1 |
claudioc |
1.19 |
Here we define the selections of leptons, jets, and \met.
|
2 |
|
|
We also describe our measurements of the lepton and trigger efficiency.
|
3 |
|
|
The analysis uses several different Control Regions (CRs) in addition
|
4 |
|
|
to the Signal
|
5 |
|
|
Regions (SRs).
|
6 |
|
|
All of these different regions are defined in this section.
|
7 |
|
|
This section also includes some information on the basic MC
|
8 |
|
|
corrections that we apply.
|
9 |
vimartin |
1.7 |
%Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
|
10 |
benhoob |
1.1 |
|
11 |
vimartin |
1.7 |
\subsection{Single Lepton Selection}
|
12 |
claudioc |
1.19 |
\label{sec:singlelepselection}
|
13 |
vimartin |
1.7 |
|
14 |
claudioc |
1.19 |
The single lepton selection is based on the following criteria, starting from the requirements described
|
15 |
benhoob |
1.23 |
on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20)
|
16 |
benhoob |
1.1 |
\begin{itemize}
|
17 |
vimartin |
1.2 |
\item satisfy the trigger requirement (see
|
18 |
claudioc |
1.26 |
Table~\ref{tab:TrigData}).
|
19 |
claudioc |
1.9 |
Note that the analysis triggers are inclusive single lepton triggers.
|
20 |
|
|
Dilepton triggers are used only for the dilepton control region.
|
21 |
vimartin |
1.2 |
\item select events with one high \pt\ electron or muon, requiring
|
22 |
|
|
\begin{itemize}
|
23 |
vimartin |
1.27 |
\item $\pt>30~\GeVc$ and $|\eta|<1.4442 (2.1)$ for electrons (muons). The restriction to the barrel for electrons
|
24 |
benhoob |
1.23 |
is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region,
|
25 |
|
|
and does not significantly reduce the signal acceptance since the leptons tend to be central.
|
26 |
vimartin |
1.10 |
\item muon ID criteria is based on the 2012 POG recommended tight working point
|
27 |
|
|
\item electron ID critera is based on the 2012 POG recommended medium working point
|
28 |
benhoob |
1.23 |
\item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections
|
29 |
|
|
are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs).
|
30 |
vimartin |
1.10 |
\item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
|
31 |
benhoob |
1.23 |
\item $E/p_{\rm{in}} < 4$ (electrons only)
|
32 |
claudioc |
1.19 |
\item We remove electron events with $\met > 50$ GeV and $M_T > 100$
|
33 |
|
|
GeV with at least one crystal in the supercluster with laser
|
34 |
claudioc |
1.26 |
correction $>$2.\footnote{This is an ad-hoc removal based on
|
35 |
claudioc |
1.19 |
run-event numbers, since the
|
36 |
|
|
problem was found very recently and the filter was not available
|
37 |
|
|
when we processed the events.}
|
38 |
vimartin |
1.2 |
\end{itemize}
|
39 |
|
|
\item require at least 4 PF jets in the event with $\pt>30~\GeV$
|
40 |
vimartin |
1.7 |
within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
|
41 |
|
|
medium working point b-tagging requirement
|
42 |
benhoob |
1.23 |
\item require moderate $\met>50~\GeV$ (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}).
|
43 |
claudioc |
1.19 |
\item Isolated track veto, see Section~\ref{sec:tkveto}
|
44 |
|
|
|
45 |
benhoob |
1.1 |
\end{itemize}
|
46 |
|
|
|
47 |
vimartin |
1.12 |
%Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
|
48 |
fkw |
1.6 |
|
49 |
vimartin |
1.12 |
%\begin{table}[!h]
|
50 |
|
|
%\begin{center}
|
51 |
|
|
%\begin{tabular}{c|c}
|
52 |
|
|
%\hline
|
53 |
|
|
%\hline
|
54 |
|
|
%\end{tabular}
|
55 |
|
|
%\caption{ Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
|
56 |
|
|
%\end{center}
|
57 |
|
|
%\end{table}
|
58 |
fkw |
1.6 |
|
59 |
claudioc |
1.19 |
\subsection{Isolated track veto}
|
60 |
|
|
\label{sec:tkveto}
|
61 |
|
|
|
62 |
|
|
The isolated track veto is intended to remove top dilepton events.
|
63 |
|
|
Looking for an isolated track is an effective way of identifying $W
|
64 |
|
|
\to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to
|
65 |
|
|
h^{\pm} + n\pi^{0}$. The requirements on the track are
|
66 |
|
|
|
67 |
|
|
\begin{itemize}
|
68 |
|
|
\item $P_T > 10$ GeV
|
69 |
|
|
\item Relative track isolation $< 10\%$ computed from charged PF
|
70 |
vimartin |
1.30 |
candidates with $d_Z<$ 0.05 cm from the primary vertex.
|
71 |
claudioc |
1.19 |
\end{itemize}
|
72 |
|
|
|
73 |
|
|
|
74 |
vimartin |
1.7 |
\subsection{Signal Region Selection}
|
75 |
claudioc |
1.19 |
\label{sec:SR}
|
76 |
vimartin |
1.8 |
|
77 |
vimartin |
1.7 |
The signal regions (SRs) are selected to improve the sensitivity for the
|
78 |
|
|
single lepton requirements and cover a range of scalar top
|
79 |
|
|
scenarios. The \mt\ and \met\ variables are used to define the signal
|
80 |
|
|
regions and the requirements are listed in Table~\ref{tab:srdef}.
|
81 |
|
|
|
82 |
fkw |
1.6 |
\begin{table}[!h]
|
83 |
|
|
\begin{center}
|
84 |
vimartin |
1.7 |
\begin{tabular}{l|c|c}
|
85 |
fkw |
1.6 |
\hline
|
86 |
vimartin |
1.7 |
Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
|
87 |
fkw |
1.6 |
\hline
|
88 |
|
|
\hline
|
89 |
vimartin |
1.7 |
SRA & 150 & 100 \\
|
90 |
|
|
SRB & 120 & 150 \\
|
91 |
|
|
SRC & 120 & 200 \\
|
92 |
|
|
SRD & 120 & 250 \\
|
93 |
|
|
SRE & 120 & 300 \\
|
94 |
vimartin |
1.18 |
SRF & 120 & 350 \\
|
95 |
|
|
SRG & 120 & 400 \\
|
96 |
fkw |
1.6 |
\hline
|
97 |
|
|
\end{tabular}
|
98 |
vimartin |
1.7 |
\caption{ Signal region definitions based on \mt\ and \met\
|
99 |
|
|
requirements. These requirements are applied in addition to the
|
100 |
|
|
baseline single lepton selection.
|
101 |
|
|
\label{tab:srdef}}
|
102 |
fkw |
1.6 |
\end{center}
|
103 |
|
|
\end{table}
|
104 |
|
|
|
105 |
vimartin |
1.7 |
Table~\ref{tab:srrawmcyields} shows the expected number of SM
|
106 |
|
|
background yields for the SRs. A few stop signal yields for four
|
107 |
|
|
values of the parameters are also shown for comparison. The signal
|
108 |
|
|
regions with looser requirements are sensitive to lower stop masses
|
109 |
|
|
M(\sctop), while those with tighter requirements are more sensitive to
|
110 |
vimartin |
1.31 |
higher M(\sctop). Kinematic distributions for a few sample signal
|
111 |
|
|
points can be found in Appendix~\ref{app:sigkin}.
|
112 |
vimartin |
1.7 |
|
113 |
fkw |
1.6 |
\begin{table}[!h]
|
114 |
|
|
\begin{center}
|
115 |
benhoob |
1.23 |
\footnotesize
|
116 |
vimartin |
1.18 |
\begin{tabular}{l||c|c|c|c|c|c|c}
|
117 |
fkw |
1.6 |
\hline
|
118 |
vimartin |
1.18 |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
|
119 |
fkw |
1.6 |
\hline
|
120 |
|
|
\hline
|
121 |
vimartin |
1.18 |
\ttdl\ & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\
|
122 |
|
|
\ttsl\ \& single top (1\Lep) & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\
|
123 |
|
|
\wjets\ & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
|
124 |
|
|
Rare & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\
|
125 |
fkw |
1.6 |
\hline
|
126 |
vimartin |
1.18 |
Total & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\
|
127 |
fkw |
1.6 |
\hline
|
128 |
benhoob |
1.23 |
Yield UL (optimistic) & 147 (10\%) & 94 (10\%) & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%) \\
|
129 |
|
|
Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\
|
130 |
|
|
\hline
|
131 |
linacre |
1.25 |
T2tt m(stop) = 250 m($\chi^0$) = 0 & $315 \pm 18$& $193 \pm 14$& $53 \pm 8$& $13 \pm 4$& $2 \pm 2$& $0 \pm 0$& $0 \pm 0$ \\ \hline
|
132 |
|
|
T2tt m(stop) = 300 m($\chi^0$) = 50 & $296 \pm 11$& $236 \pm 10$& $88 \pm 6$& $28 \pm 3$& $10 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\ \hline
|
133 |
|
|
T2tt m(stop) = 300 m($\chi^0$) = 100 & $128 \pm 7$& $93 \pm 6$& $29 \pm 3$& $10 \pm 2$& $5 \pm 1$& $2 \pm 1$& $1 \pm 1$ \\ \hline
|
134 |
|
|
T2tt m(stop) = 350 m($\chi^0$) = 0 & $224 \pm 6$& $206 \pm 6$& $119 \pm 4$& $52 \pm 3$& $20 \pm 2$& $8 \pm 1$& $3 \pm 1$ \\ \hline
|
135 |
|
|
T2tt m(stop) = 450 m($\chi^0$) = 0 & $71 \pm 2$& $71 \pm 2$& $53 \pm 1$& $36 \pm 1$& $21 \pm 1$& $11 \pm 1$& $5 \pm 0$ \\
|
136 |
vimartin |
1.22 |
\hline
|
137 |
fkw |
1.6 |
\end{tabular}
|
138 |
benhoob |
1.23 |
\caption{ Expected SM background contributions and signal yields for a few sample points,
|
139 |
|
|
including both muon and electron channels. This is ``dead reckoning'' MC with no
|
140 |
|
|
correction. It is meant only as a general guide. The uncertainties are statistical only.
|
141 |
vimartin |
1.28 |
The signal yield expected upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses.
|
142 |
vimartin |
1.27 |
%[{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ].
|
143 |
benhoob |
1.23 |
%HOOBERMAN
|
144 |
vimartin |
1.7 |
\label{tab:srrawmcyields}}
|
145 |
fkw |
1.6 |
\end{center}
|
146 |
|
|
\end{table}
|
147 |
|
|
|
148 |
vimartin |
1.8 |
\subsection{Control Region Selection}
|
149 |
benhoob |
1.24 |
\label{sec:CRsel}
|
150 |
fkw |
1.5 |
|
151 |
vimartin |
1.7 |
Control regions (CRs) are used to validate the background estimation
|
152 |
|
|
procedure and derive systematic uncertainties for some
|
153 |
|
|
contributions. The CRs are selected to have similar
|
154 |
|
|
kinematics to the SRs, but have a different requirement in terms of
|
155 |
|
|
number of b-tags and number of leptons, thus enhancing them in
|
156 |
|
|
different SM contributions. The four CRs used in this analysis are
|
157 |
claudioc |
1.19 |
summarized in Table~\ref{tab:crdef}.
|
158 |
fkw |
1.5 |
|
159 |
vimartin |
1.7 |
\begin{table}
|
160 |
fkw |
1.6 |
\begin{center}
|
161 |
vimartin |
1.7 |
{\small
|
162 |
|
|
\begin{tabular}{l|c|c|c}
|
163 |
fkw |
1.6 |
\hline
|
164 |
vimartin |
1.7 |
Selection & \multirow{2}{*}{exactly 1 lepton} & \multirow{2}{*}{exactly 2
|
165 |
|
|
leptons} & \multirow{2}{*}{1 lepton + isolated
|
166 |
|
|
track}\\
|
167 |
|
|
Criteria & & & \\
|
168 |
|
|
\hline
|
169 |
|
|
\hline
|
170 |
|
|
\multirow{4}{*}{0 b-tags}
|
171 |
|
|
& CR1) W+Jets dominated:
|
172 |
|
|
& CR2) apply \Z-mass constraint
|
173 |
|
|
& CR3) not used \\
|
174 |
|
|
&
|
175 |
|
|
& $\rightarrow$ Z+Jets dominated: Validate
|
176 |
|
|
& \\
|
177 |
|
|
& Validate W+Jets \mt\ tail
|
178 |
|
|
& \ttsl\ \mt\ tail comparing
|
179 |
|
|
& \\
|
180 |
|
|
&
|
181 |
|
|
& data vs. MC ``pseudo-\mt ''
|
182 |
|
|
& \\
|
183 |
|
|
\hline
|
184 |
|
|
\multirow{4}{*}{$\ge$ 1 b-tags}
|
185 |
|
|
&
|
186 |
|
|
& CR4) Apply \Z-mass veto
|
187 |
|
|
& CR5) \ttdl, \ttlt\ and \\
|
188 |
|
|
& SIGNAL
|
189 |
|
|
& $\rightarrow$ \ttdl\ dominated: Validate
|
190 |
|
|
& \ttlf\ dominated: Validate \\
|
191 |
|
|
& REGION
|
192 |
|
|
& ``physics'' modelling of \ttdl\
|
193 |
|
|
& \Tau\ and fake lepton modeling/\\
|
194 |
|
|
&
|
195 |
|
|
&
|
196 |
|
|
& detector effects in \ttdl\ \\
|
197 |
fkw |
1.6 |
\hline
|
198 |
|
|
\end{tabular}
|
199 |
vimartin |
1.7 |
}
|
200 |
|
|
\caption{Summary of signal and control regions.
|
201 |
|
|
\label{tab:crdef}%\protect
|
202 |
|
|
}
|
203 |
fkw |
1.6 |
\end{center}
|
204 |
|
|
\end{table}
|
205 |
fkw |
1.5 |
|
206 |
claudioc |
1.19 |
\subsection{Definition of $M_T$ peak region}
|
207 |
|
|
\label{sec:mtpeakdef}
|
208 |
vimartin |
1.7 |
|
209 |
claudioc |
1.19 |
This region is defined as $50 < M_T < 80$ GeV.
|
210 |
vimartin |
1.7 |
|
211 |
|
|
|
212 |
claudioc |
1.19 |
\subsection{Default \ttbar\ MC sample}
|
213 |
benhoob |
1.1 |
|
214 |
claudioc |
1.19 |
Our default \ttbar\ MC sample is Powheg.
|
215 |
vimartin |
1.8 |
|
216 |
claudioc |
1.19 |
\subsection{MC Corrections}
|
217 |
|
|
\label{sec:MCCorr}
|
218 |
vimartin |
1.7 |
|
219 |
claudioc |
1.19 |
All MC samples are corrected for trigger efficiency. In the case of
|
220 |
vimartin |
1.30 |
single lepton selections, we apply the $\pt$ and $\eta$-dependent
|
221 |
vimartin |
1.27 |
scale factors that we measure ourselves, see Section~\ref{sec:trg}.
|
222 |
claudioc |
1.19 |
In the case of dilepton selections that require the dilepton triggers,
|
223 |
|
|
we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$,
|
224 |
|
|
$\mu\mu$,
|
225 |
|
|
and $e\mu$ respectively~\cite{didar}.
|
226 |
vimartin |
1.2 |
|
227 |
|
|
The leptonic branching fraction used in some of the \ttbar\ MC samples
|
228 |
benhoob |
1.3 |
differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
|
229 |
linacre |
1.29 |
Table~\ref{tab:wlepbf} summarizes the branching fractions used in
|
230 |
vimartin |
1.2 |
the generation of the various \ttbar\ MC samples.
|
231 |
|
|
For \ttbar\ samples with the incorrect leptonic branching fraction, event
|
232 |
|
|
weights are applied based on the number of true leptons and the ratio
|
233 |
|
|
of the corrected and incorrect branching fractions.
|
234 |
|
|
|
235 |
|
|
\begin{table}[!h]
|
236 |
|
|
\begin{center}
|
237 |
|
|
\begin{tabular}{c|c}
|
238 |
|
|
\hline
|
239 |
|
|
\ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\
|
240 |
|
|
\hline
|
241 |
|
|
\hline
|
242 |
benhoob |
1.23 |
Madgraph & 0.111\\
|
243 |
|
|
MC@NLO & 0.111\\
|
244 |
|
|
Pythia & 0.108\\
|
245 |
vimartin |
1.2 |
Powheg & 0.108\\
|
246 |
|
|
\hline
|
247 |
|
|
\end{tabular}
|
248 |
|
|
\caption{Leptonic branching fractions for the various \ttbar\ samples
|
249 |
benhoob |
1.23 |
used in the analysis. The \ttbar\ MC samples produced with
|
250 |
|
|
Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than
|
251 |
vimartin |
1.2 |
the PDG value. \label{tab:wlepbf}}
|
252 |
|
|
\end{center}
|
253 |
|
|
\end{table}
|
254 |
|
|
|
255 |
claudioc |
1.19 |
All \ttbar\ dilepton samples are corrected (when needed and
|
256 |
|
|
appropriate)
|
257 |
vimartin |
1.27 |
in order to have the correct jet multiplicity distribution. This
|
258 |
claudioc |
1.19 |
correction procedure is described in Section~\ref{sec:jetmultiplicity}.
|
259 |
|
|
|
260 |
|
|
|
261 |
|
|
\subsubsection{Corrections to Jets and \met}
|
262 |
|
|
\label{sec:JetMet}
|
263 |
|
|
|
264 |
|
|
The official recommendations from the Jet/MET group are used for
|
265 |
|
|
the data and MC samples. In particular, the jet
|
266 |
|
|
energy corrections (JEC) are updated using the official recipe.
|
267 |
|
|
L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
|
268 |
vimartin |
1.21 |
based on the global tags GR\_R\_52\_V9 (START52\_V9B) for
|
269 |
claudioc |
1.19 |
data (MC). In addition, these jet energy corrections are propagated to
|
270 |
|
|
the \met\ calculation, following the official prescription for
|
271 |
|
|
deriving the Type I corrections.
|
272 |
|
|
|
273 |
|
|
Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
|
274 |
vimartin |
1.30 |
can correspond to events with unphysically large \met\ and \mt.
|
275 |
linacre |
1.29 |
%tail signal region.
|
276 |
|
|
In addition, the recommended MET filters are applied.
|
277 |
claudioc |
1.19 |
A correction to remove the $\phi$ modulation in \met\ is also applied
|
278 |
|
|
to the data.
|
279 |
|
|
|
280 |
|
|
|
281 |
|
|
\subsection{Lepton Selection Efficiency Measurements}
|
282 |
|
|
\label{sec:lepEff}
|
283 |
vimartin |
1.7 |
|
284 |
benhoob |
1.15 |
In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies.
|
285 |
|
|
The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
|
286 |
|
|
lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons.
|
287 |
|
|
The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement,
|
288 |
claudioc |
1.19 |
to measure the isolation efficiency we require the probe to pass the
|
289 |
|
|
identification requirement.
|
290 |
|
|
|
291 |
benhoob |
1.15 |
The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
|
292 |
claudioc |
1.19 |
In order to suppress lepton pairs from sources other than Z boson
|
293 |
|
|
decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged
|
294 |
|
|
jets (CSV loose working point).
|
295 |
|
|
|
296 |
benhoob |
1.15 |
The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for
|
297 |
benhoob |
1.23 |
several different jet multiplicity requirements.
|
298 |
|
|
We currently observe good agreement for muons with \pt\ up to about 300 GeV.
|
299 |
benhoob |
1.33 |
For high \pt\ muons we observe a source of background in the data, which we suppress by only considering probes which satisfy the impact parameter requirements $d_0<0.02$~cm and $d_Z<0.5$~cm, and the probe is required to be reconstructed as a tracker muon.
|
300 |
benhoob |
1.23 |
%For muons with \pt\ $>$ 200 GeV the data efficiency
|
301 |
|
|
%begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV.
|
302 |
vimartin |
1.30 |
%We are currently investigating the source of this inefficiency.
|
303 |
benhoob |
1.23 |
The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff}
|
304 |
|
|
for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies.
|
305 |
vimartin |
1.7 |
|
306 |
claudioc |
1.26 |
% Pending a better understanding of the very high \pt\ muon efficiency,
|
307 |
|
|
We
|
308 |
claudioc |
1.19 |
do not correct the MC for differences in lepton efficiency. In the
|
309 |
|
|
background calculation, we do not take any systematics due to lepton
|
310 |
|
|
selection
|
311 |
|
|
efficiency uncertainties. This is because all backgrounds except the
|
312 |
benhoob |
1.23 |
rare MC background are normalized to the $M_T$ peak, thus the lepton
|
313 |
claudioc |
1.19 |
identification uncertainty cancels out. For the rare MC these
|
314 |
|
|
uncertainties
|
315 |
|
|
are negligible compared to the assumed cross-section uncertainty
|
316 |
|
|
(Section~\ref{sec:bkg_other}).
|
317 |
|
|
|
318 |
benhoob |
1.11 |
|
319 |
benhoob |
1.15 |
|
320 |
|
|
|
321 |
|
|
\begin{table}[htb]
|
322 |
|
|
\begin{center}
|
323 |
|
|
\scriptsize
|
324 |
|
|
\caption{\label{tab:mutnpeff}
|
325 |
|
|
Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.}
|
326 |
|
|
\begin{tabular}{c|c|c|c}
|
327 |
|
|
|
328 |
benhoob |
1.32 |
|
329 |
|
|
%-------------------
|
330 |
|
|
%Doing muons
|
331 |
|
|
%-------------------
|
332 |
|
|
%DOING MUON ETA BINS
|
333 |
benhoob |
1.33 |
%Selection : (((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(tag->pt()>30.0))&&(met<30))&&(nbl==0))&&(abs(tag->eta())<2.1))&&(abs(probe->eta())<2.1))&&(mutrk==1))&&(mud0 < 0.02))&&(mudz < 0.5))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0)
|
334 |
|
|
%Ndata : 7053268
|
335 |
|
|
%NMC : 4406913
|
336 |
|
|
%ID cut : ((leptonSelection&65536)==65536)&&(abs(probepfpt - probe->pt()) < 10.0)
|
337 |
|
|
%iso cut : ((leptonSelection&131072)==131072)&&(probeiso * probe->pt() < 5.0)
|
338 |
|
|
|
339 |
|
|
|
340 |
benhoob |
1.15 |
|
341 |
|
|
\hline
|
342 |
|
|
\hline
|
343 |
benhoob |
1.33 |
MC ID& & & \\
|
344 |
benhoob |
1.15 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
|
345 |
|
|
\hline
|
346 |
benhoob |
1.33 |
20 - 30 & 0.9672 $\pm$ 0.0004 & 0.9639 $\pm$ 0.0005 & 0.9466 $\pm$ 0.0007 \\
|
347 |
|
|
30 - 40 & 0.9684 $\pm$ 0.0002 & 0.9658 $\pm$ 0.0003 & 0.9446 $\pm$ 0.0004 \\
|
348 |
|
|
40 - 50 & 0.9704 $\pm$ 0.0002 & 0.9685 $\pm$ 0.0002 & 0.9432 $\pm$ 0.0004 \\
|
349 |
|
|
50 - 60 & 0.9685 $\pm$ 0.0004 & 0.9640 $\pm$ 0.0005 & 0.9419 $\pm$ 0.0008 \\
|
350 |
|
|
60 - 80 & 0.9682 $\pm$ 0.0008 & 0.9628 $\pm$ 0.0010 & 0.9364 $\pm$ 0.0017 \\
|
351 |
|
|
80 - 100 & 0.9710 $\pm$ 0.0021 & 0.9633 $\pm$ 0.0027 & 0.9255 $\pm$ 0.0049 \\
|
352 |
|
|
100 - 150 & 0.9658 $\pm$ 0.0029 & 0.9623 $\pm$ 0.0036 & 0.9205 $\pm$ 0.0069 \\
|
353 |
|
|
150 - 200 & 0.9592 $\pm$ 0.0072 & 0.9392 $\pm$ 0.0103 & 0.9110 $\pm$ 0.0185 \\
|
354 |
|
|
200 - 300 & 0.9373 $\pm$ 0.0147 & 0.8889 $\pm$ 0.0218 & 0.8525 $\pm$ 0.0454 \\
|
355 |
|
|
300 - 10000 & 0.8923 $\pm$ 0.0384 & 0.7143 $\pm$ 0.0764 & 0.3333 $\pm$ 0.1925 \\
|
356 |
|
|
|
357 |
|
|
|
358 |
benhoob |
1.15 |
\hline
|
359 |
|
|
\hline
|
360 |
benhoob |
1.33 |
MC ISO& & & \\
|
361 |
benhoob |
1.15 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
|
362 |
|
|
\hline
|
363 |
benhoob |
1.33 |
20 - 30 & 0.8966 $\pm$ 0.0007 & 0.9152 $\pm$ 0.0008 & 0.9301 $\pm$ 0.0008 \\
|
364 |
|
|
30 - 40 & 0.9562 $\pm$ 0.0002 & 0.9589 $\pm$ 0.0003 & 0.9674 $\pm$ 0.0003 \\
|
365 |
|
|
40 - 50 & 0.9764 $\pm$ 0.0002 & 0.9809 $\pm$ 0.0002 & 0.9836 $\pm$ 0.0002 \\
|
366 |
|
|
50 - 60 & 0.9766 $\pm$ 0.0004 & 0.9810 $\pm$ 0.0004 & 0.9830 $\pm$ 0.0005 \\
|
367 |
|
|
60 - 80 & 0.9720 $\pm$ 0.0008 & 0.9777 $\pm$ 0.0008 & 0.9791 $\pm$ 0.0010 \\
|
368 |
|
|
80 - 100 & 0.9645 $\pm$ 0.0023 & 0.9658 $\pm$ 0.0026 & 0.9697 $\pm$ 0.0033 \\
|
369 |
|
|
100 - 150 & 0.9583 $\pm$ 0.0032 & 0.9603 $\pm$ 0.0037 & 0.9752 $\pm$ 0.0041 \\
|
370 |
|
|
150 - 200 & 0.9580 $\pm$ 0.0073 & 0.9392 $\pm$ 0.0103 & 0.9954 $\pm$ 0.0046 \\
|
371 |
|
|
200 - 300 & 0.9585 $\pm$ 0.0123 & 0.9583 $\pm$ 0.0144 & 0.9455 $\pm$ 0.0306 \\
|
372 |
|
|
300 - 10000 & 0.9667 $\pm$ 0.0232 & 0.9615 $\pm$ 0.0377 & 1.0000 $\pm$ 0.0000 \\
|
373 |
|
|
|
374 |
|
|
|
375 |
benhoob |
1.15 |
\hline
|
376 |
|
|
\hline
|
377 |
benhoob |
1.33 |
DATA ID& & & \\
|
378 |
benhoob |
1.15 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
|
379 |
|
|
\hline
|
380 |
benhoob |
1.33 |
20 - 30 & 0.9516 $\pm$ 0.0004 & 0.9495 $\pm$ 0.0005 & 0.9349 $\pm$ 0.0006 \\
|
381 |
|
|
30 - 40 & 0.9539 $\pm$ 0.0002 & 0.9509 $\pm$ 0.0003 & 0.9342 $\pm$ 0.0004 \\
|
382 |
|
|
40 - 50 & 0.9573 $\pm$ 0.0002 & 0.9556 $\pm$ 0.0002 & 0.9339 $\pm$ 0.0003 \\
|
383 |
|
|
50 - 60 & 0.9520 $\pm$ 0.0004 & 0.9480 $\pm$ 0.0005 & 0.9291 $\pm$ 0.0008 \\
|
384 |
|
|
60 - 80 & 0.9522 $\pm$ 0.0008 & 0.9453 $\pm$ 0.0010 & 0.9279 $\pm$ 0.0015 \\
|
385 |
|
|
80 - 100 & 0.9501 $\pm$ 0.0022 & 0.9443 $\pm$ 0.0027 & 0.9250 $\pm$ 0.0042 \\
|
386 |
|
|
100 - 150 & 0.9510 $\pm$ 0.0029 & 0.9397 $\pm$ 0.0038 & 0.9099 $\pm$ 0.0064 \\
|
387 |
|
|
150 - 200 & 0.9552 $\pm$ 0.0066 & 0.9452 $\pm$ 0.0089 & 0.8758 $\pm$ 0.0182 \\
|
388 |
|
|
200 - 300 & 0.9313 $\pm$ 0.0138 & 0.8770 $\pm$ 0.0210 & 0.8228 $\pm$ 0.0430 \\
|
389 |
|
|
300 - 10000 & 0.8704 $\pm$ 0.0457 & 0.7391 $\pm$ 0.0916 & 0.1429 $\pm$ 0.1323 \\
|
390 |
|
|
|
391 |
|
|
|
392 |
benhoob |
1.15 |
\hline
|
393 |
|
|
\hline
|
394 |
benhoob |
1.33 |
DATA ISO& & & \\
|
395 |
benhoob |
1.15 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
|
396 |
|
|
\hline
|
397 |
benhoob |
1.33 |
20 - 30 & 0.8907 $\pm$ 0.0006 & 0.9128 $\pm$ 0.0006 & 0.9364 $\pm$ 0.0006 \\
|
398 |
|
|
30 - 40 & 0.9532 $\pm$ 0.0002 & 0.9594 $\pm$ 0.0002 & 0.9712 $\pm$ 0.0002 \\
|
399 |
|
|
40 - 50 & 0.9744 $\pm$ 0.0001 & 0.9810 $\pm$ 0.0001 & 0.9858 $\pm$ 0.0002 \\
|
400 |
|
|
50 - 60 & 0.9751 $\pm$ 0.0003 & 0.9817 $\pm$ 0.0003 & 0.9871 $\pm$ 0.0003 \\
|
401 |
|
|
60 - 80 & 0.9710 $\pm$ 0.0006 & 0.9774 $\pm$ 0.0007 & 0.9836 $\pm$ 0.0008 \\
|
402 |
|
|
80 - 100 & 0.9645 $\pm$ 0.0019 & 0.9731 $\pm$ 0.0019 & 0.9781 $\pm$ 0.0024 \\
|
403 |
|
|
100 - 150 & 0.9597 $\pm$ 0.0027 & 0.9657 $\pm$ 0.0029 & 0.9821 $\pm$ 0.0031 \\
|
404 |
|
|
150 - 200 & 0.9389 $\pm$ 0.0076 & 0.9583 $\pm$ 0.0078 & 0.9538 $\pm$ 0.0121 \\
|
405 |
|
|
200 - 300 & 0.9600 $\pm$ 0.0109 & 0.9640 $\pm$ 0.0125 & 0.9701 $\pm$ 0.0208 \\
|
406 |
|
|
300 - 10000 & 0.9592 $\pm$ 0.0283 & 0.9444 $\pm$ 0.0540 & 1.0000 $\pm$ 0.0000 \\
|
407 |
|
|
|
408 |
|
|
|
409 |
benhoob |
1.15 |
\hline
|
410 |
|
|
\hline
|
411 |
benhoob |
1.33 |
Scale Factor ID& & & \\
|
412 |
benhoob |
1.15 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
|
413 |
|
|
\hline
|
414 |
benhoob |
1.33 |
20 - 30 & 0.9839 $\pm$ 0.0006 & 0.9850 $\pm$ 0.0008 & 0.9876 $\pm$ 0.0010 \\
|
415 |
|
|
30 - 40 & 0.9850 $\pm$ 0.0003 & 0.9846 $\pm$ 0.0004 & 0.9890 $\pm$ 0.0006 \\
|
416 |
|
|
40 - 50 & 0.9865 $\pm$ 0.0003 & 0.9866 $\pm$ 0.0003 & 0.9902 $\pm$ 0.0005 \\
|
417 |
|
|
50 - 60 & 0.9829 $\pm$ 0.0006 & 0.9834 $\pm$ 0.0007 & 0.9864 $\pm$ 0.0012 \\
|
418 |
|
|
60 - 80 & 0.9835 $\pm$ 0.0012 & 0.9818 $\pm$ 0.0015 & 0.9909 $\pm$ 0.0024 \\
|
419 |
|
|
80 - 100 & 0.9785 $\pm$ 0.0031 & 0.9803 $\pm$ 0.0039 & 0.9995 $\pm$ 0.0070 \\
|
420 |
|
|
100 - 150 & 0.9847 $\pm$ 0.0042 & 0.9765 $\pm$ 0.0054 & 0.9884 $\pm$ 0.0102 \\
|
421 |
|
|
150 - 200 & 0.9958 $\pm$ 0.0101 & 1.0064 $\pm$ 0.0145 & 0.9613 $\pm$ 0.0279 \\
|
422 |
|
|
200 - 300 & 0.9937 $\pm$ 0.0215 & 0.9867 $\pm$ 0.0339 & 0.9652 $\pm$ 0.0720 \\
|
423 |
|
|
300 - 10000 & 0.9754 $\pm$ 0.0663 & 1.0348 $\pm$ 0.1693 & 0.4286 $\pm$ 0.4676 \\
|
424 |
|
|
|
425 |
|
|
|
426 |
benhoob |
1.15 |
\hline
|
427 |
|
|
\hline
|
428 |
benhoob |
1.33 |
Scale Factor ISO& & & \\
|
429 |
benhoob |
1.15 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
|
430 |
|
|
\hline
|
431 |
benhoob |
1.33 |
20 - 30 & 0.9934 $\pm$ 0.0010 & 0.9974 $\pm$ 0.0011 & 1.0068 $\pm$ 0.0011 \\
|
432 |
|
|
30 - 40 & 0.9969 $\pm$ 0.0003 & 1.0004 $\pm$ 0.0004 & 1.0039 $\pm$ 0.0004 \\
|
433 |
|
|
40 - 50 & 0.9979 $\pm$ 0.0002 & 1.0001 $\pm$ 0.0002 & 1.0023 $\pm$ 0.0003 \\
|
434 |
|
|
50 - 60 & 0.9985 $\pm$ 0.0005 & 1.0007 $\pm$ 0.0005 & 1.0042 $\pm$ 0.0006 \\
|
435 |
|
|
60 - 80 & 0.9989 $\pm$ 0.0011 & 0.9997 $\pm$ 0.0011 & 1.0046 $\pm$ 0.0013 \\
|
436 |
|
|
80 - 100 & 0.9999 $\pm$ 0.0031 & 1.0075 $\pm$ 0.0034 & 1.0086 $\pm$ 0.0042 \\
|
437 |
|
|
100 - 150 & 1.0014 $\pm$ 0.0043 & 1.0056 $\pm$ 0.0049 & 1.0071 $\pm$ 0.0053 \\
|
438 |
|
|
150 - 200 & 0.9802 $\pm$ 0.0109 & 1.0203 $\pm$ 0.0139 & 0.9582 $\pm$ 0.0129 \\
|
439 |
|
|
200 - 300 & 1.0016 $\pm$ 0.0171 & 1.0059 $\pm$ 0.0200 & 1.0261 $\pm$ 0.0398 \\
|
440 |
|
|
300 - 10000 & 0.9923 $\pm$ 0.0377 & 0.9822 $\pm$ 0.0681 & 1.0000 $\pm$ 0.0000 \\
|
441 |
benhoob |
1.15 |
\hline
|
442 |
|
|
\hline
|
443 |
|
|
|
444 |
benhoob |
1.33 |
%Using xmax 350
|
445 |
|
|
%data all 2.21882e+06
|
446 |
|
|
%data pass 2.1274e+06
|
447 |
|
|
%data eff 0.958794
|
448 |
|
|
%data eff2 0.958794
|
449 |
|
|
%MC all 1.38687e+06
|
450 |
|
|
%MC pass 1.33047e+06
|
451 |
|
|
%MC eff 0.959338
|
452 |
|
|
%MC eff2 0.959338
|
453 |
|
|
|
454 |
|
|
|
455 |
benhoob |
1.32 |
|
456 |
benhoob |
1.15 |
\end{tabular}
|
457 |
|
|
\end{center}
|
458 |
|
|
\end{table}
|
459 |
|
|
|
460 |
|
|
\begin{figure}[hbt]
|
461 |
|
|
\begin{center}
|
462 |
benhoob |
1.16 |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}%
|
463 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf}
|
464 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}%
|
465 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf}
|
466 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}%
|
467 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf}
|
468 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}%
|
469 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf}
|
470 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}%
|
471 |
|
|
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf}
|
472 |
benhoob |
1.15 |
\caption{
|
473 |
|
|
\label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }
|
474 |
|
|
\end{center}
|
475 |
|
|
\end{figure}
|
476 |
|
|
|
477 |
benhoob |
1.17 |
\clearpage
|
478 |
|
|
|
479 |
|
|
\begin{table}[htb]
|
480 |
|
|
\begin{center}
|
481 |
|
|
\scriptsize
|
482 |
|
|
\caption{\label{tab:eltnpeff}
|
483 |
|
|
Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.}
|
484 |
|
|
\begin{tabular}{c|c|c}
|
485 |
benhoob |
1.15 |
|
486 |
benhoob |
1.32 |
%-------------------
|
487 |
benhoob |
1.33 |
%Doing electrons: FULL 2012 SAMPLE
|
488 |
benhoob |
1.32 |
%-------------------
|
489 |
|
|
%DOING ELECTRON ETA BINS
|
490 |
benhoob |
1.33 |
%Selection : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(tag->pt()>30.0))&&(met<30))&&(nbl==0))&&(abs(tag->eta())<1.4442))&&(abs(probe->eta())<1.4442))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0)
|
491 |
|
|
%Ndata : 3962010
|
492 |
|
|
%NMC : 2276057
|
493 |
|
|
%ID cut : (((leptonSelection&8)==8)&&(abs(probepfpt - probe->pt()) < 10.0))&&(probe_eoverpin < 4.0)
|
494 |
|
|
%iso cut : ((leptonSelection&16)==16)&&(probeiso * probe->pt() < 5.0)
|
495 |
|
|
|
496 |
benhoob |
1.17 |
|
497 |
|
|
\hline
|
498 |
|
|
\hline
|
499 |
|
|
MC ID & & \\
|
500 |
benhoob |
1.33 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
|
501 |
|
|
\hline
|
502 |
|
|
20 - 30 & 0.8206 $\pm$ 0.0014 & 0.7846 $\pm$ 0.0014 \\
|
503 |
|
|
30 - 40 & 0.8602 $\pm$ 0.0006 & 0.8494 $\pm$ 0.0007 \\
|
504 |
|
|
40 - 50 & 0.8775 $\pm$ 0.0004 & 0.8849 $\pm$ 0.0005 \\
|
505 |
|
|
50 - 60 & 0.8842 $\pm$ 0.0009 & 0.8917 $\pm$ 0.0012 \\
|
506 |
|
|
60 - 80 & 0.8877 $\pm$ 0.0016 & 0.8951 $\pm$ 0.0022 \\
|
507 |
|
|
80 - 100 & 0.8876 $\pm$ 0.0043 & 0.9035 $\pm$ 0.0055 \\
|
508 |
|
|
100 - 150 & 0.8898 $\pm$ 0.0055 & 0.8962 $\pm$ 0.0075 \\
|
509 |
|
|
150 - 200 & 0.8746 $\pm$ 0.0129 & 0.8683 $\pm$ 0.0189 \\
|
510 |
|
|
200 - 300 & 0.8760 $\pm$ 0.0205 & 0.9160 $\pm$ 0.0242 \\
|
511 |
|
|
300 - 10000 & 0.8444 $\pm$ 0.0540 & 0.7778 $\pm$ 0.0980 \\
|
512 |
|
|
|
513 |
|
|
|
514 |
benhoob |
1.17 |
\hline
|
515 |
benhoob |
1.33 |
\hline
|
516 |
|
|
MC ISO & & \\
|
517 |
|
|
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
|
518 |
|
|
\hline
|
519 |
|
|
20 - 30 & 0.9198 $\pm$ 0.0011 & 0.9405 $\pm$ 0.0009 \\
|
520 |
|
|
30 - 40 & 0.9667 $\pm$ 0.0003 & 0.9699 $\pm$ 0.0003 \\
|
521 |
|
|
40 - 50 & 0.9809 $\pm$ 0.0002 & 0.9796 $\pm$ 0.0003 \\
|
522 |
|
|
50 - 60 & 0.9788 $\pm$ 0.0004 & 0.9774 $\pm$ 0.0006 \\
|
523 |
|
|
60 - 80 & 0.9729 $\pm$ 0.0009 & 0.9702 $\pm$ 0.0013 \\
|
524 |
|
|
80 - 100 & 0.9633 $\pm$ 0.0027 & 0.9528 $\pm$ 0.0041 \\
|
525 |
|
|
100 - 150 & 0.9548 $\pm$ 0.0038 & 0.9510 $\pm$ 0.0054 \\
|
526 |
|
|
150 - 200 & 0.9581 $\pm$ 0.0082 & 0.9358 $\pm$ 0.0142 \\
|
527 |
|
|
200 - 300 & 0.9187 $\pm$ 0.0174 & 0.9231 $\pm$ 0.0234 \\
|
528 |
|
|
300 - 10000 & 0.8085 $\pm$ 0.0574 & 0.9333 $\pm$ 0.0644 \\
|
529 |
|
|
|
530 |
|
|
|
531 |
benhoob |
1.17 |
\hline
|
532 |
|
|
\hline
|
533 |
|
|
DATA ID & & \\
|
534 |
benhoob |
1.33 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
|
535 |
benhoob |
1.17 |
\hline
|
536 |
benhoob |
1.33 |
20 - 30 & 0.8143 $\pm$ 0.0011 & 0.7557 $\pm$ 0.0011 \\
|
537 |
|
|
30 - 40 & 0.8502 $\pm$ 0.0004 & 0.8245 $\pm$ 0.0006 \\
|
538 |
|
|
40 - 50 & 0.8687 $\pm$ 0.0003 & 0.8632 $\pm$ 0.0004 \\
|
539 |
|
|
50 - 60 & 0.8736 $\pm$ 0.0007 & 0.8718 $\pm$ 0.0010 \\
|
540 |
|
|
60 - 80 & 0.8741 $\pm$ 0.0014 & 0.8770 $\pm$ 0.0019 \\
|
541 |
|
|
80 - 100 & 0.8809 $\pm$ 0.0035 & 0.8751 $\pm$ 0.0049 \\
|
542 |
|
|
100 - 150 & 0.8802 $\pm$ 0.0047 & 0.8795 $\pm$ 0.0066 \\
|
543 |
|
|
150 - 200 & 0.8935 $\pm$ 0.0102 & 0.8631 $\pm$ 0.0161 \\
|
544 |
|
|
200 - 300 & 0.8645 $\pm$ 0.0194 & 0.8110 $\pm$ 0.0306 \\
|
545 |
|
|
300 - 10000 & 0.9111 $\pm$ 0.0424 & 0.8000 $\pm$ 0.0894 \\
|
546 |
|
|
|
547 |
|
|
|
548 |
|
|
\hline
|
549 |
|
|
\hline
|
550 |
|
|
DATA ISO & & \\
|
551 |
|
|
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
|
552 |
|
|
\hline
|
553 |
|
|
20 - 30 & 0.9141 $\pm$ 0.0008 & 0.9348 $\pm$ 0.0007 \\
|
554 |
|
|
30 - 40 & 0.9636 $\pm$ 0.0002 & 0.9663 $\pm$ 0.0003 \\
|
555 |
|
|
40 - 50 & 0.9783 $\pm$ 0.0001 & 0.9762 $\pm$ 0.0002 \\
|
556 |
|
|
50 - 60 & 0.9746 $\pm$ 0.0004 & 0.9738 $\pm$ 0.0005 \\
|
557 |
|
|
60 - 80 & 0.9692 $\pm$ 0.0008 & 0.9656 $\pm$ 0.0011 \\
|
558 |
|
|
80 - 100 & 0.9625 $\pm$ 0.0021 & 0.9541 $\pm$ 0.0033 \\
|
559 |
|
|
100 - 150 & 0.9514 $\pm$ 0.0033 & 0.9398 $\pm$ 0.0050 \\
|
560 |
|
|
150 - 200 & 0.9448 $\pm$ 0.0077 & 0.9422 $\pm$ 0.0115 \\
|
561 |
|
|
200 - 300 & 0.9210 $\pm$ 0.0158 & 0.9301 $\pm$ 0.0213 \\
|
562 |
|
|
300 - 10000 & 0.9318 $\pm$ 0.0380 & 0.9412 $\pm$ 0.0571 \\
|
563 |
|
|
|
564 |
|
|
|
565 |
|
|
\hline
|
566 |
|
|
\hline
|
567 |
|
|
Scale Factor ID & & \\
|
568 |
|
|
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
|
569 |
|
|
\hline
|
570 |
|
|
20 - 30 & 0.9923 $\pm$ 0.0022 & 0.9632 $\pm$ 0.0022 \\
|
571 |
|
|
30 - 40 & 0.9883 $\pm$ 0.0008 & 0.9707 $\pm$ 0.0010 \\
|
572 |
|
|
40 - 50 & 0.9900 $\pm$ 0.0006 & 0.9755 $\pm$ 0.0008 \\
|
573 |
|
|
50 - 60 & 0.9880 $\pm$ 0.0012 & 0.9777 $\pm$ 0.0017 \\
|
574 |
|
|
60 - 80 & 0.9847 $\pm$ 0.0024 & 0.9797 $\pm$ 0.0032 \\
|
575 |
|
|
80 - 100 & 0.9924 $\pm$ 0.0062 & 0.9687 $\pm$ 0.0081 \\
|
576 |
|
|
100 - 150 & 0.9892 $\pm$ 0.0081 & 0.9813 $\pm$ 0.0110 \\
|
577 |
|
|
150 - 200 & 1.0216 $\pm$ 0.0191 & 0.9940 $\pm$ 0.0286 \\
|
578 |
|
|
200 - 300 & 0.9869 $\pm$ 0.0320 & 0.8853 $\pm$ 0.0408 \\
|
579 |
|
|
300 - 10000 & 1.0789 $\pm$ 0.0854 & 1.0286 $\pm$ 0.1733 \\
|
580 |
|
|
|
581 |
|
|
|
582 |
benhoob |
1.17 |
\hline
|
583 |
|
|
\hline
|
584 |
|
|
Scale Factor ISO & & \\
|
585 |
benhoob |
1.33 |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
|
586 |
benhoob |
1.17 |
\hline
|
587 |
benhoob |
1.33 |
20 - 30 & 0.9938 $\pm$ 0.0015 & 0.9939 $\pm$ 0.0012 \\
|
588 |
|
|
30 - 40 & 0.9968 $\pm$ 0.0004 & 0.9963 $\pm$ 0.0005 \\
|
589 |
|
|
40 - 50 & 0.9973 $\pm$ 0.0002 & 0.9965 $\pm$ 0.0003 \\
|
590 |
|
|
50 - 60 & 0.9957 $\pm$ 0.0005 & 0.9963 $\pm$ 0.0008 \\
|
591 |
|
|
60 - 80 & 0.9962 $\pm$ 0.0012 & 0.9952 $\pm$ 0.0017 \\
|
592 |
|
|
80 - 100 & 0.9992 $\pm$ 0.0035 & 1.0013 $\pm$ 0.0055 \\
|
593 |
|
|
100 - 150 & 0.9964 $\pm$ 0.0052 & 0.9882 $\pm$ 0.0077 \\
|
594 |
|
|
150 - 200 & 0.9861 $\pm$ 0.0117 & 1.0068 $\pm$ 0.0196 \\
|
595 |
|
|
200 - 300 & 1.0025 $\pm$ 0.0256 & 1.0076 $\pm$ 0.0344 \\
|
596 |
|
|
300 - 10000 & 1.1525 $\pm$ 0.0944 & 1.0084 $\pm$ 0.0926 \\
|
597 |
benhoob |
1.17 |
\hline
|
598 |
|
|
\hline
|
599 |
|
|
|
600 |
benhoob |
1.33 |
%Using xmax 350
|
601 |
|
|
%data all 1.02393e+06
|
602 |
|
|
%data pass 987762
|
603 |
|
|
%data eff 0.964679
|
604 |
|
|
%data eff2 0.964679
|
605 |
|
|
%MC all 590742
|
606 |
|
|
%MC pass 571835
|
607 |
|
|
%MC eff 0.967994
|
608 |
|
|
%MC eff2 0.967994
|
609 |
|
|
%Using xmax 350
|
610 |
|
|
%data all 1.17606e+06
|
611 |
|
|
%data pass 987762
|
612 |
|
|
%data eff 0.839889
|
613 |
|
|
%data eff2 0.839889
|
614 |
|
|
%MC all 668187
|
615 |
|
|
%MC pass 571835
|
616 |
|
|
%MC eff 0.855801
|
617 |
|
|
%MC eff2 0.855801
|
618 |
|
|
|
619 |
benhoob |
1.17 |
\end{tabular}
|
620 |
|
|
\end{center}
|
621 |
|
|
\end{table}
|
622 |
|
|
|
623 |
|
|
\begin{figure}[hbt]
|
624 |
|
|
\begin{center}
|
625 |
vimartin |
1.18 |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}%
|
626 |
benhoob |
1.17 |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf}
|
627 |
|
|
\includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}%
|
628 |
|
|
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf}
|
629 |
|
|
\includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}%
|
630 |
|
|
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf}
|
631 |
|
|
\includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}%
|
632 |
|
|
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf}
|
633 |
|
|
\includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}%
|
634 |
|
|
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf}
|
635 |
|
|
\caption{
|
636 |
|
|
\label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }
|
637 |
|
|
\end{center}
|
638 |
|
|
\end{figure}
|
639 |
benhoob |
1.15 |
|
640 |
|
|
\clearpage
|
641 |
|
|
|
642 |
benhoob |
1.17 |
|
643 |
claudioc |
1.19 |
\subsection{Trigger Efficiency Measurements}
|
644 |
|
|
\label{sec:trg}
|
645 |
benhoob |
1.11 |
|
646 |
|
|
In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
|
647 |
|
|
approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
|
648 |
|
|
lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
|
649 |
claudioc |
1.19 |
in order to measure the \pt\ turn-on curve. The tag-probe pair is
|
650 |
|
|
required to have opposite-sign and an invariant mass in the range
|
651 |
|
|
76--106 GeV.
|
652 |
|
|
|
653 |
benhoob |
1.11 |
The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
|
654 |
claudioc |
1.19 |
These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers.
|
655 |
benhoob |
1.11 |
|
656 |
|
|
|
657 |
|
|
\begin{figure}[!ht]
|
658 |
|
|
\begin{center}
|
659 |
|
|
\begin{tabular}{cc}
|
660 |
benhoob |
1.32 |
\includegraphics[width=0.4\textwidth]{plots/mutrig_20fb.pdf} &
|
661 |
|
|
\includegraphics[width=0.4\textwidth]{plots/eltrig_20fb.pdf} \\
|
662 |
benhoob |
1.11 |
\end{tabular}
|
663 |
|
|
\caption{\label{fig:trigeff}
|
664 |
|
|
Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
|
665 |
|
|
for several bins in lepton $|\eta|$.
|
666 |
|
|
}
|
667 |
|
|
\end{center}
|
668 |
|
|
\end{figure}
|
669 |
|
|
|
670 |
|
|
\clearpage
|
671 |
|
|
|
672 |
|
|
\begin{table}[htb]
|
673 |
|
|
\begin{center}
|
674 |
|
|
\footnotesize
|
675 |
|
|
\caption{\label{tab:mutriggeff}
|
676 |
|
|
Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
|
677 |
|
|
\begin{tabular}{c|c|c|c}
|
678 |
|
|
|
679 |
benhoob |
1.32 |
%%% UPDATED WITH FULL 2012 DATA
|
680 |
|
|
|
681 |
|
|
%-------------------
|
682 |
|
|
%Doing muons
|
683 |
|
|
%-------------------
|
684 |
|
|
%USING MUON ETA BINS
|
685 |
|
|
|
686 |
|
|
%----------------------------------------------------------
|
687 |
benhoob |
1.14 |
% Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
|
688 |
|
|
% Probe trigger : HLT_IsoMu24_probe > 0
|
689 |
benhoob |
1.32 |
% Total data yield : 15561350
|
690 |
|
|
%----------------------------------------------------------
|
691 |
benhoob |
1.14 |
|
692 |
benhoob |
1.11 |
\hline
|
693 |
|
|
\hline
|
694 |
|
|
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
|
695 |
|
|
\hline
|
696 |
|
|
20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
|
697 |
benhoob |
1.32 |
22 - 24 & 0.02 $\pm$ 0.001 & 0.05 $\pm$ 0.001 & 0.10 $\pm$ 0.001 \\
|
698 |
|
|
24 - 26 & 0.87 $\pm$ 0.001 & 0.78 $\pm$ 0.001 & 0.76 $\pm$ 0.002 \\
|
699 |
|
|
26 - 28 & 0.90 $\pm$ 0.001 & 0.80 $\pm$ 0.001 & 0.78 $\pm$ 0.001 \\
|
700 |
|
|
28 - 30 & 0.91 $\pm$ 0.001 & 0.81 $\pm$ 0.001 & 0.79 $\pm$ 0.001 \\
|
701 |
|
|
30 - 32 & 0.91 $\pm$ 0.001 & 0.82 $\pm$ 0.001 & 0.80 $\pm$ 0.001 \\
|
702 |
|
|
32 - 34 & 0.92 $\pm$ 0.000 & 0.82 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\
|
703 |
|
|
34 - 36 & 0.93 $\pm$ 0.000 & 0.82 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\
|
704 |
|
|
36 - 38 & 0.93 $\pm$ 0.000 & 0.83 $\pm$ 0.001 & 0.82 $\pm$ 0.001 \\
|
705 |
|
|
38 - 40 & 0.93 $\pm$ 0.000 & 0.83 $\pm$ 0.001 & 0.82 $\pm$ 0.001 \\
|
706 |
|
|
40 - 50 & 0.94 $\pm$ 0.000 & 0.84 $\pm$ 0.000 & 0.83 $\pm$ 0.000 \\
|
707 |
benhoob |
1.11 |
50 - 60 & 0.95 $\pm$ 0.000 & 0.84 $\pm$ 0.001 & 0.83 $\pm$ 0.001 \\
|
708 |
benhoob |
1.32 |
60 - 80 & 0.95 $\pm$ 0.000 & 0.84 $\pm$ 0.001 & 0.84 $\pm$ 0.001 \\
|
709 |
|
|
80 - 100 & 0.94 $\pm$ 0.001 & 0.84 $\pm$ 0.002 & 0.84 $\pm$ 0.003 \\
|
710 |
|
|
100 - 150 & 0.94 $\pm$ 0.002 & 0.84 $\pm$ 0.003 & 0.84 $\pm$ 0.004 \\
|
711 |
|
|
150 - 200 & 0.93 $\pm$ 0.004 & 0.83 $\pm$ 0.007 & 0.82 $\pm$ 0.010 \\
|
712 |
|
|
$>$200 & 0.92 $\pm$ 0.005 & 0.83 $\pm$ 0.010 & 0.83 $\pm$ 0.018 \\
|
713 |
benhoob |
1.11 |
\hline
|
714 |
|
|
\hline
|
715 |
|
|
|
716 |
|
|
\end{tabular}
|
717 |
|
|
\end{center}
|
718 |
|
|
\end{table}
|
719 |
|
|
|
720 |
|
|
\begin{table}[htb]
|
721 |
|
|
\begin{center}
|
722 |
|
|
\footnotesize
|
723 |
|
|
\caption{\label{tab:eltriggeff}
|
724 |
|
|
Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
|
725 |
|
|
\begin{tabular}{c|c|c}
|
726 |
|
|
|
727 |
benhoob |
1.32 |
%%% UPDATED WITH FULL 2012 DATA
|
728 |
|
|
|
729 |
|
|
%-------------------
|
730 |
|
|
%Doing electrons
|
731 |
|
|
%-------------------
|
732 |
|
|
%USING ELECTRON ETA BINS
|
733 |
|
|
|
734 |
|
|
%----------------------------------------------------------
|
735 |
benhoob |
1.14 |
% Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
|
736 |
|
|
% Probe trigger : HLT_Ele27_WP80_probe > 0
|
737 |
benhoob |
1.32 |
% Total data yield : 9620002
|
738 |
|
|
%----------------------------------------------------------
|
739 |
benhoob |
1.14 |
|
740 |
benhoob |
1.11 |
\hline
|
741 |
|
|
\hline
|
742 |
|
|
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
|
743 |
|
|
\hline
|
744 |
benhoob |
1.32 |
20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
|
745 |
|
|
22 - 24 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
|
746 |
|
|
24 - 26 & 0.00 $\pm$ 0.000 & 0.03 $\pm$ 0.001 \\
|
747 |
|
|
26 - 28 & 0.07 $\pm$ 0.001 & 0.22 $\pm$ 0.002 \\
|
748 |
|
|
28 - 30 & 0.57 $\pm$ 0.001 & 0.52 $\pm$ 0.002 \\
|
749 |
|
|
30 - 32 & 0.85 $\pm$ 0.001 & 0.65 $\pm$ 0.002 \\
|
750 |
|
|
32 - 34 & 0.88 $\pm$ 0.001 & 0.70 $\pm$ 0.002 \\
|
751 |
|
|
34 - 36 & 0.89 $\pm$ 0.000 & 0.72 $\pm$ 0.001 \\
|
752 |
|
|
36 - 38 & 0.91 $\pm$ 0.000 & 0.74 $\pm$ 0.001 \\
|
753 |
|
|
38 - 40 & 0.92 $\pm$ 0.000 & 0.75 $\pm$ 0.001 \\
|
754 |
|
|
40 - 50 & 0.94 $\pm$ 0.000 & 0.77 $\pm$ 0.001 \\
|
755 |
|
|
50 - 60 & 0.95 $\pm$ 0.000 & 0.79 $\pm$ 0.001 \\
|
756 |
|
|
60 - 80 & 0.96 $\pm$ 0.000 & 0.79 $\pm$ 0.002 \\
|
757 |
|
|
80 - 100 & 0.96 $\pm$ 0.001 & 0.80 $\pm$ 0.005 \\
|
758 |
|
|
100 - 150 & 0.97 $\pm$ 0.001 & 0.82 $\pm$ 0.006 \\
|
759 |
|
|
150 - 200 & 0.97 $\pm$ 0.002 & 0.83 $\pm$ 0.014 \\
|
760 |
|
|
$>$200 & 0.97 $\pm$ 0.003 & 0.85 $\pm$ 0.020 \\
|
761 |
benhoob |
1.11 |
\hline
|
762 |
|
|
\hline
|
763 |
|
|
|
764 |
benhoob |
1.32 |
|
765 |
benhoob |
1.11 |
\end{tabular}
|
766 |
|
|
\end{center}
|
767 |
|
|
\end{table}
|
768 |
|
|
|
769 |
|
|
\clearpage
|