ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
Revision: 1.33
Committed: Wed Mar 20 14:16:07 2013 UTC (12 years, 2 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
CVS Tags: HEAD
Changes since 1.32: +209 -159 lines
Log Message:
update e and mu T&P studies

File Contents

# Content
1 Here we define the selections of leptons, jets, and \met.
2 We also describe our measurements of the lepton and trigger efficiency.
3 The analysis uses several different Control Regions (CRs) in addition
4 to the Signal
5 Regions (SRs).
6 All of these different regions are defined in this section.
7 This section also includes some information on the basic MC
8 corrections that we apply.
9 %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
10
11 \subsection{Single Lepton Selection}
12 \label{sec:singlelepselection}
13
14 The single lepton selection is based on the following criteria, starting from the requirements described
15 on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20)
16 \begin{itemize}
17 \item satisfy the trigger requirement (see
18 Table~\ref{tab:TrigData}).
19 Note that the analysis triggers are inclusive single lepton triggers.
20 Dilepton triggers are used only for the dilepton control region.
21 \item select events with one high \pt\ electron or muon, requiring
22 \begin{itemize}
23 \item $\pt>30~\GeVc$ and $|\eta|<1.4442 (2.1)$ for electrons (muons). The restriction to the barrel for electrons
24 is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region,
25 and does not significantly reduce the signal acceptance since the leptons tend to be central.
26 \item muon ID criteria is based on the 2012 POG recommended tight working point
27 \item electron ID critera is based on the 2012 POG recommended medium working point
28 \item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections
29 are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs).
30 \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
31 \item $E/p_{\rm{in}} < 4$ (electrons only)
32 \item We remove electron events with $\met > 50$ GeV and $M_T > 100$
33 GeV with at least one crystal in the supercluster with laser
34 correction $>$2.\footnote{This is an ad-hoc removal based on
35 run-event numbers, since the
36 problem was found very recently and the filter was not available
37 when we processed the events.}
38 \end{itemize}
39 \item require at least 4 PF jets in the event with $\pt>30~\GeV$
40 within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
41 medium working point b-tagging requirement
42 \item require moderate $\met>50~\GeV$ (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}).
43 \item Isolated track veto, see Section~\ref{sec:tkveto}
44
45 \end{itemize}
46
47 %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
48
49 %\begin{table}[!h]
50 %\begin{center}
51 %\begin{tabular}{c|c}
52 %\hline
53 %\hline
54 %\end{tabular}
55 %\caption{ Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
56 %\end{center}
57 %\end{table}
58
59 \subsection{Isolated track veto}
60 \label{sec:tkveto}
61
62 The isolated track veto is intended to remove top dilepton events.
63 Looking for an isolated track is an effective way of identifying $W
64 \to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to
65 h^{\pm} + n\pi^{0}$. The requirements on the track are
66
67 \begin{itemize}
68 \item $P_T > 10$ GeV
69 \item Relative track isolation $< 10\%$ computed from charged PF
70 candidates with $d_Z<$ 0.05 cm from the primary vertex.
71 \end{itemize}
72
73
74 \subsection{Signal Region Selection}
75 \label{sec:SR}
76
77 The signal regions (SRs) are selected to improve the sensitivity for the
78 single lepton requirements and cover a range of scalar top
79 scenarios. The \mt\ and \met\ variables are used to define the signal
80 regions and the requirements are listed in Table~\ref{tab:srdef}.
81
82 \begin{table}[!h]
83 \begin{center}
84 \begin{tabular}{l|c|c}
85 \hline
86 Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
87 \hline
88 \hline
89 SRA & 150 & 100 \\
90 SRB & 120 & 150 \\
91 SRC & 120 & 200 \\
92 SRD & 120 & 250 \\
93 SRE & 120 & 300 \\
94 SRF & 120 & 350 \\
95 SRG & 120 & 400 \\
96 \hline
97 \end{tabular}
98 \caption{ Signal region definitions based on \mt\ and \met\
99 requirements. These requirements are applied in addition to the
100 baseline single lepton selection.
101 \label{tab:srdef}}
102 \end{center}
103 \end{table}
104
105 Table~\ref{tab:srrawmcyields} shows the expected number of SM
106 background yields for the SRs. A few stop signal yields for four
107 values of the parameters are also shown for comparison. The signal
108 regions with looser requirements are sensitive to lower stop masses
109 M(\sctop), while those with tighter requirements are more sensitive to
110 higher M(\sctop). Kinematic distributions for a few sample signal
111 points can be found in Appendix~\ref{app:sigkin}.
112
113 \begin{table}[!h]
114 \begin{center}
115 \footnotesize
116 \begin{tabular}{l||c|c|c|c|c|c|c}
117 \hline
118 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
119 \hline
120 \hline
121 \ttdl\ & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\
122 \ttsl\ \& single top (1\Lep) & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\
123 \wjets\ & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
124 Rare & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\
125 \hline
126 Total & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\
127 \hline
128 Yield UL (optimistic) & 147 (10\%) & 94 (10\%) & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%) \\
129 Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\
130 \hline
131 T2tt m(stop) = 250 m($\chi^0$) = 0 & $315 \pm 18$& $193 \pm 14$& $53 \pm 8$& $13 \pm 4$& $2 \pm 2$& $0 \pm 0$& $0 \pm 0$ \\ \hline
132 T2tt m(stop) = 300 m($\chi^0$) = 50 & $296 \pm 11$& $236 \pm 10$& $88 \pm 6$& $28 \pm 3$& $10 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\ \hline
133 T2tt m(stop) = 300 m($\chi^0$) = 100 & $128 \pm 7$& $93 \pm 6$& $29 \pm 3$& $10 \pm 2$& $5 \pm 1$& $2 \pm 1$& $1 \pm 1$ \\ \hline
134 T2tt m(stop) = 350 m($\chi^0$) = 0 & $224 \pm 6$& $206 \pm 6$& $119 \pm 4$& $52 \pm 3$& $20 \pm 2$& $8 \pm 1$& $3 \pm 1$ \\ \hline
135 T2tt m(stop) = 450 m($\chi^0$) = 0 & $71 \pm 2$& $71 \pm 2$& $53 \pm 1$& $36 \pm 1$& $21 \pm 1$& $11 \pm 1$& $5 \pm 0$ \\
136 \hline
137 \end{tabular}
138 \caption{ Expected SM background contributions and signal yields for a few sample points,
139 including both muon and electron channels. This is ``dead reckoning'' MC with no
140 correction. It is meant only as a general guide. The uncertainties are statistical only.
141 The signal yield expected upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses.
142 %[{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ].
143 %HOOBERMAN
144 \label{tab:srrawmcyields}}
145 \end{center}
146 \end{table}
147
148 \subsection{Control Region Selection}
149 \label{sec:CRsel}
150
151 Control regions (CRs) are used to validate the background estimation
152 procedure and derive systematic uncertainties for some
153 contributions. The CRs are selected to have similar
154 kinematics to the SRs, but have a different requirement in terms of
155 number of b-tags and number of leptons, thus enhancing them in
156 different SM contributions. The four CRs used in this analysis are
157 summarized in Table~\ref{tab:crdef}.
158
159 \begin{table}
160 \begin{center}
161 {\small
162 \begin{tabular}{l|c|c|c}
163 \hline
164 Selection & \multirow{2}{*}{exactly 1 lepton} & \multirow{2}{*}{exactly 2
165 leptons} & \multirow{2}{*}{1 lepton + isolated
166 track}\\
167 Criteria & & & \\
168 \hline
169 \hline
170 \multirow{4}{*}{0 b-tags}
171 & CR1) W+Jets dominated:
172 & CR2) apply \Z-mass constraint
173 & CR3) not used \\
174 &
175 & $\rightarrow$ Z+Jets dominated: Validate
176 & \\
177 & Validate W+Jets \mt\ tail
178 & \ttsl\ \mt\ tail comparing
179 & \\
180 &
181 & data vs. MC ``pseudo-\mt ''
182 & \\
183 \hline
184 \multirow{4}{*}{$\ge$ 1 b-tags}
185 &
186 & CR4) Apply \Z-mass veto
187 & CR5) \ttdl, \ttlt\ and \\
188 & SIGNAL
189 & $\rightarrow$ \ttdl\ dominated: Validate
190 & \ttlf\ dominated: Validate \\
191 & REGION
192 & ``physics'' modelling of \ttdl\
193 & \Tau\ and fake lepton modeling/\\
194 &
195 &
196 & detector effects in \ttdl\ \\
197 \hline
198 \end{tabular}
199 }
200 \caption{Summary of signal and control regions.
201 \label{tab:crdef}%\protect
202 }
203 \end{center}
204 \end{table}
205
206 \subsection{Definition of $M_T$ peak region}
207 \label{sec:mtpeakdef}
208
209 This region is defined as $50 < M_T < 80$ GeV.
210
211
212 \subsection{Default \ttbar\ MC sample}
213
214 Our default \ttbar\ MC sample is Powheg.
215
216 \subsection{MC Corrections}
217 \label{sec:MCCorr}
218
219 All MC samples are corrected for trigger efficiency. In the case of
220 single lepton selections, we apply the $\pt$ and $\eta$-dependent
221 scale factors that we measure ourselves, see Section~\ref{sec:trg}.
222 In the case of dilepton selections that require the dilepton triggers,
223 we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$,
224 $\mu\mu$,
225 and $e\mu$ respectively~\cite{didar}.
226
227 The leptonic branching fraction used in some of the \ttbar\ MC samples
228 differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
229 Table~\ref{tab:wlepbf} summarizes the branching fractions used in
230 the generation of the various \ttbar\ MC samples.
231 For \ttbar\ samples with the incorrect leptonic branching fraction, event
232 weights are applied based on the number of true leptons and the ratio
233 of the corrected and incorrect branching fractions.
234
235 \begin{table}[!h]
236 \begin{center}
237 \begin{tabular}{c|c}
238 \hline
239 \ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\
240 \hline
241 \hline
242 Madgraph & 0.111\\
243 MC@NLO & 0.111\\
244 Pythia & 0.108\\
245 Powheg & 0.108\\
246 \hline
247 \end{tabular}
248 \caption{Leptonic branching fractions for the various \ttbar\ samples
249 used in the analysis. The \ttbar\ MC samples produced with
250 Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than
251 the PDG value. \label{tab:wlepbf}}
252 \end{center}
253 \end{table}
254
255 All \ttbar\ dilepton samples are corrected (when needed and
256 appropriate)
257 in order to have the correct jet multiplicity distribution. This
258 correction procedure is described in Section~\ref{sec:jetmultiplicity}.
259
260
261 \subsubsection{Corrections to Jets and \met}
262 \label{sec:JetMet}
263
264 The official recommendations from the Jet/MET group are used for
265 the data and MC samples. In particular, the jet
266 energy corrections (JEC) are updated using the official recipe.
267 L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
268 based on the global tags GR\_R\_52\_V9 (START52\_V9B) for
269 data (MC). In addition, these jet energy corrections are propagated to
270 the \met\ calculation, following the official prescription for
271 deriving the Type I corrections.
272
273 Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
274 can correspond to events with unphysically large \met\ and \mt.
275 %tail signal region.
276 In addition, the recommended MET filters are applied.
277 A correction to remove the $\phi$ modulation in \met\ is also applied
278 to the data.
279
280
281 \subsection{Lepton Selection Efficiency Measurements}
282 \label{sec:lepEff}
283
284 In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies.
285 The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
286 lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons.
287 The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement,
288 to measure the isolation efficiency we require the probe to pass the
289 identification requirement.
290
291 The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
292 In order to suppress lepton pairs from sources other than Z boson
293 decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged
294 jets (CSV loose working point).
295
296 The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for
297 several different jet multiplicity requirements.
298 We currently observe good agreement for muons with \pt\ up to about 300 GeV.
299 For high \pt\ muons we observe a source of background in the data, which we suppress by only considering probes which satisfy the impact parameter requirements $d_0<0.02$~cm and $d_Z<0.5$~cm, and the probe is required to be reconstructed as a tracker muon.
300 %For muons with \pt\ $>$ 200 GeV the data efficiency
301 %begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV.
302 %We are currently investigating the source of this inefficiency.
303 The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff}
304 for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies.
305
306 % Pending a better understanding of the very high \pt\ muon efficiency,
307 We
308 do not correct the MC for differences in lepton efficiency. In the
309 background calculation, we do not take any systematics due to lepton
310 selection
311 efficiency uncertainties. This is because all backgrounds except the
312 rare MC background are normalized to the $M_T$ peak, thus the lepton
313 identification uncertainty cancels out. For the rare MC these
314 uncertainties
315 are negligible compared to the assumed cross-section uncertainty
316 (Section~\ref{sec:bkg_other}).
317
318
319
320
321 \begin{table}[htb]
322 \begin{center}
323 \scriptsize
324 \caption{\label{tab:mutnpeff}
325 Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.}
326 \begin{tabular}{c|c|c|c}
327
328
329 %-------------------
330 %Doing muons
331 %-------------------
332 %DOING MUON ETA BINS
333 %Selection : (((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(tag->pt()>30.0))&&(met<30))&&(nbl==0))&&(abs(tag->eta())<2.1))&&(abs(probe->eta())<2.1))&&(mutrk==1))&&(mud0 < 0.02))&&(mudz < 0.5))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0)
334 %Ndata : 7053268
335 %NMC : 4406913
336 %ID cut : ((leptonSelection&65536)==65536)&&(abs(probepfpt - probe->pt()) < 10.0)
337 %iso cut : ((leptonSelection&131072)==131072)&&(probeiso * probe->pt() < 5.0)
338
339
340
341 \hline
342 \hline
343 MC ID& & & \\
344 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
345 \hline
346 20 - 30 & 0.9672 $\pm$ 0.0004 & 0.9639 $\pm$ 0.0005 & 0.9466 $\pm$ 0.0007 \\
347 30 - 40 & 0.9684 $\pm$ 0.0002 & 0.9658 $\pm$ 0.0003 & 0.9446 $\pm$ 0.0004 \\
348 40 - 50 & 0.9704 $\pm$ 0.0002 & 0.9685 $\pm$ 0.0002 & 0.9432 $\pm$ 0.0004 \\
349 50 - 60 & 0.9685 $\pm$ 0.0004 & 0.9640 $\pm$ 0.0005 & 0.9419 $\pm$ 0.0008 \\
350 60 - 80 & 0.9682 $\pm$ 0.0008 & 0.9628 $\pm$ 0.0010 & 0.9364 $\pm$ 0.0017 \\
351 80 - 100 & 0.9710 $\pm$ 0.0021 & 0.9633 $\pm$ 0.0027 & 0.9255 $\pm$ 0.0049 \\
352 100 - 150 & 0.9658 $\pm$ 0.0029 & 0.9623 $\pm$ 0.0036 & 0.9205 $\pm$ 0.0069 \\
353 150 - 200 & 0.9592 $\pm$ 0.0072 & 0.9392 $\pm$ 0.0103 & 0.9110 $\pm$ 0.0185 \\
354 200 - 300 & 0.9373 $\pm$ 0.0147 & 0.8889 $\pm$ 0.0218 & 0.8525 $\pm$ 0.0454 \\
355 300 - 10000 & 0.8923 $\pm$ 0.0384 & 0.7143 $\pm$ 0.0764 & 0.3333 $\pm$ 0.1925 \\
356
357
358 \hline
359 \hline
360 MC ISO& & & \\
361 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
362 \hline
363 20 - 30 & 0.8966 $\pm$ 0.0007 & 0.9152 $\pm$ 0.0008 & 0.9301 $\pm$ 0.0008 \\
364 30 - 40 & 0.9562 $\pm$ 0.0002 & 0.9589 $\pm$ 0.0003 & 0.9674 $\pm$ 0.0003 \\
365 40 - 50 & 0.9764 $\pm$ 0.0002 & 0.9809 $\pm$ 0.0002 & 0.9836 $\pm$ 0.0002 \\
366 50 - 60 & 0.9766 $\pm$ 0.0004 & 0.9810 $\pm$ 0.0004 & 0.9830 $\pm$ 0.0005 \\
367 60 - 80 & 0.9720 $\pm$ 0.0008 & 0.9777 $\pm$ 0.0008 & 0.9791 $\pm$ 0.0010 \\
368 80 - 100 & 0.9645 $\pm$ 0.0023 & 0.9658 $\pm$ 0.0026 & 0.9697 $\pm$ 0.0033 \\
369 100 - 150 & 0.9583 $\pm$ 0.0032 & 0.9603 $\pm$ 0.0037 & 0.9752 $\pm$ 0.0041 \\
370 150 - 200 & 0.9580 $\pm$ 0.0073 & 0.9392 $\pm$ 0.0103 & 0.9954 $\pm$ 0.0046 \\
371 200 - 300 & 0.9585 $\pm$ 0.0123 & 0.9583 $\pm$ 0.0144 & 0.9455 $\pm$ 0.0306 \\
372 300 - 10000 & 0.9667 $\pm$ 0.0232 & 0.9615 $\pm$ 0.0377 & 1.0000 $\pm$ 0.0000 \\
373
374
375 \hline
376 \hline
377 DATA ID& & & \\
378 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
379 \hline
380 20 - 30 & 0.9516 $\pm$ 0.0004 & 0.9495 $\pm$ 0.0005 & 0.9349 $\pm$ 0.0006 \\
381 30 - 40 & 0.9539 $\pm$ 0.0002 & 0.9509 $\pm$ 0.0003 & 0.9342 $\pm$ 0.0004 \\
382 40 - 50 & 0.9573 $\pm$ 0.0002 & 0.9556 $\pm$ 0.0002 & 0.9339 $\pm$ 0.0003 \\
383 50 - 60 & 0.9520 $\pm$ 0.0004 & 0.9480 $\pm$ 0.0005 & 0.9291 $\pm$ 0.0008 \\
384 60 - 80 & 0.9522 $\pm$ 0.0008 & 0.9453 $\pm$ 0.0010 & 0.9279 $\pm$ 0.0015 \\
385 80 - 100 & 0.9501 $\pm$ 0.0022 & 0.9443 $\pm$ 0.0027 & 0.9250 $\pm$ 0.0042 \\
386 100 - 150 & 0.9510 $\pm$ 0.0029 & 0.9397 $\pm$ 0.0038 & 0.9099 $\pm$ 0.0064 \\
387 150 - 200 & 0.9552 $\pm$ 0.0066 & 0.9452 $\pm$ 0.0089 & 0.8758 $\pm$ 0.0182 \\
388 200 - 300 & 0.9313 $\pm$ 0.0138 & 0.8770 $\pm$ 0.0210 & 0.8228 $\pm$ 0.0430 \\
389 300 - 10000 & 0.8704 $\pm$ 0.0457 & 0.7391 $\pm$ 0.0916 & 0.1429 $\pm$ 0.1323 \\
390
391
392 \hline
393 \hline
394 DATA ISO& & & \\
395 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
396 \hline
397 20 - 30 & 0.8907 $\pm$ 0.0006 & 0.9128 $\pm$ 0.0006 & 0.9364 $\pm$ 0.0006 \\
398 30 - 40 & 0.9532 $\pm$ 0.0002 & 0.9594 $\pm$ 0.0002 & 0.9712 $\pm$ 0.0002 \\
399 40 - 50 & 0.9744 $\pm$ 0.0001 & 0.9810 $\pm$ 0.0001 & 0.9858 $\pm$ 0.0002 \\
400 50 - 60 & 0.9751 $\pm$ 0.0003 & 0.9817 $\pm$ 0.0003 & 0.9871 $\pm$ 0.0003 \\
401 60 - 80 & 0.9710 $\pm$ 0.0006 & 0.9774 $\pm$ 0.0007 & 0.9836 $\pm$ 0.0008 \\
402 80 - 100 & 0.9645 $\pm$ 0.0019 & 0.9731 $\pm$ 0.0019 & 0.9781 $\pm$ 0.0024 \\
403 100 - 150 & 0.9597 $\pm$ 0.0027 & 0.9657 $\pm$ 0.0029 & 0.9821 $\pm$ 0.0031 \\
404 150 - 200 & 0.9389 $\pm$ 0.0076 & 0.9583 $\pm$ 0.0078 & 0.9538 $\pm$ 0.0121 \\
405 200 - 300 & 0.9600 $\pm$ 0.0109 & 0.9640 $\pm$ 0.0125 & 0.9701 $\pm$ 0.0208 \\
406 300 - 10000 & 0.9592 $\pm$ 0.0283 & 0.9444 $\pm$ 0.0540 & 1.0000 $\pm$ 0.0000 \\
407
408
409 \hline
410 \hline
411 Scale Factor ID& & & \\
412 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
413 \hline
414 20 - 30 & 0.9839 $\pm$ 0.0006 & 0.9850 $\pm$ 0.0008 & 0.9876 $\pm$ 0.0010 \\
415 30 - 40 & 0.9850 $\pm$ 0.0003 & 0.9846 $\pm$ 0.0004 & 0.9890 $\pm$ 0.0006 \\
416 40 - 50 & 0.9865 $\pm$ 0.0003 & 0.9866 $\pm$ 0.0003 & 0.9902 $\pm$ 0.0005 \\
417 50 - 60 & 0.9829 $\pm$ 0.0006 & 0.9834 $\pm$ 0.0007 & 0.9864 $\pm$ 0.0012 \\
418 60 - 80 & 0.9835 $\pm$ 0.0012 & 0.9818 $\pm$ 0.0015 & 0.9909 $\pm$ 0.0024 \\
419 80 - 100 & 0.9785 $\pm$ 0.0031 & 0.9803 $\pm$ 0.0039 & 0.9995 $\pm$ 0.0070 \\
420 100 - 150 & 0.9847 $\pm$ 0.0042 & 0.9765 $\pm$ 0.0054 & 0.9884 $\pm$ 0.0102 \\
421 150 - 200 & 0.9958 $\pm$ 0.0101 & 1.0064 $\pm$ 0.0145 & 0.9613 $\pm$ 0.0279 \\
422 200 - 300 & 0.9937 $\pm$ 0.0215 & 0.9867 $\pm$ 0.0339 & 0.9652 $\pm$ 0.0720 \\
423 300 - 10000 & 0.9754 $\pm$ 0.0663 & 1.0348 $\pm$ 0.1693 & 0.4286 $\pm$ 0.4676 \\
424
425
426 \hline
427 \hline
428 Scale Factor ISO& & & \\
429 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
430 \hline
431 20 - 30 & 0.9934 $\pm$ 0.0010 & 0.9974 $\pm$ 0.0011 & 1.0068 $\pm$ 0.0011 \\
432 30 - 40 & 0.9969 $\pm$ 0.0003 & 1.0004 $\pm$ 0.0004 & 1.0039 $\pm$ 0.0004 \\
433 40 - 50 & 0.9979 $\pm$ 0.0002 & 1.0001 $\pm$ 0.0002 & 1.0023 $\pm$ 0.0003 \\
434 50 - 60 & 0.9985 $\pm$ 0.0005 & 1.0007 $\pm$ 0.0005 & 1.0042 $\pm$ 0.0006 \\
435 60 - 80 & 0.9989 $\pm$ 0.0011 & 0.9997 $\pm$ 0.0011 & 1.0046 $\pm$ 0.0013 \\
436 80 - 100 & 0.9999 $\pm$ 0.0031 & 1.0075 $\pm$ 0.0034 & 1.0086 $\pm$ 0.0042 \\
437 100 - 150 & 1.0014 $\pm$ 0.0043 & 1.0056 $\pm$ 0.0049 & 1.0071 $\pm$ 0.0053 \\
438 150 - 200 & 0.9802 $\pm$ 0.0109 & 1.0203 $\pm$ 0.0139 & 0.9582 $\pm$ 0.0129 \\
439 200 - 300 & 1.0016 $\pm$ 0.0171 & 1.0059 $\pm$ 0.0200 & 1.0261 $\pm$ 0.0398 \\
440 300 - 10000 & 0.9923 $\pm$ 0.0377 & 0.9822 $\pm$ 0.0681 & 1.0000 $\pm$ 0.0000 \\
441 \hline
442 \hline
443
444 %Using xmax 350
445 %data all 2.21882e+06
446 %data pass 2.1274e+06
447 %data eff 0.958794
448 %data eff2 0.958794
449 %MC all 1.38687e+06
450 %MC pass 1.33047e+06
451 %MC eff 0.959338
452 %MC eff2 0.959338
453
454
455
456 \end{tabular}
457 \end{center}
458 \end{table}
459
460 \begin{figure}[hbt]
461 \begin{center}
462 \includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}%
463 \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf}
464 \includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}%
465 \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf}
466 \includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}%
467 \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf}
468 \includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}%
469 \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf}
470 \includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}%
471 \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf}
472 \caption{
473 \label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }
474 \end{center}
475 \end{figure}
476
477 \clearpage
478
479 \begin{table}[htb]
480 \begin{center}
481 \scriptsize
482 \caption{\label{tab:eltnpeff}
483 Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.}
484 \begin{tabular}{c|c|c}
485
486 %-------------------
487 %Doing electrons: FULL 2012 SAMPLE
488 %-------------------
489 %DOING ELECTRON ETA BINS
490 %Selection : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(tag->pt()>30.0))&&(met<30))&&(nbl==0))&&(abs(tag->eta())<1.4442))&&(abs(probe->eta())<1.4442))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0)
491 %Ndata : 3962010
492 %NMC : 2276057
493 %ID cut : (((leptonSelection&8)==8)&&(abs(probepfpt - probe->pt()) < 10.0))&&(probe_eoverpin < 4.0)
494 %iso cut : ((leptonSelection&16)==16)&&(probeiso * probe->pt() < 5.0)
495
496
497 \hline
498 \hline
499 MC ID & & \\
500 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
501 \hline
502 20 - 30 & 0.8206 $\pm$ 0.0014 & 0.7846 $\pm$ 0.0014 \\
503 30 - 40 & 0.8602 $\pm$ 0.0006 & 0.8494 $\pm$ 0.0007 \\
504 40 - 50 & 0.8775 $\pm$ 0.0004 & 0.8849 $\pm$ 0.0005 \\
505 50 - 60 & 0.8842 $\pm$ 0.0009 & 0.8917 $\pm$ 0.0012 \\
506 60 - 80 & 0.8877 $\pm$ 0.0016 & 0.8951 $\pm$ 0.0022 \\
507 80 - 100 & 0.8876 $\pm$ 0.0043 & 0.9035 $\pm$ 0.0055 \\
508 100 - 150 & 0.8898 $\pm$ 0.0055 & 0.8962 $\pm$ 0.0075 \\
509 150 - 200 & 0.8746 $\pm$ 0.0129 & 0.8683 $\pm$ 0.0189 \\
510 200 - 300 & 0.8760 $\pm$ 0.0205 & 0.9160 $\pm$ 0.0242 \\
511 300 - 10000 & 0.8444 $\pm$ 0.0540 & 0.7778 $\pm$ 0.0980 \\
512
513
514 \hline
515 \hline
516 MC ISO & & \\
517 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
518 \hline
519 20 - 30 & 0.9198 $\pm$ 0.0011 & 0.9405 $\pm$ 0.0009 \\
520 30 - 40 & 0.9667 $\pm$ 0.0003 & 0.9699 $\pm$ 0.0003 \\
521 40 - 50 & 0.9809 $\pm$ 0.0002 & 0.9796 $\pm$ 0.0003 \\
522 50 - 60 & 0.9788 $\pm$ 0.0004 & 0.9774 $\pm$ 0.0006 \\
523 60 - 80 & 0.9729 $\pm$ 0.0009 & 0.9702 $\pm$ 0.0013 \\
524 80 - 100 & 0.9633 $\pm$ 0.0027 & 0.9528 $\pm$ 0.0041 \\
525 100 - 150 & 0.9548 $\pm$ 0.0038 & 0.9510 $\pm$ 0.0054 \\
526 150 - 200 & 0.9581 $\pm$ 0.0082 & 0.9358 $\pm$ 0.0142 \\
527 200 - 300 & 0.9187 $\pm$ 0.0174 & 0.9231 $\pm$ 0.0234 \\
528 300 - 10000 & 0.8085 $\pm$ 0.0574 & 0.9333 $\pm$ 0.0644 \\
529
530
531 \hline
532 \hline
533 DATA ID & & \\
534 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
535 \hline
536 20 - 30 & 0.8143 $\pm$ 0.0011 & 0.7557 $\pm$ 0.0011 \\
537 30 - 40 & 0.8502 $\pm$ 0.0004 & 0.8245 $\pm$ 0.0006 \\
538 40 - 50 & 0.8687 $\pm$ 0.0003 & 0.8632 $\pm$ 0.0004 \\
539 50 - 60 & 0.8736 $\pm$ 0.0007 & 0.8718 $\pm$ 0.0010 \\
540 60 - 80 & 0.8741 $\pm$ 0.0014 & 0.8770 $\pm$ 0.0019 \\
541 80 - 100 & 0.8809 $\pm$ 0.0035 & 0.8751 $\pm$ 0.0049 \\
542 100 - 150 & 0.8802 $\pm$ 0.0047 & 0.8795 $\pm$ 0.0066 \\
543 150 - 200 & 0.8935 $\pm$ 0.0102 & 0.8631 $\pm$ 0.0161 \\
544 200 - 300 & 0.8645 $\pm$ 0.0194 & 0.8110 $\pm$ 0.0306 \\
545 300 - 10000 & 0.9111 $\pm$ 0.0424 & 0.8000 $\pm$ 0.0894 \\
546
547
548 \hline
549 \hline
550 DATA ISO & & \\
551 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
552 \hline
553 20 - 30 & 0.9141 $\pm$ 0.0008 & 0.9348 $\pm$ 0.0007 \\
554 30 - 40 & 0.9636 $\pm$ 0.0002 & 0.9663 $\pm$ 0.0003 \\
555 40 - 50 & 0.9783 $\pm$ 0.0001 & 0.9762 $\pm$ 0.0002 \\
556 50 - 60 & 0.9746 $\pm$ 0.0004 & 0.9738 $\pm$ 0.0005 \\
557 60 - 80 & 0.9692 $\pm$ 0.0008 & 0.9656 $\pm$ 0.0011 \\
558 80 - 100 & 0.9625 $\pm$ 0.0021 & 0.9541 $\pm$ 0.0033 \\
559 100 - 150 & 0.9514 $\pm$ 0.0033 & 0.9398 $\pm$ 0.0050 \\
560 150 - 200 & 0.9448 $\pm$ 0.0077 & 0.9422 $\pm$ 0.0115 \\
561 200 - 300 & 0.9210 $\pm$ 0.0158 & 0.9301 $\pm$ 0.0213 \\
562 300 - 10000 & 0.9318 $\pm$ 0.0380 & 0.9412 $\pm$ 0.0571 \\
563
564
565 \hline
566 \hline
567 Scale Factor ID & & \\
568 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
569 \hline
570 20 - 30 & 0.9923 $\pm$ 0.0022 & 0.9632 $\pm$ 0.0022 \\
571 30 - 40 & 0.9883 $\pm$ 0.0008 & 0.9707 $\pm$ 0.0010 \\
572 40 - 50 & 0.9900 $\pm$ 0.0006 & 0.9755 $\pm$ 0.0008 \\
573 50 - 60 & 0.9880 $\pm$ 0.0012 & 0.9777 $\pm$ 0.0017 \\
574 60 - 80 & 0.9847 $\pm$ 0.0024 & 0.9797 $\pm$ 0.0032 \\
575 80 - 100 & 0.9924 $\pm$ 0.0062 & 0.9687 $\pm$ 0.0081 \\
576 100 - 150 & 0.9892 $\pm$ 0.0081 & 0.9813 $\pm$ 0.0110 \\
577 150 - 200 & 1.0216 $\pm$ 0.0191 & 0.9940 $\pm$ 0.0286 \\
578 200 - 300 & 0.9869 $\pm$ 0.0320 & 0.8853 $\pm$ 0.0408 \\
579 300 - 10000 & 1.0789 $\pm$ 0.0854 & 1.0286 $\pm$ 0.1733 \\
580
581
582 \hline
583 \hline
584 Scale Factor ISO & & \\
585 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.4442$ \\
586 \hline
587 20 - 30 & 0.9938 $\pm$ 0.0015 & 0.9939 $\pm$ 0.0012 \\
588 30 - 40 & 0.9968 $\pm$ 0.0004 & 0.9963 $\pm$ 0.0005 \\
589 40 - 50 & 0.9973 $\pm$ 0.0002 & 0.9965 $\pm$ 0.0003 \\
590 50 - 60 & 0.9957 $\pm$ 0.0005 & 0.9963 $\pm$ 0.0008 \\
591 60 - 80 & 0.9962 $\pm$ 0.0012 & 0.9952 $\pm$ 0.0017 \\
592 80 - 100 & 0.9992 $\pm$ 0.0035 & 1.0013 $\pm$ 0.0055 \\
593 100 - 150 & 0.9964 $\pm$ 0.0052 & 0.9882 $\pm$ 0.0077 \\
594 150 - 200 & 0.9861 $\pm$ 0.0117 & 1.0068 $\pm$ 0.0196 \\
595 200 - 300 & 1.0025 $\pm$ 0.0256 & 1.0076 $\pm$ 0.0344 \\
596 300 - 10000 & 1.1525 $\pm$ 0.0944 & 1.0084 $\pm$ 0.0926 \\
597 \hline
598 \hline
599
600 %Using xmax 350
601 %data all 1.02393e+06
602 %data pass 987762
603 %data eff 0.964679
604 %data eff2 0.964679
605 %MC all 590742
606 %MC pass 571835
607 %MC eff 0.967994
608 %MC eff2 0.967994
609 %Using xmax 350
610 %data all 1.17606e+06
611 %data pass 987762
612 %data eff 0.839889
613 %data eff2 0.839889
614 %MC all 668187
615 %MC pass 571835
616 %MC eff 0.855801
617 %MC eff2 0.855801
618
619 \end{tabular}
620 \end{center}
621 \end{table}
622
623 \begin{figure}[hbt]
624 \begin{center}
625 \includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}%
626 \includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf}
627 \includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}%
628 \includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf}
629 \includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}%
630 \includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf}
631 \includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}%
632 \includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf}
633 \includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}%
634 \includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf}
635 \caption{
636 \label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }
637 \end{center}
638 \end{figure}
639
640 \clearpage
641
642
643 \subsection{Trigger Efficiency Measurements}
644 \label{sec:trg}
645
646 In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
647 approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
648 lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
649 in order to measure the \pt\ turn-on curve. The tag-probe pair is
650 required to have opposite-sign and an invariant mass in the range
651 76--106 GeV.
652
653 The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
654 These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers.
655
656
657 \begin{figure}[!ht]
658 \begin{center}
659 \begin{tabular}{cc}
660 \includegraphics[width=0.4\textwidth]{plots/mutrig_20fb.pdf} &
661 \includegraphics[width=0.4\textwidth]{plots/eltrig_20fb.pdf} \\
662 \end{tabular}
663 \caption{\label{fig:trigeff}
664 Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
665 for several bins in lepton $|\eta|$.
666 }
667 \end{center}
668 \end{figure}
669
670 \clearpage
671
672 \begin{table}[htb]
673 \begin{center}
674 \footnotesize
675 \caption{\label{tab:mutriggeff}
676 Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
677 \begin{tabular}{c|c|c|c}
678
679 %%% UPDATED WITH FULL 2012 DATA
680
681 %-------------------
682 %Doing muons
683 %-------------------
684 %USING MUON ETA BINS
685
686 %----------------------------------------------------------
687 % Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
688 % Probe trigger : HLT_IsoMu24_probe > 0
689 % Total data yield : 15561350
690 %----------------------------------------------------------
691
692 \hline
693 \hline
694 \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
695 \hline
696 20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
697 22 - 24 & 0.02 $\pm$ 0.001 & 0.05 $\pm$ 0.001 & 0.10 $\pm$ 0.001 \\
698 24 - 26 & 0.87 $\pm$ 0.001 & 0.78 $\pm$ 0.001 & 0.76 $\pm$ 0.002 \\
699 26 - 28 & 0.90 $\pm$ 0.001 & 0.80 $\pm$ 0.001 & 0.78 $\pm$ 0.001 \\
700 28 - 30 & 0.91 $\pm$ 0.001 & 0.81 $\pm$ 0.001 & 0.79 $\pm$ 0.001 \\
701 30 - 32 & 0.91 $\pm$ 0.001 & 0.82 $\pm$ 0.001 & 0.80 $\pm$ 0.001 \\
702 32 - 34 & 0.92 $\pm$ 0.000 & 0.82 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\
703 34 - 36 & 0.93 $\pm$ 0.000 & 0.82 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\
704 36 - 38 & 0.93 $\pm$ 0.000 & 0.83 $\pm$ 0.001 & 0.82 $\pm$ 0.001 \\
705 38 - 40 & 0.93 $\pm$ 0.000 & 0.83 $\pm$ 0.001 & 0.82 $\pm$ 0.001 \\
706 40 - 50 & 0.94 $\pm$ 0.000 & 0.84 $\pm$ 0.000 & 0.83 $\pm$ 0.000 \\
707 50 - 60 & 0.95 $\pm$ 0.000 & 0.84 $\pm$ 0.001 & 0.83 $\pm$ 0.001 \\
708 60 - 80 & 0.95 $\pm$ 0.000 & 0.84 $\pm$ 0.001 & 0.84 $\pm$ 0.001 \\
709 80 - 100 & 0.94 $\pm$ 0.001 & 0.84 $\pm$ 0.002 & 0.84 $\pm$ 0.003 \\
710 100 - 150 & 0.94 $\pm$ 0.002 & 0.84 $\pm$ 0.003 & 0.84 $\pm$ 0.004 \\
711 150 - 200 & 0.93 $\pm$ 0.004 & 0.83 $\pm$ 0.007 & 0.82 $\pm$ 0.010 \\
712 $>$200 & 0.92 $\pm$ 0.005 & 0.83 $\pm$ 0.010 & 0.83 $\pm$ 0.018 \\
713 \hline
714 \hline
715
716 \end{tabular}
717 \end{center}
718 \end{table}
719
720 \begin{table}[htb]
721 \begin{center}
722 \footnotesize
723 \caption{\label{tab:eltriggeff}
724 Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
725 \begin{tabular}{c|c|c}
726
727 %%% UPDATED WITH FULL 2012 DATA
728
729 %-------------------
730 %Doing electrons
731 %-------------------
732 %USING ELECTRON ETA BINS
733
734 %----------------------------------------------------------
735 % Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
736 % Probe trigger : HLT_Ele27_WP80_probe > 0
737 % Total data yield : 9620002
738 %----------------------------------------------------------
739
740 \hline
741 \hline
742 \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
743 \hline
744 20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
745 22 - 24 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\
746 24 - 26 & 0.00 $\pm$ 0.000 & 0.03 $\pm$ 0.001 \\
747 26 - 28 & 0.07 $\pm$ 0.001 & 0.22 $\pm$ 0.002 \\
748 28 - 30 & 0.57 $\pm$ 0.001 & 0.52 $\pm$ 0.002 \\
749 30 - 32 & 0.85 $\pm$ 0.001 & 0.65 $\pm$ 0.002 \\
750 32 - 34 & 0.88 $\pm$ 0.001 & 0.70 $\pm$ 0.002 \\
751 34 - 36 & 0.89 $\pm$ 0.000 & 0.72 $\pm$ 0.001 \\
752 36 - 38 & 0.91 $\pm$ 0.000 & 0.74 $\pm$ 0.001 \\
753 38 - 40 & 0.92 $\pm$ 0.000 & 0.75 $\pm$ 0.001 \\
754 40 - 50 & 0.94 $\pm$ 0.000 & 0.77 $\pm$ 0.001 \\
755 50 - 60 & 0.95 $\pm$ 0.000 & 0.79 $\pm$ 0.001 \\
756 60 - 80 & 0.96 $\pm$ 0.000 & 0.79 $\pm$ 0.002 \\
757 80 - 100 & 0.96 $\pm$ 0.001 & 0.80 $\pm$ 0.005 \\
758 100 - 150 & 0.97 $\pm$ 0.001 & 0.82 $\pm$ 0.006 \\
759 150 - 200 & 0.97 $\pm$ 0.002 & 0.83 $\pm$ 0.014 \\
760 $>$200 & 0.97 $\pm$ 0.003 & 0.85 $\pm$ 0.020 \\
761 \hline
762 \hline
763
764
765 \end{tabular}
766 \end{center}
767 \end{table}
768
769 \clearpage