ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
Revision: 1.33
Committed: Wed Mar 20 14:16:07 2013 UTC (12 years, 1 month ago) by benhoob
Content type: application/x-tex
Branch: MAIN
CVS Tags: HEAD
Changes since 1.32: +209 -159 lines
Log Message:
update e and mu T&P studies

File Contents

# User Rev Content
1 claudioc 1.19 Here we define the selections of leptons, jets, and \met.
2     We also describe our measurements of the lepton and trigger efficiency.
3     The analysis uses several different Control Regions (CRs) in addition
4     to the Signal
5     Regions (SRs).
6     All of these different regions are defined in this section.
7     This section also includes some information on the basic MC
8     corrections that we apply.
9 vimartin 1.7 %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
10 benhoob 1.1
11 vimartin 1.7 \subsection{Single Lepton Selection}
12 claudioc 1.19 \label{sec:singlelepselection}
13 vimartin 1.7
14 claudioc 1.19 The single lepton selection is based on the following criteria, starting from the requirements described
15 benhoob 1.23 on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20)
16 benhoob 1.1 \begin{itemize}
17 vimartin 1.2 \item satisfy the trigger requirement (see
18 claudioc 1.26 Table~\ref{tab:TrigData}).
19 claudioc 1.9 Note that the analysis triggers are inclusive single lepton triggers.
20     Dilepton triggers are used only for the dilepton control region.
21 vimartin 1.2 \item select events with one high \pt\ electron or muon, requiring
22     \begin{itemize}
23 vimartin 1.27 \item $\pt>30~\GeVc$ and $|\eta|<1.4442 (2.1)$ for electrons (muons). The restriction to the barrel for electrons
24 benhoob 1.23 is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region,
25     and does not significantly reduce the signal acceptance since the leptons tend to be central.
26 vimartin 1.10 \item muon ID criteria is based on the 2012 POG recommended tight working point
27     \item electron ID critera is based on the 2012 POG recommended medium working point
28 benhoob 1.23 \item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections
29     are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs).
30 vimartin 1.10 \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
31 benhoob 1.23 \item $E/p_{\rm{in}} < 4$ (electrons only)
32 claudioc 1.19 \item We remove electron events with $\met > 50$ GeV and $M_T > 100$
33     GeV with at least one crystal in the supercluster with laser
34 claudioc 1.26 correction $>$2.\footnote{This is an ad-hoc removal based on
35 claudioc 1.19 run-event numbers, since the
36     problem was found very recently and the filter was not available
37     when we processed the events.}
38 vimartin 1.2 \end{itemize}
39     \item require at least 4 PF jets in the event with $\pt>30~\GeV$
40 vimartin 1.7 within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
41     medium working point b-tagging requirement
42 benhoob 1.23 \item require moderate $\met>50~\GeV$ (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}).
43 claudioc 1.19 \item Isolated track veto, see Section~\ref{sec:tkveto}
44    
45 benhoob 1.1 \end{itemize}
46    
47 vimartin 1.12 %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
48 fkw 1.6
49 vimartin 1.12 %\begin{table}[!h]
50     %\begin{center}
51     %\begin{tabular}{c|c}
52     %\hline
53     %\hline
54     %\end{tabular}
55     %\caption{ Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
56     %\end{center}
57     %\end{table}
58 fkw 1.6
59 claudioc 1.19 \subsection{Isolated track veto}
60     \label{sec:tkveto}
61    
62     The isolated track veto is intended to remove top dilepton events.
63     Looking for an isolated track is an effective way of identifying $W
64     \to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to
65     h^{\pm} + n\pi^{0}$. The requirements on the track are
66    
67     \begin{itemize}
68     \item $P_T > 10$ GeV
69     \item Relative track isolation $< 10\%$ computed from charged PF
70 vimartin 1.30 candidates with $d_Z<$ 0.05 cm from the primary vertex.
71 claudioc 1.19 \end{itemize}
72    
73    
74 vimartin 1.7 \subsection{Signal Region Selection}
75 claudioc 1.19 \label{sec:SR}
76 vimartin 1.8
77 vimartin 1.7 The signal regions (SRs) are selected to improve the sensitivity for the
78     single lepton requirements and cover a range of scalar top
79     scenarios. The \mt\ and \met\ variables are used to define the signal
80     regions and the requirements are listed in Table~\ref{tab:srdef}.
81    
82 fkw 1.6 \begin{table}[!h]
83     \begin{center}
84 vimartin 1.7 \begin{tabular}{l|c|c}
85 fkw 1.6 \hline
86 vimartin 1.7 Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
87 fkw 1.6 \hline
88     \hline
89 vimartin 1.7 SRA & 150 & 100 \\
90     SRB & 120 & 150 \\
91     SRC & 120 & 200 \\
92     SRD & 120 & 250 \\
93     SRE & 120 & 300 \\
94 vimartin 1.18 SRF & 120 & 350 \\
95     SRG & 120 & 400 \\
96 fkw 1.6 \hline
97     \end{tabular}
98 vimartin 1.7 \caption{ Signal region definitions based on \mt\ and \met\
99     requirements. These requirements are applied in addition to the
100     baseline single lepton selection.
101     \label{tab:srdef}}
102 fkw 1.6 \end{center}
103     \end{table}
104    
105 vimartin 1.7 Table~\ref{tab:srrawmcyields} shows the expected number of SM
106     background yields for the SRs. A few stop signal yields for four
107     values of the parameters are also shown for comparison. The signal
108     regions with looser requirements are sensitive to lower stop masses
109     M(\sctop), while those with tighter requirements are more sensitive to
110 vimartin 1.31 higher M(\sctop). Kinematic distributions for a few sample signal
111     points can be found in Appendix~\ref{app:sigkin}.
112 vimartin 1.7
113 fkw 1.6 \begin{table}[!h]
114     \begin{center}
115 benhoob 1.23 \footnotesize
116 vimartin 1.18 \begin{tabular}{l||c|c|c|c|c|c|c}
117 fkw 1.6 \hline
118 vimartin 1.18 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
119 fkw 1.6 \hline
120     \hline
121 vimartin 1.18 \ttdl\ & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\
122     \ttsl\ \& single top (1\Lep) & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\
123     \wjets\ & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
124     Rare & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\
125 fkw 1.6 \hline
126 vimartin 1.18 Total & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\
127 fkw 1.6 \hline
128 benhoob 1.23 Yield UL (optimistic) & 147 (10\%) & 94 (10\%) & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%) \\
129     Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\
130     \hline
131 linacre 1.25 T2tt m(stop) = 250 m($\chi^0$) = 0 & $315 \pm 18$& $193 \pm 14$& $53 \pm 8$& $13 \pm 4$& $2 \pm 2$& $0 \pm 0$& $0 \pm 0$ \\ \hline
132     T2tt m(stop) = 300 m($\chi^0$) = 50 & $296 \pm 11$& $236 \pm 10$& $88 \pm 6$& $28 \pm 3$& $10 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\ \hline
133     T2tt m(stop) = 300 m($\chi^0$) = 100 & $128 \pm 7$& $93 \pm 6$& $29 \pm 3$& $10 \pm 2$& $5 \pm 1$& $2 \pm 1$& $1 \pm 1$ \\ \hline
134     T2tt m(stop) = 350 m($\chi^0$) = 0 & $224 \pm 6$& $206 \pm 6$& $119 \pm 4$& $52 \pm 3$& $20 \pm 2$& $8 \pm 1$& $3 \pm 1$ \\ \hline
135     T2tt m(stop) = 450 m($\chi^0$) = 0 & $71 \pm 2$& $71 \pm 2$& $53 \pm 1$& $36 \pm 1$& $21 \pm 1$& $11 \pm 1$& $5 \pm 0$ \\
136 vimartin 1.22 \hline
137 fkw 1.6 \end{tabular}
138 benhoob 1.23 \caption{ Expected SM background contributions and signal yields for a few sample points,
139     including both muon and electron channels. This is ``dead reckoning'' MC with no
140     correction. It is meant only as a general guide. The uncertainties are statistical only.
141 vimartin 1.28 The signal yield expected upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses.
142 vimartin 1.27 %[{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ].
143 benhoob 1.23 %HOOBERMAN
144 vimartin 1.7 \label{tab:srrawmcyields}}
145 fkw 1.6 \end{center}
146     \end{table}
147    
148 vimartin 1.8 \subsection{Control Region Selection}
149 benhoob 1.24 \label{sec:CRsel}
150 fkw 1.5
151 vimartin 1.7 Control regions (CRs) are used to validate the background estimation
152     procedure and derive systematic uncertainties for some
153     contributions. The CRs are selected to have similar
154     kinematics to the SRs, but have a different requirement in terms of
155     number of b-tags and number of leptons, thus enhancing them in
156     different SM contributions. The four CRs used in this analysis are
157 claudioc 1.19 summarized in Table~\ref{tab:crdef}.
158 fkw 1.5
159 vimartin 1.7 \begin{table}
160 fkw 1.6 \begin{center}
161 vimartin 1.7 {\small
162     \begin{tabular}{l|c|c|c}
163 fkw 1.6 \hline
164 vimartin 1.7 Selection & \multirow{2}{*}{exactly 1 lepton} & \multirow{2}{*}{exactly 2
165     leptons} & \multirow{2}{*}{1 lepton + isolated
166     track}\\
167     Criteria & & & \\
168     \hline
169     \hline
170     \multirow{4}{*}{0 b-tags}
171     & CR1) W+Jets dominated:
172     & CR2) apply \Z-mass constraint
173     & CR3) not used \\
174     &
175     & $\rightarrow$ Z+Jets dominated: Validate
176     & \\
177     & Validate W+Jets \mt\ tail
178     & \ttsl\ \mt\ tail comparing
179     & \\
180     &
181     & data vs. MC ``pseudo-\mt ''
182     & \\
183     \hline
184     \multirow{4}{*}{$\ge$ 1 b-tags}
185     &
186     & CR4) Apply \Z-mass veto
187     & CR5) \ttdl, \ttlt\ and \\
188     & SIGNAL
189     & $\rightarrow$ \ttdl\ dominated: Validate
190     & \ttlf\ dominated: Validate \\
191     & REGION
192     & ``physics'' modelling of \ttdl\
193     & \Tau\ and fake lepton modeling/\\
194     &
195     &
196     & detector effects in \ttdl\ \\
197 fkw 1.6 \hline
198     \end{tabular}
199 vimartin 1.7 }
200     \caption{Summary of signal and control regions.
201     \label{tab:crdef}%\protect
202     }
203 fkw 1.6 \end{center}
204     \end{table}
205 fkw 1.5
206 claudioc 1.19 \subsection{Definition of $M_T$ peak region}
207     \label{sec:mtpeakdef}
208 vimartin 1.7
209 claudioc 1.19 This region is defined as $50 < M_T < 80$ GeV.
210 vimartin 1.7
211    
212 claudioc 1.19 \subsection{Default \ttbar\ MC sample}
213 benhoob 1.1
214 claudioc 1.19 Our default \ttbar\ MC sample is Powheg.
215 vimartin 1.8
216 claudioc 1.19 \subsection{MC Corrections}
217     \label{sec:MCCorr}
218 vimartin 1.7
219 claudioc 1.19 All MC samples are corrected for trigger efficiency. In the case of
220 vimartin 1.30 single lepton selections, we apply the $\pt$ and $\eta$-dependent
221 vimartin 1.27 scale factors that we measure ourselves, see Section~\ref{sec:trg}.
222 claudioc 1.19 In the case of dilepton selections that require the dilepton triggers,
223     we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$,
224     $\mu\mu$,
225     and $e\mu$ respectively~\cite{didar}.
226 vimartin 1.2
227     The leptonic branching fraction used in some of the \ttbar\ MC samples
228 benhoob 1.3 differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
229 linacre 1.29 Table~\ref{tab:wlepbf} summarizes the branching fractions used in
230 vimartin 1.2 the generation of the various \ttbar\ MC samples.
231     For \ttbar\ samples with the incorrect leptonic branching fraction, event
232     weights are applied based on the number of true leptons and the ratio
233     of the corrected and incorrect branching fractions.
234    
235     \begin{table}[!h]
236     \begin{center}
237     \begin{tabular}{c|c}
238     \hline
239     \ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\
240     \hline
241     \hline
242 benhoob 1.23 Madgraph & 0.111\\
243     MC@NLO & 0.111\\
244     Pythia & 0.108\\
245 vimartin 1.2 Powheg & 0.108\\
246     \hline
247     \end{tabular}
248     \caption{Leptonic branching fractions for the various \ttbar\ samples
249 benhoob 1.23 used in the analysis. The \ttbar\ MC samples produced with
250     Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than
251 vimartin 1.2 the PDG value. \label{tab:wlepbf}}
252     \end{center}
253     \end{table}
254    
255 claudioc 1.19 All \ttbar\ dilepton samples are corrected (when needed and
256     appropriate)
257 vimartin 1.27 in order to have the correct jet multiplicity distribution. This
258 claudioc 1.19 correction procedure is described in Section~\ref{sec:jetmultiplicity}.
259    
260    
261     \subsubsection{Corrections to Jets and \met}
262     \label{sec:JetMet}
263    
264     The official recommendations from the Jet/MET group are used for
265     the data and MC samples. In particular, the jet
266     energy corrections (JEC) are updated using the official recipe.
267     L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
268 vimartin 1.21 based on the global tags GR\_R\_52\_V9 (START52\_V9B) for
269 claudioc 1.19 data (MC). In addition, these jet energy corrections are propagated to
270     the \met\ calculation, following the official prescription for
271     deriving the Type I corrections.
272    
273     Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
274 vimartin 1.30 can correspond to events with unphysically large \met\ and \mt.
275 linacre 1.29 %tail signal region.
276     In addition, the recommended MET filters are applied.
277 claudioc 1.19 A correction to remove the $\phi$ modulation in \met\ is also applied
278     to the data.
279    
280    
281     \subsection{Lepton Selection Efficiency Measurements}
282     \label{sec:lepEff}
283 vimartin 1.7
284 benhoob 1.15 In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies.
285     The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
286     lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons.
287     The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement,
288 claudioc 1.19 to measure the isolation efficiency we require the probe to pass the
289     identification requirement.
290    
291 benhoob 1.15 The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
292 claudioc 1.19 In order to suppress lepton pairs from sources other than Z boson
293     decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged
294     jets (CSV loose working point).
295    
296 benhoob 1.15 The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for
297 benhoob 1.23 several different jet multiplicity requirements.
298     We currently observe good agreement for muons with \pt\ up to about 300 GeV.
299 benhoob 1.33 For high \pt\ muons we observe a source of background in the data, which we suppress by only considering probes which satisfy the impact parameter requirements $d_0<0.02$~cm and $d_Z<0.5$~cm, and the probe is required to be reconstructed as a tracker muon.
300 benhoob 1.23 %For muons with \pt\ $>$ 200 GeV the data efficiency
301     %begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV.
302 vimartin 1.30 %We are currently investigating the source of this inefficiency.
303 benhoob 1.23 The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff}
304     for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies.
305 vimartin 1.7
306 claudioc 1.26 % Pending a better understanding of the very high \pt\ muon efficiency,
307     We
308 claudioc 1.19 do not correct the MC for differences in lepton efficiency. In the
309     background calculation, we do not take any systematics due to lepton
310     selection
311     efficiency uncertainties. This is because all backgrounds except the
312 benhoob 1.23 rare MC background are normalized to the $M_T$ peak, thus the lepton
313 claudioc 1.19 identification uncertainty cancels out. For the rare MC these
314     uncertainties
315     are negligible compared to the assumed cross-section uncertainty
316     (Section~\ref{sec:bkg_other}).
317    
318 benhoob 1.11
319 benhoob 1.15
320    
321     \begin{table}[htb]
322     \begin{center}
323     \scriptsize
324     \caption{\label{tab:mutnpeff}
325     Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.}
326     \begin{tabular}{c|c|c|c}
327    
328 benhoob 1.32
329     %-------------------
330     %Doing muons
331     %-------------------
332     %DOING MUON ETA BINS
333 benhoob 1.33 %Selection : (((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(tag->pt()>30.0))&&(met<30))&&(nbl==0))&&(abs(tag->eta())<2.1))&&(abs(probe->eta())<2.1))&&(mutrk==1))&&(mud0 < 0.02))&&(mudz < 0.5))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0)
334     %Ndata : 7053268
335     %NMC : 4406913
336     %ID cut : ((leptonSelection&65536)==65536)&&(abs(probepfpt - probe->pt()) < 10.0)
337     %iso cut : ((leptonSelection&131072)==131072)&&(probeiso * probe->pt() < 5.0)
338    
339    
340 benhoob 1.15
341     \hline
342     \hline
343 benhoob 1.33 MC ID& & & \\
344 benhoob 1.15 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
345     \hline
346 benhoob 1.33 20 - 30 & 0.9672 $\pm$ 0.0004 & 0.9639 $\pm$ 0.0005 & 0.9466 $\pm$ 0.0007 \\
347     30 - 40 & 0.9684 $\pm$ 0.0002 & 0.9658 $\pm$ 0.0003 & 0.9446 $\pm$ 0.0004 \\
348     40 - 50 & 0.9704 $\pm$ 0.0002 & 0.9685 $\pm$ 0.0002 & 0.9432 $\pm$ 0.0004 \\
349     50 - 60 & 0.9685 $\pm$ 0.0004 & 0.9640 $\pm$ 0.0005 & 0.9419 $\pm$ 0.0008 \\
350     60 - 80 & 0.9682 $\pm$ 0.0008 & 0.9628 $\pm$ 0.0010 & 0.9364 $\pm$ 0.0017 \\
351     80 - 100 & 0.9710 $\pm$ 0.0021 & 0.9633 $\pm$ 0.0027 & 0.9255 $\pm$ 0.0049 \\
352     100 - 150 & 0.9658 $\pm$ 0.0029 & 0.9623 $\pm$ 0.0036 & 0.9205 $\pm$ 0.0069 \\
353     150 - 200 & 0.9592 $\pm$ 0.0072 & 0.9392 $\pm$ 0.0103 & 0.9110 $\pm$ 0.0185 \\
354     200 - 300 & 0.9373 $\pm$ 0.0147 & 0.8889 $\pm$ 0.0218 & 0.8525 $\pm$ 0.0454 \\
355     300 - 10000 & 0.8923 $\pm$ 0.0384 & 0.7143 $\pm$ 0.0764 & 0.3333 $\pm$ 0.1925 \\
356    
357    
358 benhoob 1.15 \hline
359     \hline
360 benhoob 1.33 MC ISO& & & \\
361 benhoob 1.15 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
362     \hline
363 benhoob 1.33 20 - 30 & 0.8966 $\pm$ 0.0007 & 0.9152 $\pm$ 0.0008 & 0.9301 $\pm$ 0.0008 \\
364     30 - 40 & 0.9562 $\pm$ 0.0002 & 0.9589 $\pm$ 0.0003 & 0.9674 $\pm$ 0.0003 \\
365     40 - 50 & 0.9764 $\pm$ 0.0002 & 0.9809 $\pm$ 0.0002 & 0.9836 $\pm$ 0.0002 \\
366     50 - 60 & 0.9766 $\pm$ 0.0004 & 0.9810 $\pm$ 0.0004 & 0.9830 $\pm$ 0.0005 \\
367     60 - 80 & 0.9720 $\pm$ 0.0008 & 0.9777 $\pm$ 0.0008 & 0.9791 $\pm$ 0.0010 \\
368     80 - 100 & 0.9645 $\pm$ 0.0023 & 0.9658 $\pm$ 0.0026 & 0.9697 $\pm$ 0.0033 \\
369     100 - 150 & 0.9583 $\pm$ 0.0032 & 0.9603 $\pm$ 0.0037 & 0.9752 $\pm$ 0.0041 \\
370     150 - 200 & 0.9580 $\pm$ 0.0073 & 0.9392 $\pm$ 0.0103 & 0.9954 $\pm$ 0.0046 \\
371     200 - 300 & 0.9585 $\pm$ 0.0123 & 0.9583 $\pm$ 0.0144 & 0.9455 $\pm$ 0.0306 \\
372     300 - 10000 & 0.9667 $\pm$ 0.0232 & 0.9615 $\pm$ 0.0377 & 1.0000 $\pm$ 0.0000 \\
373    
374    
375 benhoob 1.15 \hline
376     \hline
377 benhoob 1.33 DATA ID& & & \\
378 benhoob 1.15 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
379     \hline
380 benhoob 1.33 20 - 30 & 0.9516 $\pm$ 0.0004 & 0.9495 $\pm$ 0.0005 & 0.9349 $\pm$ 0.0006 \\
381     30 - 40 & 0.9539 $\pm$ 0.0002 & 0.9509 $\pm$ 0.0003 & 0.9342 $\pm$ 0.0004 \\
382     40 - 50 & 0.9573 $\pm$ 0.0002 & 0.9556 $\pm$ 0.0002 & 0.9339 $\pm$ 0.0003 \\
383     50 - 60 & 0.9520 $\pm$ 0.0004 & 0.9480 $\pm$ 0.0005 & 0.9291 $\pm$ 0.0008 \\
384     60 - 80 & 0.9522 $\pm$ 0.0008 & 0.9453 $\pm$ 0.0010 & 0.9279 $\pm$ 0.0015 \\
385     80 - 100 & 0.9501 $\pm$ 0.0022 & 0.9443 $\pm$ 0.0027 & 0.9250 $\pm$ 0.0042 \\
386     100 - 150 & 0.9510 $\pm$ 0.0029 & 0.9397 $\pm$ 0.0038 & 0.9099 $\pm$ 0.0064 \\
387     150 - 200 & 0.9552 $\pm$ 0.0066 & 0.9452 $\pm$ 0.0089 & 0.8758 $\pm$ 0.0182 \\
388     200 - 300 & 0.9313 $\pm$ 0.0138 & 0.8770 $\pm$ 0.0210 & 0.8228 $\pm$ 0.0430 \\
389     300 - 10000 & 0.8704 $\pm$ 0.0457 & 0.7391 $\pm$ 0.0916 & 0.1429 $\pm$ 0.1323 \\
390    
391    
392 benhoob 1.15 \hline
393     \hline
394 benhoob 1.33 DATA ISO& & & \\
395 benhoob 1.15 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
396     \hline
397 benhoob 1.33 20 - 30 & 0.8907 $\pm$ 0.0006 & 0.9128 $\pm$ 0.0006 & 0.9364 $\pm$ 0.0006 \\
398     30 - 40 & 0.9532 $\pm$ 0.0002 & 0.9594 $\pm$ 0.0002 & 0.9712 $\pm$ 0.0002 \\
399     40 - 50 & 0.9744 $\pm$ 0.0001 & 0.9810 $\pm$ 0.0001 & 0.9858 $\pm$ 0.0002 \\
400     50 - 60 & 0.9751 $\pm$ 0.0003 & 0.9817 $\pm$ 0.0003 & 0.9871 $\pm$ 0.0003 \\
401     60 - 80 & 0.9710 $\pm$ 0.0006 & 0.9774 $\pm$ 0.0007 & 0.9836 $\pm$ 0.0008 \\
402     80 - 100 & 0.9645 $\pm$ 0.0019 & 0.9731 $\pm$ 0.0019 & 0.9781 $\pm$ 0.0024 \\
403     100 - 150 & 0.9597 $\pm$ 0.0027 & 0.9657 $\pm$ 0.0029 & 0.9821 $\pm$ 0.0031 \\
404     150 - 200 & 0.9389 $\pm$ 0.0076 & 0.9583 $\pm$ 0.0078 & 0.9538 $\pm$ 0.0121 \\
405     200 - 300 & 0.9600 $\pm$ 0.0109 & 0.9640 $\pm$ 0.0125 & 0.9701 $\pm$ 0.0208 \\
406     300 - 10000 & 0.9592 $\pm$ 0.0283 & 0.9444 $\pm$ 0.0540 & 1.0000 $\pm$ 0.0000 \\
407    
408    
409 benhoob 1.15 \hline
410     \hline
411 benhoob 1.33 Scale Factor ID& & & \\
412 benhoob 1.15 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
413     \hline
414 benhoob 1.33 20 - 30 & 0.9839 $\pm$ 0.0006 & 0.9850 $\pm$ 0.0008 & 0.9876 $\pm$ 0.0010 \\
415     30 - 40 & 0.9850 $\pm$ 0.0003 & 0.9846 $\pm$ 0.0004 & 0.9890 $\pm$ 0.0006 \\
416     40 - 50 & 0.9865 $\pm$ 0.0003 & 0.9866 $\pm$ 0.0003 & 0.9902 $\pm$ 0.0005 \\
417     50 - 60 & 0.9829 $\pm$ 0.0006 & 0.9834 $\pm$ 0.0007 & 0.9864 $\pm$ 0.0012 \\
418     60 - 80 & 0.9835 $\pm$ 0.0012 & 0.9818 $\pm$ 0.0015 & 0.9909 $\pm$ 0.0024 \\
419     80 - 100 & 0.9785 $\pm$ 0.0031 & 0.9803 $\pm$ 0.0039 & 0.9995 $\pm$ 0.0070 \\
420     100 - 150 & 0.9847 $\pm$ 0.0042 & 0.9765 $\pm$ 0.0054 & 0.9884 $\pm$ 0.0102 \\
421     150 - 200 & 0.9958 $\pm$ 0.0101 & 1.0064 $\pm$ 0.0145 & 0.9613 $\pm$ 0.0279 \\
422     200 - 300 & 0.9937 $\pm$ 0.0215 & 0.9867 $\pm$ 0.0339 & 0.9652 $\pm$ 0.0720 \\
423     300 - 10000 & 0.9754 $\pm$ 0.0663 & 1.0348 $\pm$ 0.1693 & 0.4286 $\pm$ 0.4676 \\
424    
425    
426 benhoob 1.15 \hline
427     \hline
428 benhoob 1.33 Scale Factor ISO& & & \\
429 benhoob 1.15 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
430     \hline
431 benhoob 1.33 20 - 30 & 0.9934 $\pm$ 0.0010 & 0.9974 $\pm$ 0.0011 & 1.0068 $\pm$ 0.0011 \\
432     30 - 40 & 0.9969 $\pm$ 0.0003 & 1.0004 $\pm$ 0.0004 & 1.0039 $\pm$ 0.0004 \\
433     40 - 50 & 0.9979 $\pm$ 0.0002 & 1.0001 $\pm$ 0.0002 & 1.0023 $\pm$ 0.0003 \\
434     50 - 60 & 0.9985 $\pm$ 0.0005 & 1.0007 $\pm$ 0.0005 & 1.0042 $\pm$ 0.0006 \\
435     60 - 80 & 0.9989 $\pm$ 0.0011 & 0.9997 $\pm$ 0.0011 & 1.0046 $\pm$ 0.0013 \\
436     80 - 100 & 0.9999 $\pm$ 0.0031 & 1.0075 $\pm$ 0.0034 & 1.0086 $\pm$ 0.0042 \\
437     100 - 150 & 1.0014 $\pm$ 0.0043 & 1.0056 $\pm$ 0.0049 & 1.0071 $\pm$ 0.0053 \\
438     150 - 200 & 0.9802 $\pm$ 0.0109 & 1.0203 $\pm$ 0.0139 & 0.9582 $\pm$ 0.0129 \\
439     200 - 300 & 1.0016 $\pm$ 0.0171 & 1.0059 $\pm$ 0.0200 & 1.0261 $\pm$ 0.0398 \\
440     300 - 10000 & 0.9923 $\pm$ 0.0377 & 0.9822 $\pm$ 0.0681 & 1.0000 $\pm$ 0.0000 \\
441 benhoob 1.15 \hline
442     \hline
443    
444 benhoob 1.33 %Using xmax 350
445     %data all 2.21882e+06
446     %data pass 2.1274e+06
447     %data eff 0.958794
448     %data eff2 0.958794
449     %MC all 1.38687e+06
450     %MC pass 1.33047e+06
451     %MC eff 0.959338
452     %MC eff2 0.959338
453    
454    
455 benhoob 1.32
456 benhoob 1.15 \end{tabular}
457     \end{center}
458     \end{table}
459    
460     \begin{figure}[hbt]
461     \begin{center}
462 benhoob 1.16 \includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}%
463     \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf}
464     \includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}%
465     \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf}
466     \includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}%
467     \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf}
468     \includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}%
469     \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf}
470     \includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}%
471     \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf}
472 benhoob 1.15 \caption{
473     \label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }
474     \end{center}
475     \end{figure}
476    
477 benhoob 1.17 \clearpage
478    
479     \begin{table}[htb]
480     \begin{center}
481     \scriptsize
482     \caption{\label{tab:eltnpeff}
483     Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.}
484     \begin{tabular}{c|c|c}
485 benhoob 1.15
486 benhoob 1.32 %-------------------
487 benhoob 1.33 %Doing electrons: FULL 2012 SAMPLE
488 benhoob 1.32 %-------------------
489     %DOING ELECTRON ETA BINS
490 benhoob 1.33 %Selection : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(tag->pt()>30.0))&&(met<30))&&(nbl==0))&&(abs(tag->eta())<1.4442))&&(abs(probe->eta())<1.4442))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0)
491     %Ndata : 3962010
492     %NMC : 2276057
493     %ID cut : (((leptonSelection&8)==8)&&(abs(probepfpt - probe->pt()) < 10.0))&&(probe_eoverpin < 4.0)
494     %iso cut : ((leptonSelection&16)==16)&&(probeiso * probe->pt() < 5.0)
495    
496 benhoob 1.17
497     \hline
498     \hline
499     MC ID & & \\
500 benhoob 1.33 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
501     \hline
502     20 - 30 & 0.8206 $\pm$ 0.0014 & 0.7846 $\pm$ 0.0014 \\
503     30 - 40 & 0.8602 $\pm$ 0.0006 & 0.8494 $\pm$ 0.0007 \\
504     40 - 50 & 0.8775 $\pm$ 0.0004 & 0.8849 $\pm$ 0.0005 \\
505     50 - 60 & 0.8842 $\pm$ 0.0009 & 0.8917 $\pm$ 0.0012 \\
506     60 - 80 & 0.8877 $\pm$ 0.0016 & 0.8951 $\pm$ 0.0022 \\
507     80 - 100 & 0.8876 $\pm$ 0.0043 & 0.9035 $\pm$ 0.0055 \\
508     100 - 150 & 0.8898 $\pm$ 0.0055 & 0.8962 $\pm$ 0.0075 \\
509     150 - 200 & 0.8746 $\pm$ 0.0129 & 0.8683 $\pm$ 0.0189 \\
510     200 - 300 & 0.8760 $\pm$ 0.0205 & 0.9160 $\pm$ 0.0242 \\
511     300 - 10000 & 0.8444 $\pm$ 0.0540 & 0.7778 $\pm$ 0.0980 \\
512    
513    
514 benhoob 1.17 \hline
515 benhoob 1.33 \hline
516     MC ISO & & \\
517     \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
518     \hline
519     20 - 30 & 0.9198 $\pm$ 0.0011 & 0.9405 $\pm$ 0.0009 \\
520     30 - 40 & 0.9667 $\pm$ 0.0003 & 0.9699 $\pm$ 0.0003 \\
521     40 - 50 & 0.9809 $\pm$ 0.0002 & 0.9796 $\pm$ 0.0003 \\
522     50 - 60 & 0.9788 $\pm$ 0.0004 & 0.9774 $\pm$ 0.0006 \\
523     60 - 80 & 0.9729 $\pm$ 0.0009 & 0.9702 $\pm$ 0.0013 \\
524     80 - 100 & 0.9633 $\pm$ 0.0027 & 0.9528 $\pm$ 0.0041 \\
525     100 - 150 & 0.9548 $\pm$ 0.0038 & 0.9510 $\pm$ 0.0054 \\
526     150 - 200 & 0.9581 $\pm$ 0.0082 & 0.9358 $\pm$ 0.0142 \\
527     200 - 300 & 0.9187 $\pm$ 0.0174 & 0.9231 $\pm$ 0.0234 \\
528     300 - 10000 & 0.8085 $\pm$ 0.0574 & 0.9333 $\pm$ 0.0644 \\
529    
530    
531 benhoob 1.17 \hline
532     \hline
533     DATA ID & & \\
534 benhoob 1.33 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
535 benhoob 1.17 \hline
536 benhoob 1.33 20 - 30 & 0.8143 $\pm$ 0.0011 & 0.7557 $\pm$ 0.0011 \\
537     30 - 40 & 0.8502 $\pm$ 0.0004 & 0.8245 $\pm$ 0.0006 \\
538     40 - 50 & 0.8687 $\pm$ 0.0003 & 0.8632 $\pm$ 0.0004 \\
539     50 - 60 & 0.8736 $\pm$ 0.0007 & 0.8718 $\pm$ 0.0010 \\
540     60 - 80 & 0.8741 $\pm$ 0.0014 & 0.8770 $\pm$ 0.0019 \\
541     80 - 100 & 0.8809 $\pm$ 0.0035 & 0.8751 $\pm$ 0.0049 \\
542     100 - 150 & 0.8802 $\pm$ 0.0047 & 0.8795 $\pm$ 0.0066 \\
543     150 - 200 & 0.8935 $\pm$ 0.0102 & 0.8631 $\pm$ 0.0161 \\
544     200 - 300 & 0.8645 $\pm$ 0.0194 & 0.8110 $\pm$ 0.0306 \\
545     300 - 10000 & 0.9111 $\pm$ 0.0424 & 0.8000 $\pm$ 0.0894 \\
546    
547    
548     \hline
549     \hline
550     DATA ISO & & \\
551     \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
552     \hline
553     20 - 30 & 0.9141 $\pm$ 0.0008 & 0.9348 $\pm$ 0.0007 \\
554     30 - 40 & 0.9636 $\pm$ 0.0002 & 0.9663 $\pm$ 0.0003 \\
555     40 - 50 & 0.9783 $\pm$ 0.0001 & 0.9762 $\pm$ 0.0002 \\
556     50 - 60 & 0.9746 $\pm$ 0.0004 & 0.9738 $\pm$ 0.0005 \\
557     60 - 80 & 0.9692 $\pm$ 0.0008 & 0.9656 $\pm$ 0.0011 \\
558     80 - 100 & 0.9625 $\pm$ 0.0021 & 0.9541 $\pm$ 0.0033 \\
559     100 - 150 & 0.9514 $\pm$ 0.0033 & 0.9398 $\pm$ 0.0050 \\
560     150 - 200 & 0.9448 $\pm$ 0.0077 & 0.9422 $\pm$ 0.0115 \\
561     200 - 300 & 0.9210 $\pm$ 0.0158 & 0.9301 $\pm$ 0.0213 \\
562     300 - 10000 & 0.9318 $\pm$ 0.0380 & 0.9412 $\pm$ 0.0571 \\
563    
564    
565     \hline
566     \hline
567     Scale Factor ID & & \\
568     \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
569     \hline
570     20 - 30 & 0.9923 $\pm$ 0.0022 & 0.9632 $\pm$ 0.0022 \\
571     30 - 40 & 0.9883 $\pm$ 0.0008 & 0.9707 $\pm$ 0.0010 \\
572     40 - 50 & 0.9900 $\pm$ 0.0006 & 0.9755 $\pm$ 0.0008 \\
573     50 - 60 & 0.9880 $\pm$ 0.0012 & 0.9777 $\pm$ 0.0017 \\
574     60 - 80 & 0.9847 $\pm$ 0.0024 & 0.9797 $\pm$ 0.0032 \\
575     80 - 100 & 0.9924 $\pm$ 0.0062 & 0.9687 $\pm$ 0.0081 \\
576     100 - 150 & 0.9892 $\pm$ 0.0081 & 0.9813 $\pm$ 0.0110 \\
577     150 - 200 & 1.0216 $\pm$ 0.0191 & 0.9940 $\pm$ 0.0286 \\
578     200 - 300 & 0.9869 $\pm$ 0.0320 & 0.8853 $\pm$ 0.0408 \\
579     300 - 10000 & 1.0789 $\pm$ 0.0854 & 1.0286 $\pm$ 0.1733 \\
580    
581    
582 benhoob 1.17 \hline
583     \hline
584     Scale Factor ISO & & \\
585 benhoob 1.33 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
586 benhoob 1.17 \hline
587 benhoob 1.33 20 - 30 & 0.9938 $\pm$ 0.0015 & 0.9939 $\pm$ 0.0012 \\
588     30 - 40 & 0.9968 $\pm$ 0.0004 & 0.9963 $\pm$ 0.0005 \\
589     40 - 50 & 0.9973 $\pm$ 0.0002 & 0.9965 $\pm$ 0.0003 \\
590     50 - 60 & 0.9957 $\pm$ 0.0005 & 0.9963 $\pm$ 0.0008 \\
591     60 - 80 & 0.9962 $\pm$ 0.0012 & 0.9952 $\pm$ 0.0017 \\
592     80 - 100 & 0.9992 $\pm$ 0.0035 & 1.0013 $\pm$ 0.0055 \\
593     100 - 150 & 0.9964 $\pm$ 0.0052 & 0.9882 $\pm$ 0.0077 \\
594     150 - 200 & 0.9861 $\pm$ 0.0117 & 1.0068 $\pm$ 0.0196 \\
595     200 - 300 & 1.0025 $\pm$ 0.0256 & 1.0076 $\pm$ 0.0344 \\
596     300 - 10000 & 1.1525 $\pm$ 0.0944 & 1.0084 $\pm$ 0.0926 \\
597 benhoob 1.17 \hline
598     \hline
599    
600 benhoob 1.33 %Using xmax 350
601     %data all 1.02393e+06
602     %data pass 987762
603     %data eff 0.964679
604     %data eff2 0.964679
605     %MC all 590742
606     %MC pass 571835
607     %MC eff 0.967994
608     %MC eff2 0.967994
609     %Using xmax 350
610     %data all 1.17606e+06
611     %data pass 987762
612     %data eff 0.839889
613     %data eff2 0.839889
614     %MC all 668187
615     %MC pass 571835
616     %MC eff 0.855801
617     %MC eff2 0.855801
618    
619 benhoob 1.17 \end{tabular}
620     \end{center}
621     \end{table}
622    
623     \begin{figure}[hbt]
624     \begin{center}
625 vimartin 1.18 \includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}%
626 benhoob 1.17 \includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf}
627     \includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}%
628     \includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf}
629     \includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}%
630     \includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf}
631     \includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}%
632     \includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf}
633     \includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}%
634     \includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf}
635     \caption{
636     \label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }
637     \end{center}
638     \end{figure}
639 benhoob 1.15
640     \clearpage
641    
642 benhoob 1.17
643 claudioc 1.19 \subsection{Trigger Efficiency Measurements}
644     \label{sec:trg}
645 benhoob 1.11
646     In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
647     approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
648     lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
649 claudioc 1.19 in order to measure the \pt\ turn-on curve. The tag-probe pair is
650     required to have opposite-sign and an invariant mass in the range
651     76--106 GeV.
652    
653 benhoob 1.11 The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
654 claudioc 1.19 These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers.
655 benhoob 1.11
656    
657     \begin{figure}[!ht]
658     \begin{center}
659     \begin{tabular}{cc}
660 benhoob 1.32 \includegraphics[width=0.4\textwidth]{plots/mutrig_20fb.pdf} &
661     \includegraphics[width=0.4\textwidth]{plots/eltrig_20fb.pdf} \\
662 benhoob 1.11 \end{tabular}
663     \caption{\label{fig:trigeff}
664     Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
665     for several bins in lepton $|\eta|$.
666     }
667     \end{center}
668     \end{figure}
669    
670     \clearpage
671    
672     \begin{table}[htb]
673     \begin{center}
674     \footnotesize
675     \caption{\label{tab:mutriggeff}
676     Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
677     \begin{tabular}{c|c|c|c}
678    
679 benhoob 1.32 %%% UPDATED WITH FULL 2012 DATA
680    
681     %-------------------
682     %Doing muons
683     %-------------------
684     %USING MUON ETA BINS
685    
686     %----------------------------------------------------------
687 benhoob 1.14 % Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
688     % Probe trigger : HLT_IsoMu24_probe > 0
689 benhoob 1.32 % Total data yield : 15561350
690     %----------------------------------------------------------
691 benhoob 1.14
692 benhoob 1.11 \hline
693     \hline
694     \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
695     \hline
696     20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
697 benhoob 1.32 22 - 24 & 0.02 $\pm$ 0.001 & 0.05 $\pm$ 0.001 & 0.10 $\pm$ 0.001 \\
698     24 - 26 & 0.87 $\pm$ 0.001 & 0.78 $\pm$ 0.001 & 0.76 $\pm$ 0.002 \\
699     26 - 28 & 0.90 $\pm$ 0.001 & 0.80 $\pm$ 0.001 & 0.78 $\pm$ 0.001 \\
700     28 - 30 & 0.91 $\pm$ 0.001 & 0.81 $\pm$ 0.001 & 0.79 $\pm$ 0.001 \\
701     30 - 32 & 0.91 $\pm$ 0.001 & 0.82 $\pm$ 0.001 & 0.80 $\pm$ 0.001 \\
702     32 - 34 & 0.92 $\pm$ 0.000 & 0.82 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\
703     34 - 36 & 0.93 $\pm$ 0.000 & 0.82 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\
704     36 - 38 & 0.93 $\pm$ 0.000 & 0.83 $\pm$ 0.001 & 0.82 $\pm$ 0.001 \\
705     38 - 40 & 0.93 $\pm$ 0.000 & 0.83 $\pm$ 0.001 & 0.82 $\pm$ 0.001 \\
706     40 - 50 & 0.94 $\pm$ 0.000 & 0.84 $\pm$ 0.000 & 0.83 $\pm$ 0.000 \\
707 benhoob 1.11 50 - 60 & 0.95 $\pm$ 0.000 & 0.84 $\pm$ 0.001 & 0.83 $\pm$ 0.001 \\
708 benhoob 1.32 60 - 80 & 0.95 $\pm$ 0.000 & 0.84 $\pm$ 0.001 & 0.84 $\pm$ 0.001 \\
709     80 - 100 & 0.94 $\pm$ 0.001 & 0.84 $\pm$ 0.002 & 0.84 $\pm$ 0.003 \\
710     100 - 150 & 0.94 $\pm$ 0.002 & 0.84 $\pm$ 0.003 & 0.84 $\pm$ 0.004 \\
711     150 - 200 & 0.93 $\pm$ 0.004 & 0.83 $\pm$ 0.007 & 0.82 $\pm$ 0.010 \\
712     $>$200 & 0.92 $\pm$ 0.005 & 0.83 $\pm$ 0.010 & 0.83 $\pm$ 0.018 \\
713 benhoob 1.11 \hline
714     \hline
715    
716     \end{tabular}
717     \end{center}
718     \end{table}
719    
720     \begin{table}[htb]
721     \begin{center}
722     \footnotesize
723     \caption{\label{tab:eltriggeff}
724     Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
725     \begin{tabular}{c|c|c}
726    
727 benhoob 1.32 %%% UPDATED WITH FULL 2012 DATA
728    
729     %-------------------
730     %Doing electrons
731     %-------------------
732     %USING ELECTRON ETA BINS
733    
734     %----------------------------------------------------------
735 benhoob 1.14 % Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
736     % Probe trigger : HLT_Ele27_WP80_probe > 0
737 benhoob 1.32 % Total data yield : 9620002
738     %----------------------------------------------------------
739 benhoob 1.14
740 benhoob 1.11 \hline
741     \hline
742     \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
743     \hline
744 benhoob 1.32 20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
745     22 - 24 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
746     24 - 26 & 0.00 $\pm$ 0.000 & 0.03 $\pm$ 0.001 \\
747     26 - 28 & 0.07 $\pm$ 0.001 & 0.22 $\pm$ 0.002 \\
748     28 - 30 & 0.57 $\pm$ 0.001 & 0.52 $\pm$ 0.002 \\
749     30 - 32 & 0.85 $\pm$ 0.001 & 0.65 $\pm$ 0.002 \\
750     32 - 34 & 0.88 $\pm$ 0.001 & 0.70 $\pm$ 0.002 \\
751     34 - 36 & 0.89 $\pm$ 0.000 & 0.72 $\pm$ 0.001 \\
752     36 - 38 & 0.91 $\pm$ 0.000 & 0.74 $\pm$ 0.001 \\
753     38 - 40 & 0.92 $\pm$ 0.000 & 0.75 $\pm$ 0.001 \\
754     40 - 50 & 0.94 $\pm$ 0.000 & 0.77 $\pm$ 0.001 \\
755     50 - 60 & 0.95 $\pm$ 0.000 & 0.79 $\pm$ 0.001 \\
756     60 - 80 & 0.96 $\pm$ 0.000 & 0.79 $\pm$ 0.002 \\
757     80 - 100 & 0.96 $\pm$ 0.001 & 0.80 $\pm$ 0.005 \\
758     100 - 150 & 0.97 $\pm$ 0.001 & 0.82 $\pm$ 0.006 \\
759     150 - 200 & 0.97 $\pm$ 0.002 & 0.83 $\pm$ 0.014 \\
760     $>$200 & 0.97 $\pm$ 0.003 & 0.85 $\pm$ 0.020 \\
761 benhoob 1.11 \hline
762     \hline
763    
764 benhoob 1.32
765 benhoob 1.11 \end{tabular}
766     \end{center}
767     \end{table}
768    
769     \clearpage