1 |
|
\subsection{Dilepton studies in CR4} |
2 |
|
\label{sec:cr4} |
3 |
|
|
4 |
– |
[DO WE NEED TO BETTER SPECIFY THE SELECTION FOR THIS REGION???] |
5 |
– |
|
4 |
|
\subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events} |
5 |
|
\label{sec:jetmultiplicity} |
6 |
|
|
9 |
– |
[THIS SUBSUBSECTION IS DONE...MODULO THE LATEST PLOTS AND THE LATEST |
10 |
– |
NUMBERS IN THE TABLE] |
11 |
– |
|
7 |
|
Dilepton \ttbar\ events have 2 jets from the top decays, so additional |
8 |
|
jets from radiation or higher order contributions are required to |
9 |
< |
enter the signal sample. The modeling of addtional jets in \ttbar\ |
9 |
> |
enter the signal sample. In this Section we develop an algorithm |
10 |
> |
to be applied to all \ttll\ MC samples to insure that the distribution |
11 |
> |
of extra jets is properly modelled. |
12 |
> |
|
13 |
> |
|
14 |
> |
The modeling of additional jets in \ttbar\ |
15 |
|
events is checked in a \ttll\ control sample, |
16 |
|
selected by requiring |
17 |
|
\begin{itemize} |
18 |
|
\item exactly 2 selected electrons or muons with \pt $>$ 20 GeV |
19 |
< |
\item \met\ $>$ 100 GeV |
19 |
> |
\item \met\ $>$ 50 GeV |
20 |
|
\item $\geq1$ b-tagged jet |
21 |
< |
\item Z-veto |
21 |
> |
\item Z-veto ($|m_{\ell\ell} - 91| > 15$ GeV) |
22 |
|
\end{itemize} |
23 |
|
Figure~\ref{fig:dileptonnjets} shows a comparison of the jet |
24 |
|
multiplicity distribution in data and MC for this two-lepton control |
37 |
|
|
38 |
|
\begin{figure}[hbt] |
39 |
|
\begin{center} |
40 |
< |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf} |
41 |
< |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}% |
42 |
< |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf} |
40 |
> |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg.pdf} |
41 |
> |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel.pdf}% |
42 |
> |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu.pdf} |
43 |
|
\caption{ |
44 |
|
\label{fig:dileptonnjets}%\protect |
45 |
|
Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\ |
54 |
|
In this case only 1 additional jet from radiation may suffice for |
55 |
|
a \ttll\ event to enter the signal sample. As a result, both the |
56 |
|
samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for |
57 |
< |
estimating the top dilepton bkg in the signal region. |
57 |
> |
estimating the top dilepton background in the signal region. |
58 |
|
|
59 |
|
%In this section we discuss a correction to $ N_{2 lep}^{MC} $ in Equation XXX |
60 |
|
%due to differences in the modelling of the jet multiplicity in data versus MC. |
115 |
|
in data. These scale factors are calculated from Fig.~\ref{fig:dileptonnjets} |
116 |
|
as follows: |
117 |
|
\begin{itemize} |
118 |
< |
\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2 |
118 |
> |
\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for |
119 |
> |
\njets\ =1 or 2. |
120 |
|
\item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3 |
121 |
|
\item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4 |
122 |
< |
\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2 |
122 |
> |
\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ = 1 or 2 |
123 |
|
\item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3 |
124 |
|
\item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4 |
125 |
|
\end{itemize} |
134 |
|
\noindent This insures that $K_3 M_3/(M_2 + K_3 M_3 + K_4 M_4) = N_3 / |
135 |
|
(N_2+N_3+N_4)$ and similarly for the $\geq 4$ jet bin. |
136 |
|
|
137 |
+ |
Table~\ref{tab:njetskfactors} also shows the values of $K_3$ and $K_4$ when the \met\ cut in the control sample definition is changed from 50 GeV to 100 GeV and 150 GeV. |
138 |
+ |
% These values of $K_3$ and $K_4$ are not used in the analysis, but |
139 |
+ |
This demonstrate that there is no statistically significant dependence of $K_3$ and $K_4$ on the \met\ cut. |
140 |
+ |
|
141 |
|
|
142 |
< |
The factors $K_3$ and $K_4$ are applied to the \ttll\ MC throughout the |
142 |
> |
The factors $K_3$ and $K_4$ (derived with the 100 GeV \met\ cut) are applied to the \ttll\ MC throughout the |
143 |
|
entire analysis, i.e. |
144 |
|
whenever \ttll\ MC is used to estimate or subtract |
145 |
< |
a yield or distribution. |
145 |
> |
a yield or distribution. To be explicit, whenever Powheg is used, |
146 |
> |
the Powheg $K_3$ and $K_4$ are used; whenever default MadGraph is |
147 |
> |
used, the MadGraph $K_3$ and $K_4$ are used, etc. |
148 |
|
% |
149 |
|
In order to do so, it is first necessary to count the number of |
150 |
|
additional jets from radiation and exclude leptons mis-identified as |
156 |
|
|
157 |
|
\begin{table}[!ht] |
158 |
|
\begin{center} |
159 |
< |
\begin{tabular}{l|c} |
159 |
> |
\begin{tabular}{l|c|c|c} |
160 |
> |
\cline{2-4} |
161 |
> |
& \multicolumn{3}{c}{ \met\ cut for data/MC scale factors} \\ |
162 |
|
\hline |
163 |
< |
Jet Multiplicity Sample |
155 |
< |
& Data/MC Scale Factor \\ |
163 |
> |
Jet Multiplicity Sample & 50 GeV & 100 GeV & 150 GeV \\ |
164 |
|
\hline |
165 |
|
\hline |
166 |
< |
N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation) & |
167 |
< |
$K_3 = 0.97 \pm 0.03$\\ |
166 |
> |
N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation) |
167 |
> |
& $K_3 = 0.98 \pm 0.02$ & $K_3 = 1.01 \pm 0.03$ & $K_3 = 1.00 \pm 0.08$ \\ |
168 |
|
N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation) |
169 |
< |
& $K_4 = 0.91 \pm 0.04$\\ |
169 |
> |
& $K_4 = 0.94 \pm 0.02$ & $K_4 = 0.93 \pm 0.04$ & $K_4 = 1.00 \pm 0.08$ \\ |
170 |
|
\hline |
171 |
|
\end{tabular} |
172 |
|
\caption{Data/MC scale factors used to account for differences in the |
173 |
|
fraction of events with additional hard jets from radiation in |
174 |
< |
\ttll\ events. \label{tab:njetskfactors}} |
174 |
> |
\ttll\ events. The values derived with the 100 GeV \met\ cut are applied |
175 |
> |
to the \ttll\ MC throughout the analysis. \label{tab:njetskfactors}} |
176 |
|
\end{center} |
177 |
|
\end{table} |
178 |
|
|
182 |
|
|
183 |
|
\subsubsection{Validation of the ``Physics'' Modelling of the \ttdl\ |
184 |
|
MC in CR4} |
185 |
< |
\subsubsection{sec:CR4-valid} |
177 |
< |
|
178 |
< |
[THE TEXT IN THIS SUBSECTION IS ESSENTIALLY COMPLETE] |
185 |
> |
\label{sec:CR4-valid} |
186 |
|
|
187 |
|
As mentioned above, $t\bar{t} \to $ dileptons where one of the leptons |
188 |
|
is somehow lost constitutes the main background. |
190 |
|
background by looking at the $M_T$ distribution of well identified |
191 |
|
dilepton events. |
192 |
|
We construct a transverse mass variable from the leading lepton and |
193 |
< |
the \met\. We distinguish between events with leading electrons and |
193 |
> |
the \met. We distinguish between events with leading electrons and |
194 |
|
leading muons. |
195 |
|
|
196 |
|
The $t\bar{t}$ MC is corrected using the $K_3$ and $K_4$ factors |
200 |
|
in Table~\ref{tab:cr4mtsf} and are close to unity. |
201 |
|
|
202 |
|
The underlying \met\ and $M_T$ distributions are shown in |
203 |
< |
Figures~\ref{fig:cr4met} and~\ref{fig:cr4rest}. The data-MC agreement |
203 |
> |
Figures~\ref{fig:cr4met} and~\ref{fig:cr4mtrest}. The data-MC agreement |
204 |
|
is quite good. Quantitatively, this is also shown in Table~\ref{tab:cr4yields}. |
205 |
< |
|
205 |
> |
This is a {\bf very} important Table. It shows that for well |
206 |
> |
identified \ttdl\ , the MC can predict the $M_T$ tail. Since the |
207 |
> |
main background is also \ttdl\ except with one ``missed'' lepton, |
208 |
> |
this is a key test. |
209 |
|
|
210 |
|
\begin{table}[!h] |
211 |
|
\begin{center} |
212 |
< |
\begin{tabular}{l||c|c|c|c} |
212 |
> |
{\footnotesize |
213 |
> |
\begin{tabular}{l||c||c|c|c|c|c|c} |
214 |
|
\hline |
215 |
< |
Sample & CR4A & CR4B & CR4C & CR4D \\ |
215 |
> |
Sample & CR4PRESEL & CR4A & CR4B & CR4C & |
216 |
> |
CR4D & CR4E & CR4F\\ |
217 |
|
\hline |
218 |
|
\hline |
219 |
< |
Muon Data/MC-SF & $0.91 \pm 0.04$ & $0.94 \pm 0.07$ & $1.06 \pm 0.13$ & $1.03 \pm 0.22$ \\ |
219 |
> |
$\mu$ Data/MC-SF & $1.01 \pm 0.03$ & $0.96 \pm 0.04$ & $0.99 \pm 0.07$ & $1.05 \pm 0.13$ & $0.91 \pm 0.20$ & $1.10 \pm 0.34$ & $1.50 \pm 0.67$ \\ |
220 |
|
\hline |
221 |
|
\hline |
222 |
< |
Electron Data/MC-SF & $0.95 \pm 0.04$ & $1.00 \pm 0.08$ & $0.85 \pm 0.12$ & $0.83 \pm 0.19$ \\ |
222 |
> |
e Data/MC-SF & $0.99 \pm 0.03$ & $0.99 \pm 0.05$ & $0.91 \pm 0.08$ & $0.84 \pm 0.13$ & $0.70 \pm 0.18$ & $0.73 \pm 0.29$ & $0.63 \pm 0.38$ \\ |
223 |
|
\hline |
224 |
< |
\end{tabular} |
224 |
> |
\end{tabular}} |
225 |
|
\caption{ Data/MC scale factors for total yields, applied to compare |
226 |
|
the shapes of the distributions. |
227 |
|
The uncertainties are statistical only. |
232 |
|
|
233 |
|
\begin{table}[!h] |
234 |
|
\begin{center} |
235 |
< |
\begin{tabular}{l||c|c|c|c} |
235 |
> |
{\footnotesize |
236 |
> |
\begin{tabular}{l||c||c|c|c|c|c|c} |
237 |
|
\hline |
238 |
< |
Sample & CR4A & CR4B & CR4C & CR4D \\ |
238 |
> |
Sample & CR4PRESEL & CR4A & CR4B & CR4C & |
239 |
> |
CR4D & CR4E & CR4F\\ |
240 |
|
\hline |
241 |
|
\hline |
242 |
< |
Muon MC & $199 \pm 7$ & $102 \pm 6$ & $29 \pm 3$ & $8 \pm 1$ \\ |
243 |
< |
Muon Data & $187$ & $108$ & $34$ & $9$ \\ |
242 |
> |
$\mu$ MC & $256 \pm 14$ & $152 \pm 11$ & $91 \pm 9$ & $26 \pm 5$ & $6 \pm 2$ & $4 \pm 2$ & $2 \pm 1$ \\ |
243 |
> |
$\mu$ Data & $251$ & $156$ & $98$ & $27$ & $8$ & $6$ & $4$ \\ |
244 |
|
\hline |
245 |
< |
Muon Data/MC SF & $0.94 \pm 0.08$ & $1.06 \pm 0.12$ & $1.17 \pm 0.23$ & $1.09 \pm 0.40$ \\ |
245 |
> |
$\mu$ Data/MC SF & $0.98 \pm 0.08$ & $1.02 \pm 0.11$ & $1.08 \pm 0.16$ & $1.04 \pm 0.28$ & $1.29 \pm 0.65$ & $1.35 \pm 0.80$ & $2.10 \pm 1.72$ \\ |
246 |
|
\hline |
247 |
|
\hline |
248 |
< |
Electron MC & $203 \pm 8$ & $97 \pm 5$ & $26 \pm 2$ & $8 \pm 1$ \\ |
249 |
< |
Electron Data & $201$ & $102$ & $25$ & $5$ \\ |
248 |
> |
e MC & $227 \pm 13$ & $139 \pm 11$ & $73 \pm 8$ & $21 \pm 4$ & $5 \pm 2$ & $2 \pm 1$ & $1 \pm 1$ \\ |
249 |
> |
e Data & $219$ & $136$ & $72$ & $19$ & $2$ & $1$ & $1$ \\ |
250 |
|
\hline |
251 |
< |
Electron Data/MC SF & $0.99 \pm 0.08$ & $1.06 \pm 0.12$ & $0.97 \pm 0.21$ & $0.60 \pm 0.29$ \\ |
251 |
> |
e Data/MC SF & $0.96 \pm 0.09$ & $0.98 \pm 0.11$ & $0.99 \pm 0.16$ & $0.92 \pm 0.29$ & $0.41 \pm 0.33$ & $0.53 \pm 0.62$ & $0.76 \pm 0.96$ \\ |
252 |
|
\hline |
253 |
< |
\end{tabular} |
253 |
> |
\hline |
254 |
> |
$\mu$+e MC & $483 \pm 19$ & $291 \pm 16$ & $164 \pm 13$ & $47 \pm 7$ & $11 \pm 3$ & $6 \pm 2$ & $3 \pm 2$ \\ |
255 |
> |
$\mu$+e Data & $470$ & $292$ & $170$ & $46$ & $10$ & $7$ & $5$ \\ |
256 |
> |
\hline |
257 |
> |
$\mu$+e Data/MC SF & $0.97 \pm 0.06$ & $1.00 \pm 0.08$ & $1.04 \pm 0.11$ & $0.99 \pm 0.20$ & $0.90 \pm 0.37$ & $1.11 \pm 0.57$ & $1.55 \pm 1.04$ \\ |
258 |
> |
\hline |
259 |
> |
\end{tabular}} |
260 |
|
\caption{ Yields in \mt\ tail comparing the MC prediction (after |
261 |
|
applying SFs) to data. The uncertainties are statistical only. |
262 |
|
\label{tab:cr4yields}} |
280 |
|
|
281 |
|
\begin{figure}[hbt] |
282 |
|
\begin{center} |
283 |
+ |
\includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met50_leadmuo_nj4.pdf}% |
284 |
+ |
\includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met50_leadele_nj4.pdf} |
285 |
|
\includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met150_leadmuo_nj4.pdf}% |
286 |
|
\includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met150_leadele_nj4.pdf} |
287 |
|
\includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met200_leadmuo_nj4.pdf}% |
288 |
|
\includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met200_leadele_nj4.pdf} |
267 |
– |
\includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met250_leadmuo_nj4.pdf}% |
268 |
– |
\includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met250_leadele_nj4.pdf} |
289 |
|
\caption{ |
290 |
|
Comparison of the \mt\ distribution in data vs. MC for events |
291 |
|
with a leading muon (left) and leading electron (right) |
292 |
|
satisfying the requirements of CR4. The \met\ requirements used are |
293 |
< |
150 GeV (top), 200 GeV (middle) and 250 GeV (bottom). |
293 |
> |
50 GeV (top), 200 GeV (middle) and 250 GeV (bottom). |
294 |
|
\label{fig:cr4mtrest} |
295 |
|
} |
296 |
|
\end{center} |