ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/CR5.tex
Revision: 1.12
Committed: Sat Oct 20 19:37:22 2012 UTC (12 years, 6 months ago) by linacre
Content type: application/x-tex
Branch: MAIN
CVS Tags: HEAD
Changes since 1.11: +4 -2 lines
Log Message:
clarified 'post-veto' in CR5

File Contents

# User Rev Content
1 claudioc 1.1 \subsection{Test of control region with isolated track in CR5}
2     \label{sec:CR5}
3    
4     This CR consists of events that pass all cuts but fail the isolated
5     track veto cut. These events (especially in the tail of $M_T$) are
6     predominantly $t\bar{t}$ dileptons. Thus the test in this control
7 vimartin 1.10 region is similar to that performed in CR4 and described
8 claudioc 1.1 in Section~\ref{sec:CR4-valid}. There is some non-trivial
9     complementarity because CR5 also includes events with
10     taus and events with electrons or muons below the threshold of
11     the CR4 selection. Also, this test is somewhat sensitive to
12     the simulation of the track isolation requirement, since the
13     number of dilepton events in CR5 depends on the (in)efficiency
14     of that cut.
15    
16    
17    
18     In CR5 there is also a significant component
19     of $t\bar{t} \to \ell +$ jets, where one of the jets fluctuates
20     to an isolated track. This component dominates at low $M_T$
21     and is not necessarily well reproduced quantitatively by the
22     simulation. This makes the normalization of the top MC a little bit tricky.
23     We define a ``pre-veto'' sample as the sample of events that pass
24     all cuts without any isolated track requirements. This sample is
25     dominated by $t\bar{t} \to \ell +$ jets. We normalize the dilepton
26 claudioc 1.8 component of the top MC to that sample. This is done by normalizing
27     the total \ttbar\ MC to the $M_T$ peak region, $50 < M_T < 80$ GeV
28     in this sample.
29    
30    
31 linacre 1.12 Next we define a ``post-veto'' sample as the events that have an
32     isolated track
33     (note that we use the term ``post-veto'' to refer to the application of the isolated track cut of the sample, which in this case is an isolated track requirement).
34     The $t\bar{t} \to \ell +$ jets component is
35 benhoob 1.9 normalized in this sample, again by normalizing to the $M_T$ peak
36 claudioc 1.8 region.
37 claudioc 1.1 These normalization factors are summarized in Table~\ref{tab:cr5mtsf}.
38    
39 claudioc 1.8 The post-veto $\ttdl$ is taken from MC, but with scale factor obtained
40     by the normalization of the ``pre-veto'' sample.
41    
42 claudioc 1.1 The underlying \met\ and $M_T$ distributions are shown in
43 burkett 1.2 Figures~\ref{fig:cr5met} and~\ref{fig:cr5mtrest}. The data-MC agreement
44 claudioc 1.1 is quite good. Quantitatively, this is also shown in Table~\ref{tab:cr5yields}.
45 claudioc 1.8 This is the second key test of the \ttdl\ modeling
46 claudioc 1.1
47     \begin{table}[!h]
48     \begin{center}
49 vimartin 1.3 {\footnotesize
50 vimartin 1.6 \begin{tabular}{l||c||c|c|c|c|c|c|c}
51 claudioc 1.1 \hline
52 vimartin 1.6 Sample & CR5PRESEL & CR5A & CR5B & CR5C & CR5D & CR5E &
53     CR5F & CR5G \\
54 claudioc 1.1 \hline
55     \hline
56 vimartin 1.6 $\mu$ pre-veto \mt-SF & $1.05 \pm 0.01$ & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
57     $\mu$ post-veto \mt-SF & $1.25 \pm 0.04$ & $1.17 \pm 0.07$ & $1.05 \pm 0.12$ & $0.85 \pm 0.19$ & $0.84 \pm 0.30$ & $1.07 \pm 0.54$ & $1.38 \pm 1.14$ & $0.68 \pm 2.05$ \\
58 claudioc 1.1 \hline
59     \hline
60 vimartin 1.6 e pre-veto \mt-SF & $1.01 \pm 0.01$ & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
61     e post-veto \mt-SF & $1.21 \pm 0.04$ & $1.12 \pm 0.07$ & $1.25 \pm 0.14$ & $1.17 \pm 0.27$ & $2.01 \pm 0.64$ & $1.71 \pm 0.99$ & $2.79 \pm 2.04$ & $0.81 \pm 1.58$ \\
62 claudioc 1.1 \hline
63 vimartin 1.3 \end{tabular}}
64 claudioc 1.1 \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
65     \ttdl\ sample, while the post-veto SFs are applied to the single
66     lepton samples. The raw MC is used for backgrounds from rare processes.
67     The uncertainties are statistical only.
68     \label{tab:cr5mtsf}}
69     \end{center}
70     \end{table}
71    
72    
73     \begin{table}[!h]
74     \begin{center}
75 vimartin 1.3 {\footnotesize
76 vimartin 1.6 \begin{tabular}{l||c||c|c|c|c|c|c|c}
77 claudioc 1.1 \hline
78 vimartin 1.6 Sample & CR5PRESEL & CR5A & CR5B & CR5C & CR5D & CR5E &
79     CR5F & CR5G \\
80 claudioc 1.1 \hline
81     \hline
82 vimartin 1.7 $\mu$ MC & $490 \pm 9$ & $299 \pm 7$ & $155 \pm 6$ & $49 \pm 3$ & $19 \pm 2$ & $7 \pm 1$ & $3 \pm 1$ & $2 \pm 1$ \\
83 vimartin 1.6 $\mu$ Data & $514$ & $311$ & $167$ & $57$ & $12$ & $4$ & $2$ & $1$ \\
84 claudioc 1.1 \hline
85 vimartin 1.7 $\mu$ Data/MC SF & $1.05 \pm 0.05$ & $1.04 \pm 0.06$ & $1.08 \pm 0.09$ & $1.17 \pm 0.17$ & $0.64 \pm 0.20$ & $0.54 \pm 0.29$ & $0.66 \pm 0.49$ & $0.58 \pm 0.62$ \\
86 claudioc 1.1 \hline
87     \hline
88 vimartin 1.7 e MC & $405 \pm 8$ & $239 \pm 7$ & $130 \pm 5$ & $43 \pm 3$ & $16 \pm 2$ & $8 \pm 1$ & $6 \pm 2$ & $3 \pm 1$ \\
89 vimartin 1.6 e Data & $427$ & $248$ & $120$ & $38$ & $14$ & $4$ & $3$ & $2$ \\
90 claudioc 1.1 \hline
91 vimartin 1.7 e Data/MC SF & $1.06 \pm 0.06$ & $1.04 \pm 0.07$ & $0.93 \pm 0.09$ & $0.89 \pm 0.16$ & $0.86 \pm 0.25$ & $0.52 \pm 0.28$ & $0.54 \pm 0.35$ & $0.76 \pm 0.60$ \\
92     \hline
93     \hline
94     $\mu$+e MC & $894 \pm 12$ & $538 \pm 10$ & $284 \pm 8$ & $92 \pm 4$ & $35 \pm 3$ & $15 \pm 2$ & $9 \pm 2$ & $4 \pm 1$ \\
95     $\mu$+e Data & $941$ & $559$ & $287$ & $95$ & $26$ & $8$ & $5$ & $3$ \\
96     \hline
97     $\mu$+e Data/MC SF & $1.05 \pm 0.04$ & $1.04 \pm 0.05$ & $1.01 \pm 0.07$ & $1.04 \pm 0.12$ & $0.74 \pm 0.16$ & $0.53 \pm 0.20$ & $0.58 \pm 0.29$ & $0.69 \pm 0.43$ \\
98 claudioc 1.1 \hline
99 vimartin 1.3 \end{tabular}}
100 claudioc 1.1 \caption{ Yields in \mt\ tail comparing the MC prediction (after
101     applying SFs) to data. The uncertainties are statistical only.
102     \label{tab:cr5yields}}
103     \end{center}
104     \end{table}
105    
106     \begin{figure}[hbt]
107     \begin{center}
108     \includegraphics[width=0.5\linewidth]{plots/CR5plots/met_met50_leadmuo_nj4.pdf}%
109     \includegraphics[width=0.5\linewidth]{plots/CR5plots/met_met50_leadele_nj4.pdf}
110     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met100_leadmuo_nj4.pdf}%
111     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met100_leadele_nj4.pdf}
112     \caption{
113     Comparison of the \met\ (top) and \mt\ for $\met>100$ (bottom) distributions in data vs. MC for events
114     with a leading muon (left) and leading electron (right)
115     satisfying the requirements of CR5.
116     \label{fig:cr5met}
117     }
118     \end{center}
119     \end{figure}
120    
121     \begin{figure}[hbt]
122     \begin{center}
123 vimartin 1.3 \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met50_leadmuo_nj4.pdf}%
124     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met50_leadele_nj4.pdf}
125 claudioc 1.1 \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met150_leadmuo_nj4.pdf}%
126     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met150_leadele_nj4.pdf}
127     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met200_leadmuo_nj4.pdf}%
128     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met200_leadele_nj4.pdf}
129 vimartin 1.3 % \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadmuo_nj4.pdf}%
130     % \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadele_nj4.pdf}
131 claudioc 1.1 \caption{
132     Comparison of the \mt\ distribution in data vs. MC for events
133     with a leading muon (left) and leading electron (right)
134     satisfying the requirements of CR5. The \met\ requirements used are
135 vimartin 1.3 50 GeV (top), 150 GeV (middle) and 200 GeV (bottom).
136 claudioc 1.1 \label{fig:cr5mtrest}
137     }
138     \end{center}
139     \end{figure}
140    
141    
142 vimartin 1.6 \begin{figure}[hbt]
143     \begin{center}
144     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadmuo_nj4.pdf}%
145     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadele_nj4.pdf}
146     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met300_leadmuo_nj4.pdf}%
147     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met300_leadele_nj4.pdf}
148     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met350_leadmuo_nj4.pdf}%
149     \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met350_leadele_nj4.pdf}
150     % \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadmuo_nj4.pdf}%
151     % \includegraphics[width=0.5\linewidth]{plots/CR5plots/mt_met250_leadele_nj4.pdf}
152     \caption{
153     Comparison of the \mt\ distribution in data vs. MC for events
154     with a leading muon (left) and leading electron (right)
155     satisfying the requirements of CR5. The \met\ requirements used are
156     250 GeV (top), 300 GeV (middle) and 350 GeV (bottom).
157     \label{fig:cr5mtrest2}
158     }
159     \end{center}
160     \end{figure}
161    
162    
163 claudioc 1.1 \clearpage
164