ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex (file contents):
Revision 1.7 by vimartin, Tue Oct 2 20:45:54 2012 UTC vs.
Revision 1.14 by benhoob, Mon Oct 8 09:18:26 2012 UTC

# Line 7 | Line 7 | All of these different regions are defin
7  
8   [UPDATE SELECTION]
9  
10 < The single lepton preselection sample is based on the following criteria
10 > The single lepton preselection sample is based on the following criteria, starting from the requirements described
11 > on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL}
12   \begin{itemize}
13   \item satisfy the trigger requirement (see
14 <  Table.~\ref{tab:DatasetsData}). Dilepton triggers are used only for the dilepton control region.
14 >  Table.~\ref{tab:DatasetsData}).
15 > Note that the analysis triggers are inclusive single lepton triggers.
16 > Dilepton triggers are used only for the dilepton control region.
17   \item select events with one high \pt\ electron or muon, requiring
18    \begin{itemize}
19 <  \item $\pt>30~\GeVc$ and $|\eta|<2.1$
20 <  \item satisfy the identification and isolation requirements detailed
21 <    in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign
22 <    SUSY analysis (SUS-11-011) for muons
19 >  \item $\pt>30~\GeVc$  and $|\eta|<1.4442 (2.4)$ for electrons (muons)
20 >  \item muon ID criteria is based on the 2012 POG recommended tight working point
21 >  \item electron ID critera is based on the 2012 POG recommended medium working point
22 >  \item PF-based isolation ($\Delta R < 0.3$, $\Delta\beta$ corrected) relative  $<$ 0.15 and absolute $<$ 5~GeV
23 >  \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
24 >  \item $E/p_{in} < 4$ (electrons only)
25    \end{itemize}
26    \item require at least 4 PF jets in the event with $\pt>30~\GeV$
27      within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
# Line 24 | Line 29 | The single lepton preselection sample is
29    \item require moderate $\met>50~\GeV$
30   \end{itemize}
31  
32 < Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
32 > %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
33  
34 < \begin{table}[!h]
35 < \begin{center}
36 < \begin{tabular}{c|c}
37 < \hline
38 < \hline
39 < \end{tabular}
40 < \caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
41 < \end{center}
42 < \end{table}
34 > %\begin{table}[!h]
35 > %\begin{center}
36 > %\begin{tabular}{c|c}
37 > %\hline
38 > %\hline
39 > %\end{tabular}
40 > %\caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
41 > %\end{center}
42 > %\end{table}
43  
44   \subsection{Signal Region Selection}
45  
46 + [MOTIVATIONAL BLURB ON MET AND MT, \\
47 + CAN ADD SIGNAL VS. TTBAR MC PLOT \\
48 + ADD SIGNAL YIELDS FOR AVAILABLE POINTS, \\
49 + DISCUSS CHOICE SIG REGIONS]
50 +
51   The signal regions (SRs) are selected to improve the sensitivity for the
52   single lepton requirements and cover a range of scalar top
53   scenarios. The \mt\ and \met\ variables are used to define the signal
# Line 73 | Line 83 | higher M(\sctop).
83  
84   \begin{table}[!h]
85   \begin{center}
86 < \begin{tabular}{l||c|c|c|c}
86 > \begin{tabular}{l||c|c|c|c|c}
87   \hline
88 < Sample              & SRA & SRB & SRC & SRD \\
88 > Sample              & SRA & SRB & SRC & SRD & SRE\\
89   \hline
90   \hline
91 < \ttdl\           & $700 \pm 15$& $408 \pm 12$& $134 \pm 7$& $43 \pm 4$ \\
92 < \ttsl\ \& single top (1\Lep)             & $111 \pm 6$& $71 \pm 5$& $15 \pm 2$& $4 \pm 1$ \\
93 < \wjets\                  & $58 \pm 35$& $57 \pm 35$& $29 \pm 26$& $26 \pm 26$ \\
94 < Rare             & $63 \pm 3$& $40 \pm 3$& $17 \pm 2$& $7 \pm 1$ \\
91 > \ttdl\           & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$ \\
92 > \ttsl\ \& single top (1\Lep)             & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$ \\
93 > \wjets\                  & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$ \\
94 > Rare             & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$ \\
95   \hline
96 < Total            & $932 \pm 39$& $576 \pm 38$& $195 \pm 27$& $80 \pm 26$ \\
96 > Total            & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$ \\
97   \hline
98   \end{tabular}
99   \caption{ Expected SM background contributions, including both muon
100 <  and electron channels. The uncertainties are statistical only. ADD
100 >  and electron channels. This is ``dead reckoning'' MC with no
101 >  correction.
102 > It is meant only as a general guide. The uncertainties are statistical only. ADD
103    SIGNAL POINTS.
104   \label{tab:srrawmcyields}}
105   \end{center}
106   \end{table}
107  
96 [1 PARAGRAPH BLURB ABOUT BACKGROUNDS AND INTRODUCE CONTROL REGIONS]
97
108   \subsection{Control Region Selection}
109  
110 + [1 PARAGRAPH BLURB RELATING BACKGROUNDS (IN TABLE FROM PREVIOUS SECTION)
111 + TO INTRODUCE CONTROL REGIONS]
112 +
113   Control regions (CRs) are used to validate the background estimation
114   procedure and derive systematic uncertainties for some
115   contributions. The CRs are selected to have similar
# Line 159 | Line 172 | Selection      & \multirow{2}{*}{exactly 1 l
172  
173   \subsubsection{Corrections to Jets and \met}
174  
175 + [UPDATE, ADD FEW MORE DETAILS ON WHAT IS DONE HERE]
176 +
177   The official recommendations from the Jet/MET group are used for
178   the data and MC samples. In particular, the jet
179   energy corrections (JEC) are updated using the official recipe.
# Line 204 | Line 219 | Powheg       &       0.108\\
219   \end{table}
220  
221  
222 < \subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events}
208 < \label{sec:jetmultiplicity}
222 > \subsubsection{Lepton Selection Efficiency Measurements}
223  
224 < [SUMMARIZE, UPDATE]
224 > [TO BE UDPATED WITH T\&P STUDIES ON ID,ISO EFFICIENCIES]
225  
226 < Dilepton \ttbar\ events have 2 jets from the top decays, so additional
227 < jets from radiation or higher order contributions are required to
228 < enter the signal sample. The modeling of addtional jets in \ttbar\
229 < events is checked in a \ttll\ control sample,
230 < selected by requiring
231 < \begin{itemize}
232 < \item exactly 2 selected electrons or muons with \pt $>$ 20 GeV
233 < \item \met\ $>$ 100 GeV
234 < \item $\geq1$ b-tagged jet
235 < \item Z-veto
236 < \end{itemize}
237 < Figure~\ref{fig:dileptonnjets} shows a comparison of the jet
238 < multiplicity distribution in data and MC for this two-lepton control
239 < sample. After requiring at least 1 b-tagged jet, most of the
240 < events have 2 jets, as expected from the dominant process \ttll. There is also a
241 < significant fraction of events with additional jets.
242 < The 3-jet sample is mainly comprised of \ttbar\ events with 1 additional
243 < emission and similarly the $\ge4$-jet sample contains primarily
244 < $\ttbar+\ge2$ jet events. Even though the primary \ttbar\
245 < Madgraph sample used includes up to 3 additional partons at the Matrix
246 < Element level, which are intended to describe additional hard jets,
247 < Figure~\ref{fig:dileptonnjets} shows a slight mis-modeling of the
234 < additional jets.
235 <
236 <
237 < \begin{figure}[hbt]
238 <  \begin{center}
239 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf}
240 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}%
241 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf}
242 <        \caption{
243 <          \label{fig:dileptonnjets}%\protect
244 <          Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
245 <          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
246 <      \end{center}
226 >
227 > \subsubsection{Trigger Efficiency Measurements}
228 >
229 > In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
230 > approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
231 > lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
232 > in order to measure the \pt\ turn-on curve. The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
233 > The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
234 > These trigger efficiencies will be applied to the MC when used to predict data yields selected by single lepton triggers. [THESE TRIGGER EFFICIENCIES TO BE APPLIED TO MC]
235 >
236 >
237 > \begin{figure}[!ht]
238 > \begin{center}
239 > \begin{tabular}{cc}
240 > \includegraphics[width=0.4\textwidth]{plots/mutrig_pt_etabins.pdf} &
241 > \includegraphics[width=0.4\textwidth]{plots/eltrig_pt_etabins.pdf} \\
242 > \end{tabular}
243 > \caption{\label{fig:trigeff}
244 > Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
245 > for several bins in lepton $|\eta|$.
246 > }
247 > \end{center}
248   \end{figure}
249  
250 < It should be noted that in the case of \ttll\ events
250 < with a single reconstructed lepton, the other lepton may be
251 < mis-reconstructed as a jet. For example, a hadronic tau may be
252 < mis-identified as a jet (since no $\tau$ identification is used).
253 < In this case only 1 additional jet from radiation may suffice for
254 < a \ttll\ event to enter the signal sample. As a result, both the
255 < samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for
256 < estimating the top dilepton bkg in the signal region.
257 <
258 < %In this section we discuss a correction to $ N_{2 lep}^{MC} $ in Equation XXX
259 < %due to differences in the modelling of the jet multiplicity in data versus MC.
260 < %The same correction also enters $ N_{peak}^{MC}$ in Equation XXX to the extend that the
261 < %dilepton contributions to $ N_{peak}^{MC}$ gets corrected.
262 <
263 < %The dilepton control sample is defined by the following requirements:
264 < %\begin{itemize}
265 < %\item Exactly 2 selected electrons or muons with \pt $>$ 20 GeV
266 < %\item \met\ $>$ 50 GeV
267 < %\item $\geq1$ b-tagged jet
268 < %\end{itemize}
269 < %
270 < %This sample is dominated by \ttll. The distribution of \njets\ for data and MC passing this selection is displayed in Fig.~\ref{fig:dilepton_njets}.
271 < %We use this distribution to derive scale factors which reweight the \ttll\ MC \njets\ distribution to match the data. We define the following
272 < %quantities
273 < %
274 < %\begin{itemize}
275 < %\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
276 < %\item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
277 < %\item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
278 < %\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
279 < %\item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
280 < %\item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
281 < %\end{itemize}
282 < %
283 < %We use these yields to define 3 scale factors, which quantify the data/MC ratio in the 3 \njets\ bins:
284 < %
285 < %\begin{itemize}
286 < %\item $SF_2 = N_2 / M_2$
287 < %\item $SF_3 = N_3 / M_3$
288 < %\item $SF_4 = N_4 / M_4$
289 < %\end{itemize}
290 < %
291 < %And finally, we define the scale factors $K_3$ and $K_4$:
292 < %
293 < %\begin{itemize}
294 < %\item $K_3 = SF_3 / SF_2$
295 < %\item $K_4 = SF_4 / SF_2$
296 < %\end{itemize}
297 < %
298 < %The scale factor $K_3$ is extracted from dilepton \ttbar\ events with \njets = 3, which have exactly 1 ISR jet.
299 < %The scale factor $K_4$ is extracted from dilepton \ttbar\ events with \njets $\geq$ 4, which have at least 2 ISR jets.
300 < %Both of these scale factors are needed since dilepton \ttbar\ events which fall in our signal region (including
301 < %the \njets $\geq$ 4 requirement) may require exactly 1 ISR jet, in the case that the second lepton is reconstructed
302 < %as a jet, or at least 2 ISR jets, in the case that the second lepton is not reconstructed as a jet. These scale
303 < %factors are applied to the dilepton \ttbar\ MC only. For a given MC event, we determine whether to use $K_3$ or $K_4$
304 < %by counting the number of reconstructed jets in the event ($N_{\rm{jets}}^R$) , and subtracting off any reconstructed
305 < %jet which is matched to the second lepton at generator level ($N_{\rm{jets}}^\ell$); $N_{\rm{jets}}^{\rm{cor}} = N_{\rm{jets}}^R - N_{\rm{jets}}^\ell$.
306 < %For events with $N_{\rm{jets}}^{\rm{cor}}=3$ the factor $K_3$ is applied, while for events with $N_{\rm{jets}}^{\rm{cor}}\geq4$ the factor $K_4$ is applied.
307 < %For all subsequent steps, the scale factors $K_3$ and $K_4$ have been
308 < %applied to the \ttll\ MC.
309 <
310 <
311 < Table~\ref{tab:njetskfactors}  shows scale factors to correct the
312 < fraction of events with additional jets in MC to the observed fraction
313 < in data. These are applied to the \ttll\ MC throughout the entire analysis, i.e. whenever \ttll\ MC is used to estimate or subtract
314 < a yield or distribution.
315 < %
316 < In order to do so, it is first necessary to count the number of
317 < additional jets from radiation and exclude leptons mis-identified as
318 < jets. A jet is considered a mis-identified lepton if it is matched to a
319 < generator-level second lepton with sufficient energy to satisfy the jet
320 < \pt\ requirement ($\pt>30~\GeV$).
250 > \clearpage
251  
252 < \begin{table}[!ht]
252 > \begin{table}[htb]
253   \begin{center}
254 < \begin{tabular}{l|c}
254 > \footnotesize
255 > \caption{\label{tab:mutriggeff}
256 > Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
257 > \begin{tabular}{c|c|c|c}
258 >
259 > % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
260 > % Probe trigger        : HLT_IsoMu24_probe > 0
261 > % Total data yield     : 5161723
262 >
263   \hline
326            Jet Multiplicity Sample
327            &                Data/MC Scale Factor \\
264   \hline
265 +  \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
266 + \hline
267 +  20 -  22  &   0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
268 +  22 -  24  &   0.03 $\pm$ 0.001 &      0.05 $\pm$ 0.001 &      0.11 $\pm$ 0.002 \\
269 +  24 -  26  &   0.87 $\pm$ 0.002 &      0.78 $\pm$ 0.002 &      0.76 $\pm$ 0.003 \\
270 +  26 -  28  &   0.90 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.78 $\pm$ 0.002 \\
271 +  28 -  30  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.79 $\pm$ 0.002 \\
272 +  30 -  32  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
273 +  32 -  34  &   0.92 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
274 +  34 -  36  &   0.93 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
275 +  36 -  38  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
276 +  38 -  40  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.82 $\pm$ 0.001 \\
277 +  40 -  50  &   0.94 $\pm$ 0.000 &      0.84 $\pm$ 0.000 &      0.82 $\pm$ 0.001 \\
278 +  50 -  60  &   0.95 $\pm$ 0.000 &      0.84 $\pm$ 0.001 &      0.83 $\pm$ 0.001 \\
279 +  60 -  80  &   0.95 $\pm$ 0.001 &      0.84 $\pm$ 0.002 &      0.83 $\pm$ 0.002 \\
280 +  80 - 100  &   0.94 $\pm$ 0.002 &      0.84 $\pm$ 0.004 &      0.83 $\pm$ 0.006 \\
281 + 100 - 150  &   0.94 $\pm$ 0.003 &      0.84 $\pm$ 0.005 &      0.83 $\pm$ 0.008 \\
282 + 150 - 200  &   0.93 $\pm$ 0.006 &      0.84 $\pm$ 0.011 &      0.82 $\pm$ 0.018 \\
283 + $>$200     &   0.92 $\pm$ 0.010 &      0.82 $\pm$ 0.017 &      0.82 $\pm$ 0.031 \\
284   \hline
330 N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation)   &       $0.97 \pm 0.03$\\
331 N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation)   &       $0.91 \pm 0.04$\\
285   \hline
286 +
287   \end{tabular}
334 \caption{Data/MC scale factors used to account for differences in the
335  fraction of events with additional hard jets from radiation in
336  \ttll\ events. \label{tab:njetskfactors}}
288   \end{center}
289   \end{table}
290  
291 <
341 < \begin{figure}[hbt]
342 <  \begin{center}
343 <        \includegraphics[width=0.5\linewidth]{plots/ttdl_njets_lepremoval_comp.png}
344 <        \caption{
345 <          \label{fig:dileptonnjets_lepcomp}%\protect
346 <          Comparison of the jet multiplicity distribution for \ttll\
347 <          events in MC in the signal sample before (red) and after
348 <          (blue) applying the lepton-jet overlap removal. Note only
349 <          the first 6 jets are shown.}  
350 <      \end{center}
351 < \end{figure}
352 <
353 <
354 < In the signal sample, leptons mis-identified as jets are not rare.
355 < Figure~\ref{fig:dileptonnjets_lepcomp}  shows the MC jet
356 < multiplicity distribution for \ttll\ events satisfying the full
357 < selection criteria before and after subtracting leptons mis-identified
358 < as jets. Approximately a quarter of the sample is comprised of 4-jet
359 < events that actually correspond to a 2-lepton + 3 jet event where the second
360 < lepton is counted as a jet. Lepton mis-identification depends strongly
361 < on the type of second lepton, occuring more frequently in the case of
362 < hadronic $\tau$s than leptonic objects. According to the \ttll\
363 < MC, for hadronic $\tau$s, $\sim85\%$ of multi-prong $\tau$s and about half
364 < the single-prong $\tau$ are mis-identified as jets. In the case of
365 < leptonic objects, the fractions are smaller, comprising about a third
366 < of \E/\M\ from a \W\ decay and $<20\%$ for leptonic $\tau$s,
367 < mainly because of the softness of the decay products.
368 < The scale factors listed in Table.~\ref{tab:njetskfactors} are applied
369 < to the ``cleaned'' jet counts in the signal sample (shown in blue in
370 < Figure~\ref{fig:dileptonnjets_lepcomp}). The impact of applying the
371 < jet multiplicity scale factors on the \ttll\ is about a $10\%$ reduction in the
372 < background prediction for the signal region.
373 <
374 < %\begin{itemize}
375 < %\item Hadronic ($\tau$) objects: most multi-prong $\tau$s and about
376 < %  half single-prong $\tau$s
377 < %\item Leptonic objects: smaller fraction,
378 < %\end{itemize}
379 < %Fraction of various lepton types matched to a jet
380 < %multi-prong taus ⟹ 85% give additional 30 GeV jet
381 < %single-prong taus ⟹ ~50% give additional 30 GeV jet
382 < %leptonic taus ⟹ <20% give additional 30 GeV jet
383 < %e/mu⟹ ~40% give additional 30 GeV jet
384 <
385 < \begin{figure}[hbt]
386 <  \begin{center}
387 <        \includegraphics[width=0.5\linewidth]{plots/ttdl_njets_presel_3j_comp.png}%
388 <        \includegraphics[width=0.5\linewidth]{plots/ttdl_njets_presel_4j_comp.png}
389 <        \caption{
390 <          \label{fig:dileptonnjets_signalcontrol_comp}%\protect
391 <          Comparison of the number of additional jets from radiation
392 <          in the 3-jet (left) and $\ge4$-jet (right) bins for the control \ttll\
393 <          sample (with two reconstructed leptons) and the signal
394 <          sample (with one reconstructed lepton). The distributions
395 <          show good agreement, indicating that the usage of the
396 <          reconstructed jet multiplicity in one sample to reweight the
397 <        signal sample is indeed justified. {\bf Fix me: Is this before or after the isolated track veto?}}  
398 <      \end{center}
399 < \end{figure}
400 <
401 < Ultimately, the interesting quantity for reweighting is the number of
402 < additional hard jets from radiation and this information is accessed using the
403 < number of reconstructed
404 < jets. Figure~\ref{fig:dileptonnjets_signalcontrol_comp}
405 < demonstrates in MC that the \ttll\ control sample, i.e. when both leptons are reconstructed,
406 < can indeed be used to reweight the \ttll\ signal sample, i.e. when one lepton is missed.
407 < The figure compares the
408 < number of additional jets from truth matching probed by N
409 < reconstructed jets, in this case 3 and $\ge4$ jets. In order to do so,
410 < jets that are truth-matched to the top decay products (the b-quarks
411 < and additional leptons) are removed. The 3-jet distribution shows
412 < excellent agreement and the differences in the $\ge4$-jet distribution
413 < are at most $5\%$. The impact of possible differences in the
414 < underlying distribution of extra
415 < jets between the signal and control \ttll\ samples are estimated by
416 < varying the scale factor contributions by $10\%$ and calculating the
417 < change in the dilepton prediction. This effect is found to have a
418 < negligible impact on the prediction, well below $1\%$.
419 <
420 < Other effects that have been examined include the impact of
421 < additional jets from pileup that may bias the jet multiplicity
422 < distribution, which  is found to be a negligible effect in this dataset. The
423 < impact of the non-\ttll\ background on the jet fraction scale factors
424 < has also been studied. In particular, given the large uncertainty on
425 < the $\dy+HF$ MC prediction, this component has been varied by a factor
426 < of 2 and the resulting change on the dilepton prediction is $<1\%$. As
427 < a result, the dominant source of uncertainty is the statistical
428 < uncertainty, primarily from the two-lepton control sample size, that
429 < corresponds to a $3\%$ uncertainty on the dilepton prediction.
430 <
431 < The scale factors for the fraction of additional jets in the dilepton
432 < sample are applied throughout the analysis. It may be noted that this
433 < scaling is also performed consistently for the alternative \ttbar\
434 < samples, always reweighting the jet multiplicity distribution to the
435 < data in the \ttll\ control sample. In this way, effects truly
436 < arising from using different MC samples and settings can be examined,
437 < separately from issues related to the modeling of additional jets.
438 <
439 < \subsubsection{Efficiency Corrections}
440 <
441 < [TO BE UDPATED WITH T\&P STUDIES ON ID, TRIGGER ETC]
442 <
443 <
444 < \subsubsection{Dilepton control regions}
445 <
446 < We define a dilepton control region requiring two isolated leptons, $ee, e\mu$, or $\mu\mu$ to study the jet multiplicity in data and MC, and derive
447 < scale factors based on their consistency. This study is documented in Section~\ref{sec:jetmultiplicity}.
448 <
449 < In this region we require:
450 < \begin{itemize}
451 < \item dilepton triggers
452 < \item two leptons with $\pt > 20 \GeV$ that pass our lepton id and isolation
453 < \item $\met > 50 \GeV$
454 < \item $\ge 1$ b-tag, SSV medium
455 < \end{itemize}
456 <
457 < This sample is only partially overlapping with the single lepton preselection as it requires the dilepton rather than the single lepton triggers, and
458 < differs in the $\pt$ requirement for the leading lepton. Table~\ref{tab:dileptonyield} shows the raw yields in data and MC prior to any corrections.
459 <
460 < \begin{table}[!h]
291 > \begin{table}[htb]
292   \begin{center}
293 < \begin{tabular}{c|c}
293 > \footnotesize
294 > \caption{\label{tab:eltriggeff}
295 > Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
296 > \begin{tabular}{c|c|c}
297 >
298 > % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
299 > % Probe trigger        : HLT_Ele27_WP80_probe > 0
300 > % Total data yield     : 3405966
301 >
302 > \hline
303   \hline
304 +  \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
305 + \hline
306 +  20 -  22   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
307 +  22 -  24   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.001 \\
308 +  24 -  26   &  0.00 $\pm$ 0.000 &      0.02 $\pm$ 0.001 \\
309 +  26 -  28   &  0.08 $\pm$ 0.001 &      0.18 $\pm$ 0.003 \\
310 +  28 -  30   &  0.61 $\pm$ 0.002 &      0.50 $\pm$ 0.004 \\
311 +  30 -  32   &  0.86 $\pm$ 0.001 &      0.63 $\pm$ 0.003 \\
312 +  32 -  34   &  0.88 $\pm$ 0.001 &      0.68 $\pm$ 0.003 \\
313 +  34 -  36   &  0.90 $\pm$ 0.001 &      0.70 $\pm$ 0.002 \\
314 +  36 -  38   &  0.91 $\pm$ 0.001 &      0.72 $\pm$ 0.002 \\
315 +  38 -  40   &  0.92 $\pm$ 0.001 &      0.74 $\pm$ 0.002 \\
316 +  40 -  50   &  0.94 $\pm$ 0.000 &      0.76 $\pm$ 0.001 \\
317 +  50 -  60   &  0.95 $\pm$ 0.000 &      0.77 $\pm$ 0.002 \\
318 +  60 -  80   &  0.96 $\pm$ 0.001 &      0.78 $\pm$ 0.003 \\
319 +  80 - 100   &  0.96 $\pm$ 0.002 &      0.80 $\pm$ 0.008 \\
320 +  100 - 150  &  0.96 $\pm$ 0.002 &      0.79 $\pm$ 0.010 \\
321 +  150 - 200  &  0.97 $\pm$ 0.004 &      0.76 $\pm$ 0.026 \\
322 + $>$200       &  0.97 $\pm$ 0.005 &      0.81 $\pm$ 0.038 \\
323   \hline
324 + \hline
325 +
326   \end{tabular}
466 \caption{  Raw Data and MC predictions without any corrections are shown for the dilepton control region.
467 This region is used for correcting the jet multiplicity seen in MC to that in data.
468 \label{tab:dileptonyield}}
327   \end{center}
328   \end{table}
329  
330 + \clearpage

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines