ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/CR4.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/CR4.tex (file contents):
Revision 1.4 by vimartin, Fri Oct 5 18:12:37 2012 UTC vs.
Revision 1.15 by linacre, Thu Oct 18 22:41:51 2012 UTC

# Line 4 | Line 4
4   \subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events}
5   \label{sec:jetmultiplicity}
6  
7 [THIS SUBSUBSECTION IS DONE...MODULO THE LATEST PLOTS AND THE LATEST
8 NUMBERS IN THE TABLE]
9
7   Dilepton \ttbar\ events have 2 jets from the top decays, so additional
8   jets from radiation or higher order contributions are required to
9 < enter the signal sample. The modeling of addtional jets in \ttbar\
9 > enter the signal sample.   In this Section we develop an algorithm
10 > to be applied to all \ttll\ MC samples to ensure that the distribution
11 > of extra jets is properly modelled.
12 >
13 >
14 > The modeling of additional jets in \ttbar\
15   events is checked in a \ttll\ control sample,
16   selected by requiring
17   \begin{itemize}
18 < \item exactly 2 selected electrons or muons with \pt $>$ 20 GeV
19 < \item \met\ $>$ 100 GeV
18 > \item exactly 2 electrons or muons with \pt $>$ 20 GeV
19 > \item \met\ $>$ 50 GeV
20   \item $\geq1$ b-tagged jet
21   \item Z-veto ($|m_{\ell\ell} - 91| > 15$ GeV)
22   \end{itemize}
# Line 35 | Line 37 | $\ttbar+\ge2$ jet events.
37  
38   \begin{figure}[hbt]
39    \begin{center}
40 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf}
41 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}%
42 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf}
40 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg.pdf}
41 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel.pdf}%
42 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu.pdf}
43          \caption{
44            \label{fig:dileptonnjets}%\protect
45            Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
# Line 48 | Line 50 | $\ttbar+\ge2$ jet events.
50   It should be noted that in the case of \ttll\ events
51   with a single reconstructed lepton, the other lepton may be
52   mis-reconstructed as a jet. For example, a hadronic tau may be
53 < mis-identified as a jet (since no $\tau$ identification is used).
53 > misidentified as a jet (since no $\tau$ identification is used).
54   In this case only 1 additional jet from radiation may suffice for
55   a \ttll\ event to enter the signal sample. As a result, both the
56   samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for
# Line 113 | Line 115 | fraction of events with additional jets
115   in data.   These scale factors are calculated from Fig.~\ref{fig:dileptonnjets}
116   as follows:
117   \begin{itemize}
118 < \item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
118 > \item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for
119 >  \njets\ =1 or 2.
120   \item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
121   \item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
122 < \item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
122 > \item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ = 1 or 2
123   \item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
124   \item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
125   \end{itemize}
# Line 131 | Line 134 | as follows:
134   \noindent This insures that $K_3 M_3/(M_2 + K_3 M_3 + K_4 M_4) = N_3 /
135   (N_2+N_3+N_4)$ and similarly for the $\geq 4$ jet bin.
136  
137 + Table~\ref{tab:njetskfactors} also shows the values of $K_3$ and $K_4$ for different values of the \met\ cut in the control sample definition.
138 + % These values of $K_3$ and $K_4$ are not used in the analysis, but
139 + This demonstrates that there is no statistically significant dependence of $K_3$ and $K_4$ on the \met\ cut.
140  
141 < The factors $K_3$ and $K_4$ are applied to the \ttll\ MC throughout the
141 >
142 > The factors $K_3$ and $K_4$ (derived with the 100 GeV \met\ cut) are applied to the \ttll\ MC throughout the
143   entire analysis, i.e.
144   whenever \ttll\ MC is used to estimate or subtract
145 < a yield or distribution.
145 > a yield or distribution.   To be explicit, whenever Powheg is used,
146 > the Powheg $K_3$ and $K_4$ are used; whenever default MadGraph is
147 > used, the MadGraph $K_3$ and $K_4$ are used, etc.
148   %
149   In order to do so, it is first necessary to count the number of
150 < additional jets from radiation and exclude leptons mis-identified as
151 < jets. A jet is considered a mis-identified lepton if it is matched to a
150 > additional jets from radiation and exclude leptons misidentified as
151 > jets. A jet is considered a misidentified lepton if it is matched to a
152   generator-level second lepton with sufficient energy to satisfy the jet
153   \pt\ requirement ($\pt>30~\GeV$).   Then \ttll\ events that need two
154   radiation jets to enter our selection are scaled by $K_4$,
# Line 147 | Line 156 | while those that only need one radiation
156  
157   \begin{table}[!ht]
158   \begin{center}
159 < \begin{tabular}{l|c}
159 > {\footnotesize
160 > \begin{tabular}{l|c|c|c|c|c|c}
161 > \cline{2-7}
162 >                        & \multicolumn{6}{c}{ \met\ cut for data/MC scale factors} \\
163   \hline
164 <            Jet Multiplicity Sample
153 <            &                Data/MC Scale Factor \\
164 > Sample &  50 GeV & 100 GeV & 150 GeV & 200 GeV & 250 GeV & 300 GeV \\
165   \hline
166   \hline
167 < N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation)   &
168 < $K_3 = 1.01 \pm 0.03$\\
169 < N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation)
170 < &       $K_4 = 0.93 \pm 0.04$\\
167 > N jets $= 3$
168 > & $K_3 = 0.98 \pm 0.02$ & $K_3 = 1.01 \pm 0.03$ & $K_3 = 1.00 \pm 0.08$ & $K_3 = 1.03 \pm 0.18$ & $K_3 = 1.29 \pm 0.51$ & $K_3 = 1.58 \pm 1.23$ \\
169 > N jets $\ge4$
170 > & $K_4 = 0.94 \pm 0.02$ & $K_4 = 0.93 \pm 0.04$ & $K_4 = 1.00 \pm 0.08$ & $K_4 = 1.07 \pm 0.18$ & $K_4 = 1.30 \pm 0.48$ & $K_4 = 1.65 \pm 1.19$ \\
171   \hline
172 < \end{tabular}
172 > \end{tabular}}
173   \caption{Data/MC scale factors used to account for differences in the
174    fraction of events with additional hard jets from radiation in
175 <  \ttll\ events. \label{tab:njetskfactors}}
175 >  \ttll\ events.
176 > The N jets $= 3$ scale factor, $K_3$, is sensitive to $\ttbar+1$ extra jet from radiation, while
177 > the N jets $\ge4$ scale factor, $K_4$, is sensitive to $\ttbar+\ge2$ extra jets from radiation.
178 > The values derived with the 100 GeV \met\ cut are applied
179 >  to the \ttll\ MC throughout the analysis. \label{tab:njetskfactors}}
180   \end{center}
181   \end{table}
182  
# Line 173 | Line 188 | N jets $\ge4$ (sensitive to $\ttbar+\ge2
188    MC in CR4}
189   \label{sec:CR4-valid}
190  
176 [THE TEXT IN THIS SUBSECTION IS ESSENTIALLY COMPLETE]
177
191   As mentioned above, $t\bar{t} \to $ dileptons where one of the leptons
192   is somehow lost constitutes the main background.
193   The object of this test is to validate the $M_T$ distribution of this
# Line 186 | Line 199 | leading muons.
199  
200   The $t\bar{t}$ MC is corrected using the $K_3$ and $K_4$ factors
201   from Section~\ref{sec:jetmultiplicity}.  It is also normalized to the
202 < total data yield separately for the \met\ requirements of signal
203 < regions A, B, C, and D.  These normalization factors are listed
202 > total data yield separately for the \met\ requirements of the various signal
203 > regions.  These normalization factors are listed
204   in Table~\ref{tab:cr4mtsf} and are close to unity.
205  
206   The underlying \met\ and $M_T$ distributions are shown in
207   Figures~\ref{fig:cr4met} and~\ref{fig:cr4mtrest}.  The data-MC agreement
208   is quite good.  Quantitatively, this is also shown in Table~\ref{tab:cr4yields}.
209 <
209 > This is a {\bf very} important Table.  It shows that for well
210 > identified \ttdl\ , the MC can predict the $M_T$ tail.  Since the
211 > main background is also \ttdl\ except with one ``missed'' lepton,
212 > this is a key test.
213  
214   \begin{table}[!h]
215   \begin{center}
216   {\footnotesize
217 < \begin{tabular}{l||c||c|c|c|c|c}
217 > \begin{tabular}{l||c||c|c|c|c|c|c}
218   \hline
219   Sample              & CR4PRESEL & CR4A & CR4B & CR4C &
220 < CR4D & CR4E\\
220 > CR4D & CR4E & CR4F\\
221   \hline
222   \hline
223 < Muon Data/MC-SF           & $1.01 \pm 0.03$ & $0.96 \pm 0.04$ & $0.99 \pm 0.07$ & $1.05 \pm 0.13$ & $0.91 \pm 0.20$ & $1.10 \pm 0.34$ \\
223 > $\mu$ Data/MC-SF          & $1.01 \pm 0.03$ & $0.96 \pm 0.04$ & $0.99 \pm 0.07$ & $1.05 \pm 0.13$ & $0.91 \pm 0.20$ & $1.10 \pm 0.34$ & $1.50 \pm 0.67$ \\
224   \hline
225   \hline
226 < Electron Data/MC-SF       & $0.99 \pm 0.03$ & $0.99 \pm 0.05$ & $0.91 \pm 0.08$ & $0.84 \pm 0.13$ & $0.70 \pm 0.18$ & $0.73 \pm 0.29$ \\
226 > e Data/MC-SF      & $0.99 \pm 0.03$ & $0.99 \pm 0.05$ & $0.91 \pm 0.08$ & $0.84 \pm 0.13$ & $0.70 \pm 0.18$ & $0.73 \pm 0.29$ & $0.63 \pm 0.38$ \\
227   \hline
228   \end{tabular}}
229   \caption{ Data/MC scale factors for total yields, applied to compare
# Line 221 | Line 237 | Electron Data/MC-SF      & $0.99 \pm 0.03$
237   \begin{table}[!h]
238   \begin{center}
239   {\footnotesize
240 < \begin{tabular}{l||c||c|c|c|c|c}
240 > \begin{tabular}{l||c||c|c|c|c|c|c}
241   \hline
242   Sample              & CR4PRESEL & CR4A & CR4B & CR4C &
243 < CR4D & CR4E\\
243 > CR4D & CR4E & CR4F\\
244 > \hline
245 > \hline
246 > $\mu$ MC                  & $256 \pm 14$ & $152 \pm 11$ & $91 \pm 9$ & $26 \pm 5$ & $6 \pm 2$ & $4 \pm 2$ & $2 \pm 1$ \\
247 > $\mu$ Data                & $251$ & $156$ & $98$ & $27$ & $8$ & $6$ & $4$ \\
248 > \hline
249 > $\mu$ Data/MC SF          & $0.98 \pm 0.08$ & $1.02 \pm 0.11$ & $1.08 \pm 0.16$ & $1.04 \pm 0.28$ & $1.29 \pm 0.65$ & $1.35 \pm 0.80$ & $2.10 \pm 1.72$ \\
250   \hline
251   \hline
252 < Muon MC                   & $266 \pm 6$ & $167 \pm 4$ & $93 \pm 3$ & $24 \pm 2$ & $6 \pm 1$ & $5 \pm 1$ \\
253 < Muon Data                 & $251$ & $156$ & $98$ & $27$ & $8$ & $6$ \\
252 > e MC              & $227 \pm 13$ & $139 \pm 11$ & $73 \pm 8$ & $21 \pm 4$ & $5 \pm 2$ & $2 \pm 1$ & $1 \pm 1$ \\
253 > e Data            & $219$ & $136$ & $72$ & $19$ & $2$ & $1$ & $1$ \\
254   \hline
255 < Muon Data/MC SF           & $0.94 \pm 0.06$ & $0.93 \pm 0.08$ & $1.05 \pm 0.11$ & $1.15 \pm 0.23$ & $1.25 \pm 0.46$ & $1.20 \pm 0.53$ \\
255 > e Data/MC SF      & $0.96 \pm 0.09$ & $0.98 \pm 0.11$ & $0.99 \pm 0.16$ & $0.92 \pm 0.29$ & $0.41 \pm 0.33$ & $0.53 \pm 0.62$ & $0.76 \pm 0.96$ \\
256   \hline
257   \hline
258 < Electron MC               & $220 \pm 5$ & $138 \pm 4$ & $70 \pm 3$ & $19 \pm 1$ & $5 \pm 1$ & $2 \pm 0$ \\
259 < Electron Data             & $219$ & $136$ & $72$ & $19$ & $2$ & $1$ \\
258 > $\mu$+e MC                & $483 \pm 19$ & $291 \pm 16$ & $164 \pm 13$ & $47 \pm 7$ & $11 \pm 3$ & $6 \pm 2$ & $3 \pm 2$ \\
259 > $\mu$+e Data              & $470$ & $292$ & $170$ & $46$ & $10$ & $7$ & $5$ \\
260   \hline
261 < Electron Data/MC SF       & $1.00 \pm 0.07$ & $0.98 \pm 0.09$ & $1.04 \pm 0.13$ & $1.03 \pm 0.25$ & $0.43 \pm 0.31$ & $0.53 \pm 0.54$ \\
261 > $\mu$+e Data/MC SF                & $0.97 \pm 0.06$ & $1.00 \pm 0.08$ & $1.04 \pm 0.11$ & $0.99 \pm 0.20$ & $0.90 \pm 0.37$ & $1.11 \pm 0.57$ & $1.55 \pm 1.04$ \\
262   \hline
263   \end{tabular}}
264   \caption{ Yields in \mt\ tail comparing the MC prediction (after

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines