78     %\item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
79     %\item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
80     %\end{itemize}
81     %
82     %We use these yields to define 3 scale factors, which quantify the data/MC ratio in the 3 \njets\ bins:
83     %
84     %\begin{itemize}
85     %\item $SF_2 = N_2 / M_2$
86     %\item $SF_3 = N_3 / M_3$
87     %\item $SF_4 = N_4 / M_4$
88     %\end{itemize}
89     %
90     %And finally, we define the scale factors $K_3$ and $K_4$:
91     %
92     %\begin{itemize}
93     %\item $K_3 = SF_3 / SF_2$
94     %\item $K_4 = SF_4 / SF_2$
95     %\end{itemize}
96     %
97     %The scale factor $K_3$ is extracted from dilepton \ttbar\ events with \njets = 3, which have exactly 1 ISR jet.
98     %The scale factor $K_4$ is extracted from dilepton \ttbar\ events with \njets $\geq$ 4, which have at least 2 ISR jets.
99     %Both of these scale factors are needed since dilepton \ttbar\ events which fall in our signal region (including
100     %the \njets $\geq$ 4 requirement) may require exactly 1 ISR jet, in the case that the second lepton is reconstructed
101     %as a jet, or at least 2 ISR jets, in the case that the second lepton is not reconstructed as a jet. These scale
102     %factors are applied to the dilepton \ttbar\ MC only. For a given MC event, we determine whether to use $K_3$ or $K_4$
103     %by counting the number of reconstructed jets in the event ($N_{\rm{jets}}^R$) , and subtracting off any reconstructed
104     %jet which is matched to the second lepton at generator level ($N_{\rm{jets}}^\ell$); $N_{\rm{jets}}^{\rm{cor}} = N_{\rm{jets}}^R - N_{\rm{jets}}^\ell$.
105     %For events with $N_{\rm{jets}}^{\rm{cor}}=3$ the factor $K_3$ is applied, while for events with $N_{\rm{jets}}^{\rm{cor}}\geq4$ the factor $K_4$ is applied.
106     %For all subsequent steps, the scale factors $K_3$ and $K_4$ have been
107     %applied to the \ttll\ MC.
108    
109    
110     Table~\ref{tab:njetskfactors} shows scale factors ($K_3$ and $K_4$)
111     used to correct the
112     fraction of events with additional jets in MC to the observed fraction
113     in data. These scale factors are calculated from Fig.~\ref{fig:dileptonnjets}
114     as follows:
115     \begin{itemize}
116     \item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
117     \item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
118     \item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
119     \item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
120     \item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
121     \item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
122     \end{itemize}
123     \noindent then
124     \begin{itemize}
125     \item $SF_2 = N_2 / M_2$
126     \item $SF_3 = N_3 / M_3$
127     \item $SF_4 = N_4 / M_4$
128     \item $K_3 = SF_3 / SF_2$
129     \item $K_4 = SF_4 / SF_2$
130     \end{itemize}
131     \noindent This insures that $K_3 M_3/(M_2 + K_3 M_3 + K_4 M_4) = N_3 /
132     (N_2+N_3+N_4)$ and similarly for the $\geq 4$ jet bin.
133    
134    
135     The factors $K_3$ and $K_4$ are applied to the \ttll\ MC throughout the
136     entire analysis, i.e.
137     whenever \ttll\ MC is used to estimate or subtract
138     a yield or distribution.
139     %
140     In order to do so, it is first necessary to count the number of
141     additional jets from radiation and exclude leptons mis-identified as
142     jets. A jet is considered a mis-identified lepton if it is matched to a
143     generator-level second lepton with sufficient energy to satisfy the jet
144     \pt\ requirement ($\pt>30~\GeV$). Then \ttll\ events that need two
145     radiation jets to enter our selection are scaled by $K_4$,
146     while those that only need one radiation jet are scaled by $K_3$.
147    
148     \begin{table}[!ht]
149     \begin{center}
150     \begin{tabular}{l|c}
151     \hline
152     Jet Multiplicity Sample
153     & Data/MC Scale Factor \\
154     \hline
155     \hline
156     N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation) &
157 vimartin 1.3 $K_3 = 1.01 \pm 0.03$\\
158 claudioc 1.1 N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation)
159 vimartin 1.3 & $K_4 = 0.93 \pm 0.04$\\
160 claudioc 1.1 \hline
161     \end{tabular}
162     \caption{Data/MC scale factors used to account for differences in the
163     fraction of events with additional hard jets from radiation in
164     \ttll\ events. \label{tab:njetskfactors}}
165     \end{center}
166     \end{table}
167    
168     \clearpage
169    
170    
171    
172     \subsubsection{Validation of the ``Physics'' Modelling of the \ttdl\
173     MC in CR4}
174 burkett 1.2 \label{sec:CR4-valid}
175 claudioc 1.1
176     [THE TEXT IN THIS SUBSECTION IS ESSENTIALLY COMPLETE]
177    
178     As mentioned above, $t\bar{t} \to $ dileptons where one of the leptons
179     is somehow lost constitutes the main background.
180     The object of this test is to validate the $M_T$ distribution of this
181     background by looking at the $M_T$ distribution of well identified
182     dilepton events.
183     We construct a transverse mass variable from the leading lepton and
184 vimartin 1.4 the \met. We distinguish between events with leading electrons and
185 claudioc 1.1 leading muons.
186    
187     The $t\bar{t}$ MC is corrected using the $K_3$ and $K_4$ factors
188     from Section~\ref{sec:jetmultiplicity}. It is also normalized to the
189     total data yield separately for the \met\ requirements of signal
190     regions A, B, C, and D. These normalization factors are listed
191     in Table~\ref{tab:cr4mtsf} and are close to unity.
192    
193     The underlying \met\ and $M_T$ distributions are shown in
194 burkett 1.2 Figures~\ref{fig:cr4met} and~\ref{fig:cr4mtrest}. The data-MC agreement
195 claudioc 1.1 is quite good. Quantitatively, this is also shown in Table~\ref{tab:cr4yields}.
196    
197    
198     \begin{table}[!h]
199     \begin{center}
200 vimartin 1.3 {\footnotesize
201 vimartin 1.6 \begin{tabular}{l||c||c|c|c|c|c|c}
202 claudioc 1.1 \hline
203 vimartin 1.3 Sample & CR4PRESEL & CR4A & CR4B & CR4C &
204 vimartin 1.6 CR4D & CR4E & CR4F\\
205 claudioc 1.1 \hline
206     \hline
207 vimartin 1.6 $\mu$ Data/MC-SF & $1.01 \pm 0.03$ & $0.96 \pm 0.04$ & $0.99 \pm 0.07$ & $1.05 \pm 0.13$ & $0.91 \pm 0.20$ & $1.10 \pm 0.34$ & $1.50 \pm 0.67$ \\
208 claudioc 1.1 \hline
209     \hline
210 vimartin 1.6 e Data/MC-SF & $0.99 \pm 0.03$ & $0.99 \pm 0.05$ & $0.91 \pm 0.08$ & $0.84 \pm 0.13$ & $0.70 \pm 0.18$ & $0.73 \pm 0.29$ & $0.63 \pm 0.38$ \\
211 claudioc 1.1 \hline
212 vimartin 1.3 \end{tabular}}
213 claudioc 1.1 \caption{ Data/MC scale factors for total yields, applied to compare
214     the shapes of the distributions.
215     The uncertainties are statistical only.
216     \label{tab:cr4mtsf}}
217     \end{center}
218     \end{table}
219    
220    
221     \begin{table}[!h]
222     \begin{center}
223 vimartin 1.3 {\footnotesize
224 vimartin 1.6 \begin{tabular}{l||c||c|c|c|c|c|c}
225 claudioc 1.1 \hline
226 vimartin 1.3 Sample & CR4PRESEL & CR4A & CR4B & CR4C &
227 vimartin 1.6 CR4D & CR4E & CR4F\\
228 claudioc 1.1 \hline
229     \hline
230 vimartin 1.6 $\mu$ MC & $256 \pm 5$ & $152 \pm 4$ & $91 \pm 3$ & $26 \pm 2$ & $6 \pm 1$ & $4 \pm 1$ & $2 \pm 1$ \\
231     $\mu$ Data & $251$ & $156$ & $98$ & $27$ & $8$ & $6$ & $4$ \\
232 claudioc 1.1 \hline
233 vimartin 1.6 $\mu$ Data/MC SF & $0.98 \pm 0.07$ & $1.02 \pm 0.09$ & $1.08 \pm 0.12$ & $1.04 \pm 0.21$ & $1.29 \pm 0.48$ & $1.35 \pm 0.59$ & $2.10 \pm 1.28$ \\
234 claudioc 1.1 \hline
235     \hline
236 vimartin 1.6 e MC & $227 \pm 5$ & $139 \pm 4$ & $73 \pm 3$ & $21 \pm 1$ & $5 \pm 1$ & $2 \pm 0$ & $1 \pm 0$ \\
237     e Data & $219$ & $136$ & $72$ & $19$ & $2$ & $1$ & $1$ \\
238 claudioc 1.1 \hline
239 vimartin 1.6 e Data/MC SF & $0.96 \pm 0.07$ & $0.98 \pm 0.09$ & $0.99 \pm 0.12$ & $0.92 \pm 0.22$ & $0.41 \pm 0.29$ & $0.53 \pm 0.54$ & $0.76 \pm 0.78$ \\
240 claudioc 1.1 \hline
241 vimartin 1.3 \end{tabular}}
242 claudioc 1.1 \caption{ Yields in \mt\ tail comparing the MC prediction (after
243     applying SFs) to data. The uncertainties are statistical only.
244     \label{tab:cr4yields}}
245     \end{center}
246     \end{table}
247    
248     \begin{figure}[hbt]
249     \begin{center}
250     \includegraphics[width=0.5\linewidth]{plots/CR4plots/met_met50_leadmuo_nj4.pdf}%
251     \includegraphics[width=0.5\linewidth]{plots/CR4plots/met_met50_leadele_nj4.pdf}
252     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met100_leadmuo_nj4.pdf}%
253     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met100_leadele_nj4.pdf}
254     \caption{
255     Comparison of the \met\ (top) and \mt\ for $\met>100$ (bottom) distributions in data vs. MC for events
256     with a leading muon (left) and leading electron (right)
257     satisfying the requirements of CR4.
258     \label{fig:cr4met}
259     }
260     \end{center}
261     \end{figure}
262    
263     \begin{figure}[hbt]
264     \begin{center}
265 vimartin 1.3 \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met50_leadmuo_nj4.pdf}%
266     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met50_leadele_nj4.pdf}
267 claudioc 1.1 \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met150_leadmuo_nj4.pdf}%
268     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met150_leadele_nj4.pdf}
269     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met200_leadmuo_nj4.pdf}%
270     \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met200_leadele_nj4.pdf}
271     \caption{
272     Comparison of the \mt\ distribution in data vs. MC for events
273     with a leading muon (left) and leading electron (right)
274     satisfying the requirements of CR4. The \met\ requirements used are
275 vimartin 1.3 50 GeV (top), 200 GeV (middle) and 250 GeV (bottom).
276 claudioc 1.1 \label{fig:cr4mtrest}
277     }
278     \end{center}
279     \end{figure}
280    
281    
282     \clearpage