ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
Revision: 1.8
Committed: Wed Oct 3 05:48:26 2012 UTC (12 years, 7 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
Changes since 1.7: +18 -134 lines
Log Message:
updated missing info

File Contents

# User Rev Content
1 benhoob 1.1
2 fkw 1.5 This analysis uses several different control regions in addition to the signal regions.
3     All of these different regions are defined in this section.
4 vimartin 1.7 %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
5 benhoob 1.1
6 vimartin 1.7 \subsection{Single Lepton Selection}
7    
8     [UPDATE SELECTION]
9 fkw 1.5
10     The single lepton preselection sample is based on the following criteria
11 benhoob 1.1 \begin{itemize}
12 vimartin 1.2 \item satisfy the trigger requirement (see
13 fkw 1.4 Table.~\ref{tab:DatasetsData}). Dilepton triggers are used only for the dilepton control region.
14 vimartin 1.2 \item select events with one high \pt\ electron or muon, requiring
15     \begin{itemize}
16 vimartin 1.7 \item $\pt>30~\GeVc$ and $|\eta|<2.1$
17 vimartin 1.2 \item satisfy the identification and isolation requirements detailed
18 benhoob 1.3 in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign
19     SUSY analysis (SUS-11-011) for muons
20 vimartin 1.2 \end{itemize}
21     \item require at least 4 PF jets in the event with $\pt>30~\GeV$
22 vimartin 1.7 within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
23     medium working point b-tagging requirement
24 vimartin 1.2 \item require moderate $\met>50~\GeV$
25 benhoob 1.1 \end{itemize}
26    
27 fkw 1.6 Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
28    
29     \begin{table}[!h]
30     \begin{center}
31     \begin{tabular}{c|c}
32     \hline
33     \hline
34     \end{tabular}
35     \caption{ Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
36     \end{center}
37     \end{table}
38    
39 vimartin 1.7 \subsection{Signal Region Selection}
40    
41 vimartin 1.8 [MOTIVATIONAL BLURB ON MET AND MT, \\
42     CAN ADD SIGNAL VS. TTBAR MC PLOT \\
43     ADD SIGNAL YIELDS FOR AVAILABLE POINTS, \\
44     DISCUSS CHOICE SIG REGIONS]
45    
46 vimartin 1.7 The signal regions (SRs) are selected to improve the sensitivity for the
47     single lepton requirements and cover a range of scalar top
48     scenarios. The \mt\ and \met\ variables are used to define the signal
49     regions and the requirements are listed in Table~\ref{tab:srdef}.
50    
51 fkw 1.6 \begin{table}[!h]
52     \begin{center}
53 vimartin 1.7 \begin{tabular}{l|c|c}
54 fkw 1.6 \hline
55 vimartin 1.7 Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
56 fkw 1.6 \hline
57     \hline
58 vimartin 1.7 SRA & 150 & 100 \\
59     SRB & 120 & 150 \\
60     SRC & 120 & 200 \\
61     SRD & 120 & 250 \\
62     SRE & 120 & 300 \\
63 fkw 1.6 \hline
64     \end{tabular}
65 vimartin 1.7 \caption{ Signal region definitions based on \mt\ and \met\
66     requirements. These requirements are applied in addition to the
67     baseline single lepton selection.
68     \label{tab:srdef}}
69 fkw 1.6 \end{center}
70     \end{table}
71    
72 vimartin 1.7 Table~\ref{tab:srrawmcyields} shows the expected number of SM
73     background yields for the SRs. A few stop signal yields for four
74     values of the parameters are also shown for comparison. The signal
75     regions with looser requirements are sensitive to lower stop masses
76     M(\sctop), while those with tighter requirements are more sensitive to
77     higher M(\sctop).
78    
79 fkw 1.6 \begin{table}[!h]
80     \begin{center}
81 vimartin 1.7 \begin{tabular}{l||c|c|c|c}
82 fkw 1.6 \hline
83 vimartin 1.7 Sample & SRA & SRB & SRC & SRD \\
84 fkw 1.6 \hline
85     \hline
86 vimartin 1.7 \ttdl\ & $700 \pm 15$& $408 \pm 12$& $134 \pm 7$& $43 \pm 4$ \\
87     \ttsl\ \& single top (1\Lep) & $111 \pm 6$& $71 \pm 5$& $15 \pm 2$& $4 \pm 1$ \\
88     \wjets\ & $58 \pm 35$& $57 \pm 35$& $29 \pm 26$& $26 \pm 26$ \\
89     Rare & $63 \pm 3$& $40 \pm 3$& $17 \pm 2$& $7 \pm 1$ \\
90 fkw 1.6 \hline
91 vimartin 1.7 Total & $932 \pm 39$& $576 \pm 38$& $195 \pm 27$& $80 \pm 26$ \\
92 fkw 1.6 \hline
93     \end{tabular}
94 vimartin 1.7 \caption{ Expected SM background contributions, including both muon
95     and electron channels. The uncertainties are statistical only. ADD
96     SIGNAL POINTS.
97     \label{tab:srrawmcyields}}
98 fkw 1.6 \end{center}
99     \end{table}
100    
101 vimartin 1.8 \subsection{Control Region Selection}
102 fkw 1.5
103 vimartin 1.8 [1 PARAGRAPH BLURB RELATING BACKGROUNDS (IN TABLE FROM PREVIOUS SECTION)
104     TO INTRODUCE CONTROL REGIONS]
105 fkw 1.5
106 vimartin 1.7 Control regions (CRs) are used to validate the background estimation
107     procedure and derive systematic uncertainties for some
108     contributions. The CRs are selected to have similar
109     kinematics to the SRs, but have a different requirement in terms of
110     number of b-tags and number of leptons, thus enhancing them in
111     different SM contributions. The four CRs used in this analysis are
112     summarized in Table~\ref{tab:crdef}.
113 fkw 1.5
114 vimartin 1.7 \begin{table}
115 fkw 1.6 \begin{center}
116 vimartin 1.7 {\small
117     \begin{tabular}{l|c|c|c}
118 fkw 1.6 \hline
119 vimartin 1.7 Selection & \multirow{2}{*}{exactly 1 lepton} & \multirow{2}{*}{exactly 2
120     leptons} & \multirow{2}{*}{1 lepton + isolated
121     track}\\
122     Criteria & & & \\
123     \hline
124     \hline
125     \multirow{4}{*}{0 b-tags}
126     & CR1) W+Jets dominated:
127     & CR2) apply \Z-mass constraint
128     & CR3) not used \\
129     &
130     & $\rightarrow$ Z+Jets dominated: Validate
131     & \\
132     & Validate W+Jets \mt\ tail
133     & \ttsl\ \mt\ tail comparing
134     & \\
135     &
136     & data vs. MC ``pseudo-\mt ''
137     & \\
138     \hline
139     \multirow{4}{*}{$\ge$ 1 b-tags}
140     &
141     & CR4) Apply \Z-mass veto
142     & CR5) \ttdl, \ttlt\ and \\
143     & SIGNAL
144     & $\rightarrow$ \ttdl\ dominated: Validate
145     & \ttlf\ dominated: Validate \\
146     & REGION
147     & ``physics'' modelling of \ttdl\
148     & \Tau\ and fake lepton modeling/\\
149     &
150     &
151     & detector effects in \ttdl\ \\
152 fkw 1.6 \hline
153     \end{tabular}
154 vimartin 1.7 }
155     \caption{Summary of signal and control regions.
156     \label{tab:crdef}%\protect
157     }
158 fkw 1.6 \end{center}
159     \end{table}
160 fkw 1.5
161 vimartin 1.7
162     \subsection{MC Corrections}
163    
164     [UPDATE SECTION]
165    
166     \subsubsection{Corrections to Jets and \met}
167 benhoob 1.1
168 vimartin 1.8 [UPDATE, ADD FEW MORE DETAILS ON WHAT IS DONE HERE]
169    
170 vimartin 1.2 The official recommendations from the Jet/MET group are used for
171     the data and MC samples. In particular, the jet
172     energy corrections (JEC) are updated using the official recipe.
173     L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
174     based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for
175     data (MC). In addition, these jet energy corrections are propagated to
176     the \met\ calculation, following the official prescription for
177 vimartin 1.7 deriving the Type I corrections.
178    
179     Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
180 vimartin 1.2 correspond to events with unphysically large \met\ and \mt\ tail
181 vimartin 1.7 signal region. In addition, the recommended MET filters are applied.
182 vimartin 1.2
183 benhoob 1.3
184 vimartin 1.7 \subsubsection{Branching Fraction Correction}
185 vimartin 1.2
186     The leptonic branching fraction used in some of the \ttbar\ MC samples
187 benhoob 1.3 differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
188 vimartin 1.2 Table.~\ref{tab:wlepbf} summarizes the branching fractions used in
189     the generation of the various \ttbar\ MC samples.
190     For \ttbar\ samples with the incorrect leptonic branching fraction, event
191     weights are applied based on the number of true leptons and the ratio
192     of the corrected and incorrect branching fractions.
193    
194     \begin{table}[!h]
195     \begin{center}
196     \begin{tabular}{c|c}
197     \hline
198     \ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\
199     \hline
200     \hline
201     Madgraph & 0.111\\
202     MC@NLO & 0.111\\
203     Pythia & 0.108\\
204     Powheg & 0.108\\
205     \hline
206     \end{tabular}
207     \caption{Leptonic branching fractions for the various \ttbar\ samples
208     used in the analysis. The primary \ttbar\ MC sample produced with
209     Madgraph has a branching fraction that is almost $3\%$ higher than
210     the PDG value. \label{tab:wlepbf}}
211     \end{center}
212     \end{table}
213    
214 vimartin 1.7
215     \subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events}
216     \label{sec:jetmultiplicity}
217    
218 vimartin 1.8 [CHECK, UPDATE, ADD EQUATIONS COMMENTED IN THE BOTTOM OF FILE \\
219     REFERENCE APPENDIX INFO. (FROM 7 TEV) AND SUMMARIZE THAT INFORMATION HERE]
220 vimartin 1.7
221     Dilepton \ttbar\ events have 2 jets from the top decays, so additional
222     jets from radiation or higher order contributions are required to
223     enter the signal sample. The modeling of addtional jets in \ttbar\
224     events is checked in a \ttll\ control sample,
225     selected by requiring
226     \begin{itemize}
227     \item exactly 2 selected electrons or muons with \pt $>$ 20 GeV
228     \item \met\ $>$ 100 GeV
229     \item $\geq1$ b-tagged jet
230     \item Z-veto
231     \end{itemize}
232     Figure~\ref{fig:dileptonnjets} shows a comparison of the jet
233     multiplicity distribution in data and MC for this two-lepton control
234     sample. After requiring at least 1 b-tagged jet, most of the
235     events have 2 jets, as expected from the dominant process \ttll. There is also a
236     significant fraction of events with additional jets.
237     The 3-jet sample is mainly comprised of \ttbar\ events with 1 additional
238     emission and similarly the $\ge4$-jet sample contains primarily
239 vimartin 1.8 $\ttbar+\ge2$ jet events.
240     %Even though the primary \ttbar\
241     %Madgraph sample used includes up to 3 additional partons at the Matrix
242     %Element level, which are intended to describe additional hard jets,
243     %Figure~\ref{fig:dileptonnjets} shows a slight mis-modeling of the
244     %additional jets.
245 vimartin 1.7
246    
247     \begin{figure}[hbt]
248     \begin{center}
249     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf}
250     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}%
251     \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf}
252     \caption{
253     \label{fig:dileptonnjets}%\protect
254     Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
255     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
256     \end{center}
257     \end{figure}
258    
259     It should be noted that in the case of \ttll\ events
260     with a single reconstructed lepton, the other lepton may be
261     mis-reconstructed as a jet. For example, a hadronic tau may be
262     mis-identified as a jet (since no $\tau$ identification is used).
263     In this case only 1 additional jet from radiation may suffice for
264     a \ttll\ event to enter the signal sample. As a result, both the
265     samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for
266     estimating the top dilepton bkg in the signal region.
267    
268     %In this section we discuss a correction to $ N_{2 lep}^{MC} $ in Equation XXX
269     %due to differences in the modelling of the jet multiplicity in data versus MC.
270     %The same correction also enters $ N_{peak}^{MC}$ in Equation XXX to the extend that the
271     %dilepton contributions to $ N_{peak}^{MC}$ gets corrected.
272    
273     %The dilepton control sample is defined by the following requirements:
274     %\begin{itemize}
275     %\item Exactly 2 selected electrons or muons with \pt $>$ 20 GeV
276     %\item \met\ $>$ 50 GeV
277     %\item $\geq1$ b-tagged jet
278     %\end{itemize}
279     %
280     %This sample is dominated by \ttll. The distribution of \njets\ for data and MC passing this selection is displayed in Fig.~\ref{fig:dilepton_njets}.
281     %We use this distribution to derive scale factors which reweight the \ttll\ MC \njets\ distribution to match the data. We define the following
282     %quantities
283     %
284     %\begin{itemize}
285     %\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
286     %\item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
287     %\item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
288     %\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
289     %\item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
290     %\item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
291     %\end{itemize}
292     %
293     %We use these yields to define 3 scale factors, which quantify the data/MC ratio in the 3 \njets\ bins:
294     %
295     %\begin{itemize}
296     %\item $SF_2 = N_2 / M_2$
297     %\item $SF_3 = N_3 / M_3$
298     %\item $SF_4 = N_4 / M_4$
299     %\end{itemize}
300     %
301     %And finally, we define the scale factors $K_3$ and $K_4$:
302     %
303     %\begin{itemize}
304     %\item $K_3 = SF_3 / SF_2$
305     %\item $K_4 = SF_4 / SF_2$
306     %\end{itemize}
307     %
308     %The scale factor $K_3$ is extracted from dilepton \ttbar\ events with \njets = 3, which have exactly 1 ISR jet.
309     %The scale factor $K_4$ is extracted from dilepton \ttbar\ events with \njets $\geq$ 4, which have at least 2 ISR jets.
310     %Both of these scale factors are needed since dilepton \ttbar\ events which fall in our signal region (including
311     %the \njets $\geq$ 4 requirement) may require exactly 1 ISR jet, in the case that the second lepton is reconstructed
312     %as a jet, or at least 2 ISR jets, in the case that the second lepton is not reconstructed as a jet. These scale
313     %factors are applied to the dilepton \ttbar\ MC only. For a given MC event, we determine whether to use $K_3$ or $K_4$
314     %by counting the number of reconstructed jets in the event ($N_{\rm{jets}}^R$) , and subtracting off any reconstructed
315     %jet which is matched to the second lepton at generator level ($N_{\rm{jets}}^\ell$); $N_{\rm{jets}}^{\rm{cor}} = N_{\rm{jets}}^R - N_{\rm{jets}}^\ell$.
316     %For events with $N_{\rm{jets}}^{\rm{cor}}=3$ the factor $K_3$ is applied, while for events with $N_{\rm{jets}}^{\rm{cor}}\geq4$ the factor $K_4$ is applied.
317     %For all subsequent steps, the scale factors $K_3$ and $K_4$ have been
318     %applied to the \ttll\ MC.
319    
320    
321     Table~\ref{tab:njetskfactors} shows scale factors to correct the
322     fraction of events with additional jets in MC to the observed fraction
323     in data. These are applied to the \ttll\ MC throughout the entire analysis, i.e. whenever \ttll\ MC is used to estimate or subtract
324     a yield or distribution.
325     %
326     In order to do so, it is first necessary to count the number of
327     additional jets from radiation and exclude leptons mis-identified as
328     jets. A jet is considered a mis-identified lepton if it is matched to a
329     generator-level second lepton with sufficient energy to satisfy the jet
330     \pt\ requirement ($\pt>30~\GeV$).
331    
332     \begin{table}[!ht]
333     \begin{center}
334     \begin{tabular}{l|c}
335     \hline
336     Jet Multiplicity Sample
337     & Data/MC Scale Factor \\
338     \hline
339     \hline
340     N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation) & $0.97 \pm 0.03$\\
341     N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation) & $0.91 \pm 0.04$\\
342     \hline
343     \end{tabular}
344     \caption{Data/MC scale factors used to account for differences in the
345     fraction of events with additional hard jets from radiation in
346     \ttll\ events. \label{tab:njetskfactors}}
347     \end{center}
348     \end{table}
349    
350    
351    
352     \subsubsection{Efficiency Corrections}
353    
354     [TO BE UDPATED WITH T\&P STUDIES ON ID, TRIGGER ETC]
355