4 |
|
\subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events} |
5 |
|
\label{sec:jetmultiplicity} |
6 |
|
|
7 |
– |
[THIS SUBSUBSECTION IS DONE...MODULO THE LATEST PLOTS AND THE LATEST |
8 |
– |
NUMBERS IN THE TABLE] |
9 |
– |
|
7 |
|
Dilepton \ttbar\ events have 2 jets from the top decays, so additional |
8 |
|
jets from radiation or higher order contributions are required to |
9 |
< |
enter the signal sample. The modeling of addtional jets in \ttbar\ |
9 |
> |
enter the signal sample. In this Section we develop an algorithm |
10 |
> |
to be applied to all \ttll\ MC samples to ensure that the distribution |
11 |
> |
of extra jets is properly modelled. |
12 |
> |
|
13 |
> |
|
14 |
> |
The modeling of additional jets in \ttbar\ |
15 |
|
events is checked in a \ttll\ control sample, |
16 |
|
selected by requiring |
17 |
|
\begin{itemize} |
18 |
< |
\item exactly 2 selected electrons or muons with \pt $>$ 20 GeV |
19 |
< |
\item \met\ $>$ 100 GeV |
18 |
> |
\item exactly 2 electrons or muons with \pt $>$ 20 GeV |
19 |
> |
\item \met\ $>$ 50 GeV |
20 |
|
\item $\geq1$ b-tagged jet |
21 |
|
\item Z-veto ($|m_{\ell\ell} - 91| > 15$ GeV) |
22 |
|
\end{itemize} |
37 |
|
|
38 |
|
\begin{figure}[hbt] |
39 |
|
\begin{center} |
40 |
< |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf} |
41 |
< |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}% |
42 |
< |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf} |
40 |
> |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg.pdf} |
41 |
> |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel.pdf}% |
42 |
> |
\includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu.pdf} |
43 |
|
\caption{ |
44 |
|
\label{fig:dileptonnjets}%\protect |
45 |
|
Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\ |
50 |
|
It should be noted that in the case of \ttll\ events |
51 |
|
with a single reconstructed lepton, the other lepton may be |
52 |
|
mis-reconstructed as a jet. For example, a hadronic tau may be |
53 |
< |
mis-identified as a jet (since no $\tau$ identification is used). |
53 |
> |
misidentified as a jet (since no $\tau$ identification is used). |
54 |
|
In this case only 1 additional jet from radiation may suffice for |
55 |
|
a \ttll\ event to enter the signal sample. As a result, both the |
56 |
|
samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for |
115 |
|
in data. These scale factors are calculated from Fig.~\ref{fig:dileptonnjets} |
116 |
|
as follows: |
117 |
|
\begin{itemize} |
118 |
< |
\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2 |
118 |
> |
\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for |
119 |
> |
\njets\ =1 or 2. |
120 |
|
\item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3 |
121 |
|
\item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4 |
122 |
< |
\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2 |
122 |
> |
\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ = 1 or 2 |
123 |
|
\item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3 |
124 |
|
\item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4 |
125 |
|
\end{itemize} |
134 |
|
\noindent This insures that $K_3 M_3/(M_2 + K_3 M_3 + K_4 M_4) = N_3 / |
135 |
|
(N_2+N_3+N_4)$ and similarly for the $\geq 4$ jet bin. |
136 |
|
|
137 |
+ |
Table~\ref{tab:njetskfactors} also shows the values of $K_3$ and $K_4$ for different values of the \met\ cut in the control sample definition. |
138 |
+ |
% These values of $K_3$ and $K_4$ are not used in the analysis, but |
139 |
+ |
This demonstrates that there is no statistically significant dependence of $K_3$ and $K_4$ on the \met\ cut. |
140 |
|
|
141 |
< |
The factors $K_3$ and $K_4$ are applied to the \ttll\ MC throughout the |
141 |
> |
|
142 |
> |
The factors $K_3$ and $K_4$ (derived with the 100 GeV \met\ cut) are applied to the \ttll\ MC throughout the |
143 |
|
entire analysis, i.e. |
144 |
|
whenever \ttll\ MC is used to estimate or subtract |
145 |
< |
a yield or distribution. |
145 |
> |
a yield or distribution. To be explicit, whenever Powheg is used, |
146 |
> |
the Powheg $K_3$ and $K_4$ are used; whenever default MadGraph is |
147 |
> |
used, the MadGraph $K_3$ and $K_4$ are used, etc. |
148 |
|
% |
149 |
|
In order to do so, it is first necessary to count the number of |
150 |
< |
additional jets from radiation and exclude leptons mis-identified as |
151 |
< |
jets. A jet is considered a mis-identified lepton if it is matched to a |
150 |
> |
additional jets from radiation and exclude leptons misidentified as |
151 |
> |
jets. A jet is considered a misidentified lepton if it is matched to a |
152 |
|
generator-level second lepton with sufficient energy to satisfy the jet |
153 |
|
\pt\ requirement ($\pt>30~\GeV$). Then \ttll\ events that need two |
154 |
|
radiation jets to enter our selection are scaled by $K_4$, |
156 |
|
|
157 |
|
\begin{table}[!ht] |
158 |
|
\begin{center} |
159 |
< |
\begin{tabular}{l|c} |
159 |
> |
{\footnotesize |
160 |
> |
\begin{tabular}{l|c|c|c|c|c|c} |
161 |
> |
\cline{2-7} |
162 |
> |
& \multicolumn{6}{c}{ \met\ cut for data/MC scale factors} \\ |
163 |
|
\hline |
164 |
< |
Jet Multiplicity Sample |
153 |
< |
& Data/MC Scale Factor \\ |
164 |
> |
Sample & 50 GeV & 100 GeV & 150 GeV & 200 GeV & 250 GeV & 300 GeV \\ |
165 |
|
\hline |
166 |
|
\hline |
167 |
< |
N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation) & |
168 |
< |
$K_3 = 1.01 \pm 0.03$\\ |
169 |
< |
N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation) |
170 |
< |
& $K_4 = 0.93 \pm 0.04$\\ |
167 |
> |
N jets $= 3$ |
168 |
> |
& $K_3 = 0.98 \pm 0.02$ & $K_3 = 1.01 \pm 0.03$ & $K_3 = 1.00 \pm 0.08$ & $K_3 = 1.03 \pm 0.18$ & $K_3 = 1.29 \pm 0.51$ & $K_3 = 1.58 \pm 1.23$ \\ |
169 |
> |
N jets $\ge4$ |
170 |
> |
& $K_4 = 0.94 \pm 0.02$ & $K_4 = 0.93 \pm 0.04$ & $K_4 = 1.00 \pm 0.08$ & $K_4 = 1.07 \pm 0.18$ & $K_4 = 1.30 \pm 0.48$ & $K_4 = 1.65 \pm 1.19$ \\ |
171 |
|
\hline |
172 |
< |
\end{tabular} |
172 |
> |
\end{tabular}} |
173 |
|
\caption{Data/MC scale factors used to account for differences in the |
174 |
|
fraction of events with additional hard jets from radiation in |
175 |
< |
\ttll\ events. \label{tab:njetskfactors}} |
175 |
> |
\ttll\ events. |
176 |
> |
The N jets $= 3$ scale factor, $K_3$, is sensitive to $\ttbar+1$ extra jet from radiation, while |
177 |
> |
the N jets $\ge4$ scale factor, $K_4$, is sensitive to $\ttbar+\ge2$ extra jets from radiation. |
178 |
> |
The values derived with the 100 GeV \met\ cut are applied |
179 |
> |
to the \ttll\ MC throughout the analysis. \label{tab:njetskfactors}} |
180 |
|
\end{center} |
181 |
|
\end{table} |
182 |
|
|
188 |
|
MC in CR4} |
189 |
|
\label{sec:CR4-valid} |
190 |
|
|
176 |
– |
[THE TEXT IN THIS SUBSECTION IS ESSENTIALLY COMPLETE] |
177 |
– |
|
191 |
|
As mentioned above, $t\bar{t} \to $ dileptons where one of the leptons |
192 |
|
is somehow lost constitutes the main background. |
193 |
|
The object of this test is to validate the $M_T$ distribution of this |
199 |
|
|
200 |
|
The $t\bar{t}$ MC is corrected using the $K_3$ and $K_4$ factors |
201 |
|
from Section~\ref{sec:jetmultiplicity}. It is also normalized to the |
202 |
< |
total data yield separately for the \met\ requirements of signal |
203 |
< |
regions A, B, C, and D. These normalization factors are listed |
202 |
> |
total data yield separately for the \met\ requirements of the various signal |
203 |
> |
regions. These normalization factors are listed |
204 |
|
in Table~\ref{tab:cr4mtsf} and are close to unity. |
205 |
|
|
206 |
|
The underlying \met\ and $M_T$ distributions are shown in |
207 |
|
Figures~\ref{fig:cr4met} and~\ref{fig:cr4mtrest}. The data-MC agreement |
208 |
|
is quite good. Quantitatively, this is also shown in Table~\ref{tab:cr4yields}. |
209 |
< |
|
209 |
> |
This is a {\bf very} important Table. It shows that for well |
210 |
> |
identified \ttdl\ , the MC can predict the $M_T$ tail. Since the |
211 |
> |
main background is also \ttdl\ except with one ``missed'' lepton, |
212 |
> |
this is a key test. |
213 |
|
|
214 |
|
\begin{table}[!h] |
215 |
|
\begin{center} |
216 |
|
{\footnotesize |
217 |
< |
\begin{tabular}{l||c||c|c|c|c|c} |
217 |
> |
\begin{tabular}{l||c||c|c|c|c|c|c} |
218 |
|
\hline |
219 |
|
Sample & CR4PRESEL & CR4A & CR4B & CR4C & |
220 |
< |
CR4D & CR4E\\ |
220 |
> |
CR4D & CR4E & CR4F\\ |
221 |
|
\hline |
222 |
|
\hline |
223 |
< |
Muon Data/MC-SF & $1.01 \pm 0.03$ & $0.96 \pm 0.04$ & $0.99 \pm 0.07$ & $1.05 \pm 0.13$ & $0.91 \pm 0.20$ & $1.10 \pm 0.34$ \\ |
223 |
> |
$\mu$ Data/MC-SF & $1.01 \pm 0.03$ & $0.96 \pm 0.04$ & $0.99 \pm 0.07$ & $1.05 \pm 0.13$ & $0.91 \pm 0.20$ & $1.10 \pm 0.34$ & $1.50 \pm 0.67$ \\ |
224 |
|
\hline |
225 |
|
\hline |
226 |
< |
Electron Data/MC-SF & $0.99 \pm 0.03$ & $0.99 \pm 0.05$ & $0.91 \pm 0.08$ & $0.84 \pm 0.13$ & $0.70 \pm 0.18$ & $0.73 \pm 0.29$ \\ |
226 |
> |
e Data/MC-SF & $0.99 \pm 0.03$ & $0.99 \pm 0.05$ & $0.91 \pm 0.08$ & $0.84 \pm 0.13$ & $0.70 \pm 0.18$ & $0.73 \pm 0.29$ & $0.63 \pm 0.38$ \\ |
227 |
|
\hline |
228 |
|
\end{tabular}} |
229 |
|
\caption{ Data/MC scale factors for total yields, applied to compare |
237 |
|
\begin{table}[!h] |
238 |
|
\begin{center} |
239 |
|
{\footnotesize |
240 |
< |
\begin{tabular}{l||c||c|c|c|c|c} |
240 |
> |
\begin{tabular}{l||c||c|c|c|c|c|c} |
241 |
|
\hline |
242 |
|
Sample & CR4PRESEL & CR4A & CR4B & CR4C & |
243 |
< |
CR4D & CR4E\\ |
243 |
> |
CR4D & CR4E & CR4F\\ |
244 |
> |
\hline |
245 |
> |
\hline |
246 |
> |
$\mu$ MC & $256 \pm 14$ & $152 \pm 11$ & $91 \pm 9$ & $26 \pm 5$ & $6 \pm 2$ & $4 \pm 2$ & $2 \pm 1$ \\ |
247 |
> |
$\mu$ Data & $251$ & $156$ & $98$ & $27$ & $8$ & $6$ & $4$ \\ |
248 |
> |
\hline |
249 |
> |
$\mu$ Data/MC SF & $0.98 \pm 0.08$ & $1.02 \pm 0.11$ & $1.08 \pm 0.16$ & $1.04 \pm 0.28$ & $1.29 \pm 0.65$ & $1.35 \pm 0.80$ & $2.10 \pm 1.72$ \\ |
250 |
|
\hline |
251 |
|
\hline |
252 |
< |
Muon MC & $266 \pm 6$ & $167 \pm 4$ & $93 \pm 3$ & $24 \pm 2$ & $6 \pm 1$ & $5 \pm 1$ \\ |
253 |
< |
Muon Data & $251$ & $156$ & $98$ & $27$ & $8$ & $6$ \\ |
252 |
> |
e MC & $227 \pm 13$ & $139 \pm 11$ & $73 \pm 8$ & $21 \pm 4$ & $5 \pm 2$ & $2 \pm 1$ & $1 \pm 1$ \\ |
253 |
> |
e Data & $219$ & $136$ & $72$ & $19$ & $2$ & $1$ & $1$ \\ |
254 |
|
\hline |
255 |
< |
Muon Data/MC SF & $0.94 \pm 0.06$ & $0.93 \pm 0.08$ & $1.05 \pm 0.11$ & $1.15 \pm 0.23$ & $1.25 \pm 0.46$ & $1.20 \pm 0.53$ \\ |
255 |
> |
e Data/MC SF & $0.96 \pm 0.09$ & $0.98 \pm 0.11$ & $0.99 \pm 0.16$ & $0.92 \pm 0.29$ & $0.41 \pm 0.33$ & $0.53 \pm 0.62$ & $0.76 \pm 0.96$ \\ |
256 |
|
\hline |
257 |
|
\hline |
258 |
< |
Electron MC & $220 \pm 5$ & $138 \pm 4$ & $70 \pm 3$ & $19 \pm 1$ & $5 \pm 1$ & $2 \pm 0$ \\ |
259 |
< |
Electron Data & $219$ & $136$ & $72$ & $19$ & $2$ & $1$ \\ |
258 |
> |
$\mu$+e MC & $483 \pm 19$ & $291 \pm 16$ & $164 \pm 13$ & $47 \pm 7$ & $11 \pm 3$ & $6 \pm 2$ & $3 \pm 2$ \\ |
259 |
> |
$\mu$+e Data & $470$ & $292$ & $170$ & $46$ & $10$ & $7$ & $5$ \\ |
260 |
|
\hline |
261 |
< |
Electron Data/MC SF & $1.00 \pm 0.07$ & $0.98 \pm 0.09$ & $1.04 \pm 0.13$ & $1.03 \pm 0.25$ & $0.43 \pm 0.31$ & $0.53 \pm 0.54$ \\ |
261 |
> |
$\mu$+e Data/MC SF & $0.97 \pm 0.06$ & $1.00 \pm 0.08$ & $1.04 \pm 0.11$ & $0.99 \pm 0.20$ & $0.90 \pm 0.37$ & $1.11 \pm 0.57$ & $1.55 \pm 1.04$ \\ |
262 |
|
\hline |
263 |
|
\end{tabular}} |
264 |
|
\caption{ Yields in \mt\ tail comparing the MC prediction (after |