ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/CR4.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/CR4.tex (file contents):
Revision 1.1 by claudioc, Thu Oct 4 07:24:29 2012 UTC vs.
Revision 1.10 by claudioc, Thu Oct 11 07:33:41 2012 UTC

# Line 1 | Line 1
1   \subsection{Dilepton studies in CR4}
2   \label{sec:cr4}
3  
4 [DO WE NEED TO BETTER SPECIFY THE SELECTION FOR THIS REGION???]
5
4   \subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events}
5   \label{sec:jetmultiplicity}
6  
9 [THIS SUBSUBSECTION IS DONE...MODULO THE LATEST PLOTS AND THE LATEST
10 NUMBERS IN THE TABLE]
11
7   Dilepton \ttbar\ events have 2 jets from the top decays, so additional
8   jets from radiation or higher order contributions are required to
9 < enter the signal sample. The modeling of addtional jets in \ttbar\
9 > enter the signal sample.   In this Section we develop an algorithm
10 > to be applied to all \ttll\ MC samples to insure that the distribution
11 > of extra jets is properly modelled.
12 >
13 >
14 > The modeling of additional jets in \ttbar\
15   events is checked in a \ttll\ control sample,
16   selected by requiring
17   \begin{itemize}
18   \item exactly 2 selected electrons or muons with \pt $>$ 20 GeV
19 < \item \met\ $>$ 100 GeV
19 > \item \met\ $>$ 50 GeV
20   \item $\geq1$ b-tagged jet
21 < \item Z-veto
21 > \item Z-veto ($|m_{\ell\ell} - 91| > 15$ GeV)
22   \end{itemize}
23   Figure~\ref{fig:dileptonnjets} shows a comparison of the jet
24   multiplicity distribution in data and MC for this two-lepton control
# Line 37 | Line 37 | $\ttbar+\ge2$ jet events.
37  
38   \begin{figure}[hbt]
39    \begin{center}
40 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf}
41 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}%
42 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf}
40 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg.pdf}
41 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel.pdf}%
42 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu.pdf}
43          \caption{
44            \label{fig:dileptonnjets}%\protect
45            Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
# Line 54 | Line 54 | mis-identified as a jet (since no $\tau$
54   In this case only 1 additional jet from radiation may suffice for
55   a \ttll\ event to enter the signal sample. As a result, both the
56   samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for
57 < estimating the top dilepton bkg in the signal region.
57 > estimating the top dilepton background in the signal region.
58  
59   %In this section we discuss a correction to $ N_{2 lep}^{MC} $ in Equation XXX
60   %due to differences in the modelling of the jet multiplicity in data versus MC.
# Line 115 | Line 115 | fraction of events with additional jets
115   in data.   These scale factors are calculated from Fig.~\ref{fig:dileptonnjets}
116   as follows:
117   \begin{itemize}
118 < \item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
118 > \item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for
119 >  \njets\ =1 or 2.
120   \item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
121   \item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
122 < \item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
122 > \item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ = 1 or 2
123   \item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
124   \item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
125   \end{itemize}
# Line 133 | Line 134 | as follows:
134   \noindent This insures that $K_3 M_3/(M_2 + K_3 M_3 + K_4 M_4) = N_3 /
135   (N_2+N_3+N_4)$ and similarly for the $\geq 4$ jet bin.
136  
137 + Table~\ref{tab:njetskfactors} also shows the values of $K_3$ and $K_4$ when the \met\ cut in the control sample definition is changed from 50 GeV to 100 GeV and 150 GeV.
138 + % These values of $K_3$ and $K_4$ are not used in the analysis, but
139 + This demonstrate that there is no statistically significant dependence of $K_3$ and $K_4$ on the \met\ cut.
140 +
141  
142 < The factors $K_3$ and $K_4$ are applied to the \ttll\ MC throughout the
142 > The factors $K_3$ and $K_4$ (derived with the 100 GeV \met\ cut) are applied to the \ttll\ MC throughout the
143   entire analysis, i.e.
144   whenever \ttll\ MC is used to estimate or subtract
145 < a yield or distribution.
145 > a yield or distribution.   To be explicit, whenever Powheg is used,
146 > the Powheg $K_3$ and $K_4$ are used; whenever default MadGraph is
147 > used, the MadGraph $K_3$ and $K_4$ are used, etc.
148   %
149   In order to do so, it is first necessary to count the number of
150   additional jets from radiation and exclude leptons mis-identified as
# Line 149 | Line 156 | while those that only need one radiation
156  
157   \begin{table}[!ht]
158   \begin{center}
159 < \begin{tabular}{l|c}
159 > \begin{tabular}{l|c|c|c}
160 > \cline{2-4}
161 >                        & \multicolumn{3}{c}{ \met\ cut for data/MC scale factors} \\
162   \hline
163 <            Jet Multiplicity Sample
155 <            &                Data/MC Scale Factor \\
163 > Jet Multiplicity Sample &  50 GeV & 100 GeV & 150 GeV  \\
164   \hline
165   \hline
166 < N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation)   &
167 < $K_3 = 0.97 \pm 0.03$\\
166 > N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation)
167 > & $K_3 = 0.98 \pm 0.02$ & $K_3 = 1.01 \pm 0.03$ & $K_3 = 1.00 \pm 0.08$ \\
168   N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation)
169 < &       $K_4 = 0.91 \pm 0.04$\\
169 > & $K_4 = 0.94 \pm 0.02$ & $K_4 = 0.93 \pm 0.04$ & $K_4 = 1.00 \pm 0.08$ \\
170   \hline
171   \end{tabular}
172   \caption{Data/MC scale factors used to account for differences in the
173    fraction of events with additional hard jets from radiation in
174 <  \ttll\ events. \label{tab:njetskfactors}}
174 >  \ttll\ events. The values derived with the 100 GeV \met\ cut are applied
175 >  to the \ttll\ MC throughout the analysis. \label{tab:njetskfactors}}
176   \end{center}
177   \end{table}
178  
# Line 173 | Line 182 | N jets $\ge4$ (sensitive to $\ttbar+\ge2
182  
183   \subsubsection{Validation of the ``Physics'' Modelling of the \ttdl\
184    MC in CR4}
185 < \subsubsection{sec:CR4-valid}
177 <
178 < [THE TEXT IN THIS SUBSECTION IS ESSENTIALLY COMPLETE]
185 > \label{sec:CR4-valid}
186  
187   As mentioned above, $t\bar{t} \to $ dileptons where one of the leptons
188   is somehow lost constitutes the main background.
# Line 183 | Line 190 | The object of this test is to validate t
190   background by looking at the $M_T$ distribution of well identified
191   dilepton events.
192   We construct a transverse mass variable from the leading lepton and
193 < the \met\.  We distinguish between events with leading electrons and
193 > the \met.  We distinguish between events with leading electrons and
194   leading muons.  
195  
196   The $t\bar{t}$ MC is corrected using the $K_3$ and $K_4$ factors
# Line 193 | Line 200 | regions A, B, C, and D.  These normaliza
200   in Table~\ref{tab:cr4mtsf} and are close to unity.
201  
202   The underlying \met\ and $M_T$ distributions are shown in
203 < Figures~\ref{fig:cr4met} and~\ref{fig:cr4rest}.  The data-MC agreement
203 > Figures~\ref{fig:cr4met} and~\ref{fig:cr4mtrest}.  The data-MC agreement
204   is quite good.  Quantitatively, this is also shown in Table~\ref{tab:cr4yields}.
205 <
205 > This is a {\bf very} important Table.  It shows that for well
206 > identified \ttdl\ , the MC can predict the $M_T$ tail.  Since the
207 > main background is also \ttdl\ except with one ``missed'' lepton,
208 > this is a key test.
209  
210   \begin{table}[!h]
211   \begin{center}
212 < \begin{tabular}{l||c|c|c|c}
212 > {\footnotesize
213 > \begin{tabular}{l||c||c|c|c|c|c|c}
214   \hline
215 < Sample              & CR4A & CR4B & CR4C & CR4D \\
215 > Sample              & CR4PRESEL & CR4A & CR4B & CR4C &
216 > CR4D & CR4E & CR4F\\
217   \hline
218   \hline
219 < Muon Data/MC-SF           & $0.91 \pm 0.04$ & $0.94 \pm 0.07$ & $1.06 \pm 0.13$ & $1.03 \pm 0.22$ \\
219 > $\mu$ Data/MC-SF          & $1.01 \pm 0.03$ & $0.96 \pm 0.04$ & $0.99 \pm 0.07$ & $1.05 \pm 0.13$ & $0.91 \pm 0.20$ & $1.10 \pm 0.34$ & $1.50 \pm 0.67$ \\
220   \hline
221   \hline
222 < Electron Data/MC-SF       & $0.95 \pm 0.04$ & $1.00 \pm 0.08$ & $0.85 \pm 0.12$ & $0.83 \pm 0.19$ \\
222 > e Data/MC-SF      & $0.99 \pm 0.03$ & $0.99 \pm 0.05$ & $0.91 \pm 0.08$ & $0.84 \pm 0.13$ & $0.70 \pm 0.18$ & $0.73 \pm 0.29$ & $0.63 \pm 0.38$ \\
223   \hline
224 < \end{tabular}
224 > \end{tabular}}
225   \caption{ Data/MC scale factors for total yields, applied to compare
226    the shapes of the distributions.
227    The uncertainties are statistical only.
# Line 220 | Line 232 | Electron Data/MC-SF       & $0.95 \pm 0.
232  
233   \begin{table}[!h]
234   \begin{center}
235 < \begin{tabular}{l||c|c|c|c}
235 > {\footnotesize
236 > \begin{tabular}{l||c||c|c|c|c|c|c}
237   \hline
238 < Sample              & CR4A & CR4B & CR4C & CR4D \\
238 > Sample              & CR4PRESEL & CR4A & CR4B & CR4C &
239 > CR4D & CR4E & CR4F\\
240   \hline
241   \hline
242 < Muon MC                   & $199 \pm 7$ & $102 \pm 6$ & $29 \pm 3$ & $8 \pm 1$ \\
243 < Muon Data                 & $187$ & $108$ & $34$ & $9$ \\
242 > $\mu$ MC                  & $256 \pm 14$ & $152 \pm 11$ & $91 \pm 9$ & $26 \pm 5$ & $6 \pm 2$ & $4 \pm 2$ & $2 \pm 1$ \\
243 > $\mu$ Data                & $251$ & $156$ & $98$ & $27$ & $8$ & $6$ & $4$ \\
244   \hline
245 < Muon Data/MC SF           & $0.94 \pm 0.08$ & $1.06 \pm 0.12$ & $1.17 \pm 0.23$ & $1.09 \pm 0.40$ \\
245 > $\mu$ Data/MC SF          & $0.98 \pm 0.08$ & $1.02 \pm 0.11$ & $1.08 \pm 0.16$ & $1.04 \pm 0.28$ & $1.29 \pm 0.65$ & $1.35 \pm 0.80$ & $2.10 \pm 1.72$ \\
246   \hline
247   \hline
248 < Electron MC               & $203 \pm 8$ & $97 \pm 5$ & $26 \pm 2$ & $8 \pm 1$ \\
249 < Electron Data             & $201$ & $102$ & $25$ & $5$ \\
248 > e MC              & $227 \pm 13$ & $139 \pm 11$ & $73 \pm 8$ & $21 \pm 4$ & $5 \pm 2$ & $2 \pm 1$ & $1 \pm 1$ \\
249 > e Data            & $219$ & $136$ & $72$ & $19$ & $2$ & $1$ & $1$ \\
250   \hline
251 < Electron Data/MC SF       & $0.99 \pm 0.08$ & $1.06 \pm 0.12$ & $0.97 \pm 0.21$ & $0.60 \pm 0.29$ \\
251 > e Data/MC SF      & $0.96 \pm 0.09$ & $0.98 \pm 0.11$ & $0.99 \pm 0.16$ & $0.92 \pm 0.29$ & $0.41 \pm 0.33$ & $0.53 \pm 0.62$ & $0.76 \pm 0.96$ \\
252   \hline
253 < \end{tabular}
253 > \hline
254 > $\mu$+e MC                & $483 \pm 19$ & $291 \pm 16$ & $164 \pm 13$ & $47 \pm 7$ & $11 \pm 3$ & $6 \pm 2$ & $3 \pm 2$ \\
255 > $\mu$+e Data              & $470$ & $292$ & $170$ & $46$ & $10$ & $7$ & $5$ \\
256 > \hline
257 > $\mu$+e Data/MC SF                & $0.97 \pm 0.06$ & $1.00 \pm 0.08$ & $1.04 \pm 0.11$ & $0.99 \pm 0.20$ & $0.90 \pm 0.37$ & $1.11 \pm 0.57$ & $1.55 \pm 1.04$ \\
258 > \hline
259 > \end{tabular}}
260   \caption{ Yields in \mt\ tail comparing the MC prediction (after
261    applying SFs) to data. The uncertainties are statistical only.
262   \label{tab:cr4yields}}
# Line 260 | Line 280 | Electron Data/MC SF       & $0.99 \pm 0.
280  
281   \begin{figure}[hbt]
282    \begin{center}
283 +        \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met50_leadmuo_nj4.pdf}%
284 +        \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met50_leadele_nj4.pdf}
285          \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met150_leadmuo_nj4.pdf}%
286          \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met150_leadele_nj4.pdf}
287          \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met200_leadmuo_nj4.pdf}%
288          \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met200_leadele_nj4.pdf}
267        \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met250_leadmuo_nj4.pdf}%
268        \includegraphics[width=0.5\linewidth]{plots/CR4plots/mt_met250_leadele_nj4.pdf}
289      \caption{
290        Comparison of the \mt\ distribution in data vs. MC for events
291        with a leading muon (left) and leading electron (right)
292        satisfying the requirements of CR4. The \met\ requirements used are
293 <      150 GeV (top), 200 GeV (middle) and 250 GeV (bottom).
293 >      50 GeV (top), 200 GeV (middle) and 250 GeV (bottom).
294   \label{fig:cr4mtrest}
295   }  
296        \end{center}

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines