ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/CR5.tex
Revision: 1.11
Committed: Thu Oct 18 22:41:52 2012 UTC (12 years, 7 months ago) by linacre
Content type: application/x-tex
Branch: MAIN
Changes since 1.10: +1 -1 lines
Log Message:
typos etc

File Contents

# User Rev Content
1 claudioc 1.1 \subsection{Test of control region with isolated track in CR5}
2     \label{sec:CR5}
3    
4     This CR consists of events that pass all cuts but fail the isolated
5     track veto cut. These events (especially in the tail of $M_T$) are
6     predominantly $t\bar{t}$ dileptons. Thus the test in this control
7 vimartin 1.10 region is similar to that performed in CR4 and described
8 claudioc 1.1 in Section~\ref{sec:CR4-valid}. There is some non-trivial
9     complementarity because CR5 also includes events with
10     taus and events with electrons or muons below the threshold of
11     the CR4 selection. Also, this test is somewhat sensitive to
12     the simulation of the track isolation requirement, since the
13     number of dilepton events in CR5 depends on the (in)efficiency
14     of that cut.
15    
16    
17    
18     In CR5 there is also a significant component
19     of $t\bar{t} \to \ell +$ jets, where one of the jets fluctuates
20     to an isolated track. This component dominates at low $M_T$
21     and is not necessarily well reproduced quantitatively by the
22     simulation. This makes the normalization of the top MC a little bit tricky.
23     We define a ``pre-veto'' sample as the sample of events that pass
24     all cuts without any isolated track requirements. This sample is
25     dominated by $t\bar{t} \to \ell +$ jets. We normalize the dilepton
26 claudioc 1.8 component of the top MC to that sample. This is done by normalizing
27     the total \ttbar\ MC to the $M_T$ peak region, $50 < M_T < 80$ GeV
28     in this sample.
29    
30    
31 linacre 1.11 Next we define a ``post-veto'' sample as the events that have no
32 claudioc 1.1 isolated track. The $t\bar{t} \to \ell +$ jets component is
33 benhoob 1.9 normalized in this sample, again by normalizing to the $M_T$ peak
34 claudioc 1.8 region.
35 claudioc 1.1 These normalization factors are summarized in Table~\ref{tab:cr5mtsf}.
36    
37 claudioc 1.8 The post-veto $\ttdl$ is taken from MC, but with scale factor obtained
38     by the normalization of the ``pre-veto'' sample.
39    
40 claudioc 1.1 The underlying \met\ and $M_T$ distributions are shown in
41 burkett 1.2 Figures~\ref{fig:cr5met} and~\ref{fig:cr5mtrest}. The data-MC agreement
42 claudioc 1.1 is quite good. Quantitatively, this is also shown in Table~\ref{tab:cr5yields}.
43 claudioc 1.8 This is the second key test of the \ttdl\ modeling
44 claudioc 1.1
45     \begin{table}[!h]
46     \begin{center}
47 vimartin 1.3 {\footnotesize
48 vimartin 1.6 \begin{tabular}{l||c||c|c|c|c|c|c|c}
49 claudioc 1.1 \hline
50 vimartin 1.6 Sample & CR5PRESEL & CR5A & CR5B & CR5C & CR5D & CR5E &
51     CR5F & CR5G \\
52 claudioc 1.1 \hline
53     \hline
54 vimartin 1.6 $\mu$ pre-veto \mt-SF & $1.05 \pm 0.01$ & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
55     $\mu$ post-veto \mt-SF & $1.25 \pm 0.04$ & $1.17 \pm 0.07$ & $1.05 \pm 0.12$ & $0.85 \pm 0.19$ & $0.84 \pm 0.30$ & $1.07 \pm 0.54$ & $1.38 \pm 1.14$ & $0.68 \pm 2.05$ \\
56 claudioc 1.1 \hline
57     \hline
58 vimartin 1.6 e pre-veto \mt-SF & $1.01 \pm 0.01$ & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
59     e post-veto \mt-SF & $1.21 \pm 0.04$ & $1.12 \pm 0.07$ & $1.25 \pm 0.14$ & $1.17 \pm 0.27$ & $2.01 \pm 0.64$ & $1.71 \pm 0.99$ & $2.79 \pm 2.04$ & $0.81 \pm 1.58$ \\
60 claudioc 1.1 \hline
61 vimartin 1.3 \end{tabular}}
62 claudioc 1.1 \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
63     \ttdl\ sample, while the post-veto SFs are applied to the single
64     lepton samples. The raw MC is used for backgrounds from rare processes.
65     The uncertainties are statistical only.
66     \label{tab:cr5mtsf}}
67     \end{center}
68     \end{table}
69    
70    
71     \begin{table}[!h]
72     \begin{center}
73 vimartin 1.3 {\footnotesize
74 vimartin 1.6 \begin{tabular}{l||c||c|c|c|c|c|c|c}
75 claudioc 1.1 \hline
76 vimartin 1.6 Sample & CR5PRESEL & CR5A & CR5B & CR5C & CR5D & CR5E &
77     CR5F & CR5G \\
78 claudioc 1.1 \hline
79     \hline
80 vimartin 1.7 $\mu$ MC & $490 \pm 9$ & $299 \pm 7$ & $155 \pm 6$ & $49 \pm 3$ & $19 \pm 2$ & $7 \pm 1$ & $3 \pm 1$ & $2 \pm 1$ \\
81 vimartin 1.6 $\mu$ Data & $514$ & $311$ & $167$ & $57$ & $12$ & $4$ & $2$ & $1$ \\
82 claudioc 1.1 \hline
83 vimartin 1.7 $\mu$ Data/MC SF & $1.05 \pm 0.05$ & $1.04 \pm 0.06$ & $1.08 \pm 0.09$ & $1.17 \pm 0.17$ & $0.64 \pm 0.20$ & $0.54 \pm 0.29$ & $0.66 \pm 0.49$ & $0.58 \pm 0.62$ \\
84 claudioc 1.1 \hline
85     \hline
86 vimartin 1.7 e MC & $405 \pm 8$ & $239 \pm 7$ & $130 \pm 5$ & $43 \pm 3$ & $16 \pm 2$ & $8 \pm 1$ & $6 \pm 2$ & $3 \pm 1$ \\
87 vimartin 1.6 e Data & $427$ & $248$ & $120$ & $38$ & $14$ & $4$ & $3$ & $2$ \\
88 claudioc 1.1 \hline
89 vimartin 1.7 e Data/MC SF & $1.06 \pm 0.06$ & $1.04 \pm 0.07$ & $0.93 \pm 0.09$ & $0.89 \pm 0.16$ & $0.86 \pm 0.25$ & $0.52 \pm 0.28$ & $0.54 \pm 0.35$ & $0.76 \pm 0.60$ \\
90     \hline
91     \hline
92     $\mu$+e MC & $894 \pm 12$ & $538 \pm 10$ & $284 \pm 8$ & $92 \pm 4$ & $35 \pm 3$ & $15 \pm 2$ & $9 \pm 2$ & $4 \pm 1$ \\
93     $\mu$+e Data & $941$ & $559$ & $287$ & $95$ & $26$ & $8$ & $5$ & $3$ \\
94     \hline
95     $\mu$+e Data/MC SF & $1.05 \pm 0.04$ & $1.04 \pm 0.05$ & $1.01 \pm 0.07$ & $1.04 \pm 0.12$ & $0.74 \pm 0.16$ & $0.53 \pm 0.20$ & $0.58 \pm 0.29$ & $0.69 \pm 0.43$ \\
96 claudioc 1.1 \hline
97 vimartin 1.3 \end{tabular}}
98 claudioc 1.1 \caption{ Yields in \mt\ tail comparing the MC prediction (after
99     applying SFs) to data. The uncertainties are statistical only.
100     \label{tab:cr5yields}}
101     \end{center}
102     \end{table}
103    
104     \begin{figure}[hbt]
105     \begin{center}
106     \includegraphics[width=0.5\linewidth]{plots/CR5plots/met_met50_leadmuo_nj4.pdf}%
107     \includegraphics[width=0.5\linewidth]{plots/CR5plots/met_met50_leadele_nj4.pdf}
108     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met100_leadmuo_nj4.pdf}%
109     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met100_leadele_nj4.pdf}
110     \caption{
111     Comparison of the \met\ (top) and \mt\ for $\met>100$ (bottom) distributions in data vs. MC for events
112     with a leading muon (left) and leading electron (right)
113     satisfying the requirements of CR5.
114     \label{fig:cr5met}
115     }
116     \end{center}
117     \end{figure}
118    
119     \begin{figure}[hbt]
120     \begin{center}
121 vimartin 1.3 \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met50_leadmuo_nj4.pdf}%
122     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met50_leadele_nj4.pdf}
123 claudioc 1.1 \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met150_leadmuo_nj4.pdf}%
124     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met150_leadele_nj4.pdf}
125     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met200_leadmuo_nj4.pdf}%
126     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met200_leadele_nj4.pdf}
127 vimartin 1.3 % \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadmuo_nj4.pdf}%
128     % \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadele_nj4.pdf}
129 claudioc 1.1 \caption{
130     Comparison of the \mt\ distribution in data vs. MC for events
131     with a leading muon (left) and leading electron (right)
132     satisfying the requirements of CR5. The \met\ requirements used are
133 vimartin 1.3 50 GeV (top), 150 GeV (middle) and 200 GeV (bottom).
134 claudioc 1.1 \label{fig:cr5mtrest}
135     }
136     \end{center}
137     \end{figure}
138    
139    
140 vimartin 1.6 \begin{figure}[hbt]
141     \begin{center}
142     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadmuo_nj4.pdf}%
143     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadele_nj4.pdf}
144     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met300_leadmuo_nj4.pdf}%
145     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met300_leadele_nj4.pdf}
146     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met350_leadmuo_nj4.pdf}%
147     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met350_leadele_nj4.pdf}
148     % \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadmuo_nj4.pdf}%
149     % \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadele_nj4.pdf}
150     \caption{
151     Comparison of the \mt\ distribution in data vs. MC for events
152     with a leading muon (left) and leading electron (right)
153     satisfying the requirements of CR5. The \met\ requirements used are
154     250 GeV (top), 300 GeV (middle) and 350 GeV (bottom).
155     \label{fig:cr5mtrest2}
156     }
157     \end{center}
158     \end{figure}
159    
160    
161 claudioc 1.1 \clearpage
162