ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex (file contents):
Revision 1.8 by vimartin, Wed Oct 3 05:48:26 2012 UTC vs.
Revision 1.14 by benhoob, Mon Oct 8 09:18:26 2012 UTC

# Line 7 | Line 7 | All of these different regions are defin
7  
8   [UPDATE SELECTION]
9  
10 < The single lepton preselection sample is based on the following criteria
10 > The single lepton preselection sample is based on the following criteria, starting from the requirements described
11 > on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL}
12   \begin{itemize}
13   \item satisfy the trigger requirement (see
14 <  Table.~\ref{tab:DatasetsData}). Dilepton triggers are used only for the dilepton control region.
14 >  Table.~\ref{tab:DatasetsData}).
15 > Note that the analysis triggers are inclusive single lepton triggers.
16 > Dilepton triggers are used only for the dilepton control region.
17   \item select events with one high \pt\ electron or muon, requiring
18    \begin{itemize}
19 <  \item $\pt>30~\GeVc$ and $|\eta|<2.1$
20 <  \item satisfy the identification and isolation requirements detailed
21 <    in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign
22 <    SUSY analysis (SUS-11-011) for muons
19 >  \item $\pt>30~\GeVc$  and $|\eta|<1.4442 (2.4)$ for electrons (muons)
20 >  \item muon ID criteria is based on the 2012 POG recommended tight working point
21 >  \item electron ID critera is based on the 2012 POG recommended medium working point
22 >  \item PF-based isolation ($\Delta R < 0.3$, $\Delta\beta$ corrected) relative  $<$ 0.15 and absolute $<$ 5~GeV
23 >  \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
24 >  \item $E/p_{in} < 4$ (electrons only)
25    \end{itemize}
26    \item require at least 4 PF jets in the event with $\pt>30~\GeV$
27      within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
# Line 24 | Line 29 | The single lepton preselection sample is
29    \item require moderate $\met>50~\GeV$
30   \end{itemize}
31  
32 < Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
32 > %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
33  
34 < \begin{table}[!h]
35 < \begin{center}
36 < \begin{tabular}{c|c}
37 < \hline
38 < \hline
39 < \end{tabular}
40 < \caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
41 < \end{center}
42 < \end{table}
34 > %\begin{table}[!h]
35 > %\begin{center}
36 > %\begin{tabular}{c|c}
37 > %\hline
38 > %\hline
39 > %\end{tabular}
40 > %\caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
41 > %\end{center}
42 > %\end{table}
43  
44   \subsection{Signal Region Selection}
45  
# Line 78 | Line 83 | higher M(\sctop).
83  
84   \begin{table}[!h]
85   \begin{center}
86 < \begin{tabular}{l||c|c|c|c}
86 > \begin{tabular}{l||c|c|c|c|c}
87   \hline
88 < Sample              & SRA & SRB & SRC & SRD \\
88 > Sample              & SRA & SRB & SRC & SRD & SRE\\
89   \hline
90   \hline
91 < \ttdl\           & $700 \pm 15$& $408 \pm 12$& $134 \pm 7$& $43 \pm 4$ \\
92 < \ttsl\ \& single top (1\Lep)             & $111 \pm 6$& $71 \pm 5$& $15 \pm 2$& $4 \pm 1$ \\
93 < \wjets\                  & $58 \pm 35$& $57 \pm 35$& $29 \pm 26$& $26 \pm 26$ \\
94 < Rare             & $63 \pm 3$& $40 \pm 3$& $17 \pm 2$& $7 \pm 1$ \\
91 > \ttdl\           & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$ \\
92 > \ttsl\ \& single top (1\Lep)             & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$ \\
93 > \wjets\                  & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$ \\
94 > Rare             & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$ \\
95   \hline
96 < Total            & $932 \pm 39$& $576 \pm 38$& $195 \pm 27$& $80 \pm 26$ \\
96 > Total            & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$ \\
97   \hline
98   \end{tabular}
99   \caption{ Expected SM background contributions, including both muon
100 <  and electron channels. The uncertainties are statistical only. ADD
100 >  and electron channels. This is ``dead reckoning'' MC with no
101 >  correction.
102 > It is meant only as a general guide. The uncertainties are statistical only. ADD
103    SIGNAL POINTS.
104   \label{tab:srrawmcyields}}
105   \end{center}
# Line 212 | Line 219 | Powheg       &       0.108\\
219   \end{table}
220  
221  
222 < \subsubsection{Modeling of Additional Hard Jets in Top Dilepton Events}
216 < \label{sec:jetmultiplicity}
222 > \subsubsection{Lepton Selection Efficiency Measurements}
223  
224 < [CHECK, UPDATE, ADD EQUATIONS COMMENTED IN THE BOTTOM OF FILE \\
219 < REFERENCE APPENDIX INFO. (FROM 7 TEV) AND SUMMARIZE THAT INFORMATION HERE]
224 > [TO BE UDPATED WITH T\&P STUDIES ON ID,ISO EFFICIENCIES]
225  
226 < Dilepton \ttbar\ events have 2 jets from the top decays, so additional
227 < jets from radiation or higher order contributions are required to
228 < enter the signal sample. The modeling of addtional jets in \ttbar\
229 < events is checked in a \ttll\ control sample,
230 < selected by requiring
231 < \begin{itemize}
232 < \item exactly 2 selected electrons or muons with \pt $>$ 20 GeV
233 < \item \met\ $>$ 100 GeV
234 < \item $\geq1$ b-tagged jet
235 < \item Z-veto
236 < \end{itemize}
237 < Figure~\ref{fig:dileptonnjets} shows a comparison of the jet
238 < multiplicity distribution in data and MC for this two-lepton control
239 < sample. After requiring at least 1 b-tagged jet, most of the
240 < events have 2 jets, as expected from the dominant process \ttll. There is also a
241 < significant fraction of events with additional jets.
242 < The 3-jet sample is mainly comprised of \ttbar\ events with 1 additional
243 < emission and similarly the $\ge4$-jet sample contains primarily
244 < $\ttbar+\ge2$ jet events.
245 < %Even though the primary \ttbar\
246 < %Madgraph sample used includes up to 3 additional partons at the Matrix
247 < %Element level, which are intended to describe additional hard jets,
243 < %Figure~\ref{fig:dileptonnjets} shows a slight mis-modeling of the
244 < %additional jets.
245 <
246 <
247 < \begin{figure}[hbt]
248 <  \begin{center}
249 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_mueg.pdf}
250 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_diel.pdf}%
251 <        \includegraphics[width=0.5\linewidth]{plots/njets_all_met100_dimu.pdf}
252 <        \caption{
253 <          \label{fig:dileptonnjets}%\protect
254 <          Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
255 <          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
256 <      \end{center}
226 >
227 > \subsubsection{Trigger Efficiency Measurements}
228 >
229 > In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
230 > approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
231 > lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
232 > in order to measure the \pt\ turn-on curve. The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
233 > The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
234 > These trigger efficiencies will be applied to the MC when used to predict data yields selected by single lepton triggers. [THESE TRIGGER EFFICIENCIES TO BE APPLIED TO MC]
235 >
236 >
237 > \begin{figure}[!ht]
238 > \begin{center}
239 > \begin{tabular}{cc}
240 > \includegraphics[width=0.4\textwidth]{plots/mutrig_pt_etabins.pdf} &
241 > \includegraphics[width=0.4\textwidth]{plots/eltrig_pt_etabins.pdf} \\
242 > \end{tabular}
243 > \caption{\label{fig:trigeff}
244 > Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
245 > for several bins in lepton $|\eta|$.
246 > }
247 > \end{center}
248   \end{figure}
249  
250 < It should be noted that in the case of \ttll\ events
260 < with a single reconstructed lepton, the other lepton may be
261 < mis-reconstructed as a jet. For example, a hadronic tau may be
262 < mis-identified as a jet (since no $\tau$ identification is used).
263 < In this case only 1 additional jet from radiation may suffice for
264 < a \ttll\ event to enter the signal sample. As a result, both the
265 < samples with $\ttbar+1$ jet and $\ttbar+\ge2$ jets are relevant for
266 < estimating the top dilepton bkg in the signal region.
267 <
268 < %In this section we discuss a correction to $ N_{2 lep}^{MC} $ in Equation XXX
269 < %due to differences in the modelling of the jet multiplicity in data versus MC.
270 < %The same correction also enters $ N_{peak}^{MC}$ in Equation XXX to the extend that the
271 < %dilepton contributions to $ N_{peak}^{MC}$ gets corrected.
272 <
273 < %The dilepton control sample is defined by the following requirements:
274 < %\begin{itemize}
275 < %\item Exactly 2 selected electrons or muons with \pt $>$ 20 GeV
276 < %\item \met\ $>$ 50 GeV
277 < %\item $\geq1$ b-tagged jet
278 < %\end{itemize}
279 < %
280 < %This sample is dominated by \ttll. The distribution of \njets\ for data and MC passing this selection is displayed in Fig.~\ref{fig:dilepton_njets}.
281 < %We use this distribution to derive scale factors which reweight the \ttll\ MC \njets\ distribution to match the data. We define the following
282 < %quantities
283 < %
284 < %\begin{itemize}
285 < %\item $N_{2}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
286 < %\item $N_{3}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ = 3
287 < %\item $N_{4}=$ data yield minus non-dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
288 < %\item $M_{2}=$ dilepton \ttbar\ MC yield for \njets\ $\leq$ 2
289 < %\item $M_{3}=$ dilepton \ttbar\ MC yield for \njets\ = 3
290 < %\item $M_{4}=$ dilepton \ttbar\ MC yield for \njets\ $\geq$ 4
291 < %\end{itemize}
292 < %
293 < %We use these yields to define 3 scale factors, which quantify the data/MC ratio in the 3 \njets\ bins:
294 < %
295 < %\begin{itemize}
296 < %\item $SF_2 = N_2 / M_2$
297 < %\item $SF_3 = N_3 / M_3$
298 < %\item $SF_4 = N_4 / M_4$
299 < %\end{itemize}
300 < %
301 < %And finally, we define the scale factors $K_3$ and $K_4$:
302 < %
303 < %\begin{itemize}
304 < %\item $K_3 = SF_3 / SF_2$
305 < %\item $K_4 = SF_4 / SF_2$
306 < %\end{itemize}
307 < %
308 < %The scale factor $K_3$ is extracted from dilepton \ttbar\ events with \njets = 3, which have exactly 1 ISR jet.
309 < %The scale factor $K_4$ is extracted from dilepton \ttbar\ events with \njets $\geq$ 4, which have at least 2 ISR jets.
310 < %Both of these scale factors are needed since dilepton \ttbar\ events which fall in our signal region (including
311 < %the \njets $\geq$ 4 requirement) may require exactly 1 ISR jet, in the case that the second lepton is reconstructed
312 < %as a jet, or at least 2 ISR jets, in the case that the second lepton is not reconstructed as a jet. These scale
313 < %factors are applied to the dilepton \ttbar\ MC only. For a given MC event, we determine whether to use $K_3$ or $K_4$
314 < %by counting the number of reconstructed jets in the event ($N_{\rm{jets}}^R$) , and subtracting off any reconstructed
315 < %jet which is matched to the second lepton at generator level ($N_{\rm{jets}}^\ell$); $N_{\rm{jets}}^{\rm{cor}} = N_{\rm{jets}}^R - N_{\rm{jets}}^\ell$.
316 < %For events with $N_{\rm{jets}}^{\rm{cor}}=3$ the factor $K_3$ is applied, while for events with $N_{\rm{jets}}^{\rm{cor}}\geq4$ the factor $K_4$ is applied.
317 < %For all subsequent steps, the scale factors $K_3$ and $K_4$ have been
318 < %applied to the \ttll\ MC.
319 <
320 <
321 < Table~\ref{tab:njetskfactors}  shows scale factors to correct the
322 < fraction of events with additional jets in MC to the observed fraction
323 < in data. These are applied to the \ttll\ MC throughout the entire analysis, i.e. whenever \ttll\ MC is used to estimate or subtract
324 < a yield or distribution.
325 < %
326 < In order to do so, it is first necessary to count the number of
327 < additional jets from radiation and exclude leptons mis-identified as
328 < jets. A jet is considered a mis-identified lepton if it is matched to a
329 < generator-level second lepton with sufficient energy to satisfy the jet
330 < \pt\ requirement ($\pt>30~\GeV$).
250 > \clearpage
251  
252 < \begin{table}[!ht]
252 > \begin{table}[htb]
253   \begin{center}
254 < \begin{tabular}{l|c}
254 > \footnotesize
255 > \caption{\label{tab:mutriggeff}
256 > Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
257 > \begin{tabular}{c|c|c|c}
258 >
259 > % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
260 > % Probe trigger        : HLT_IsoMu24_probe > 0
261 > % Total data yield     : 5161723
262 >
263   \hline
336            Jet Multiplicity Sample
337            &                Data/MC Scale Factor \\
264   \hline
265 +  \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
266 + \hline
267 +  20 -  22  &   0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
268 +  22 -  24  &   0.03 $\pm$ 0.001 &      0.05 $\pm$ 0.001 &      0.11 $\pm$ 0.002 \\
269 +  24 -  26  &   0.87 $\pm$ 0.002 &      0.78 $\pm$ 0.002 &      0.76 $\pm$ 0.003 \\
270 +  26 -  28  &   0.90 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.78 $\pm$ 0.002 \\
271 +  28 -  30  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.79 $\pm$ 0.002 \\
272 +  30 -  32  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
273 +  32 -  34  &   0.92 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
274 +  34 -  36  &   0.93 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
275 +  36 -  38  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
276 +  38 -  40  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.82 $\pm$ 0.001 \\
277 +  40 -  50  &   0.94 $\pm$ 0.000 &      0.84 $\pm$ 0.000 &      0.82 $\pm$ 0.001 \\
278 +  50 -  60  &   0.95 $\pm$ 0.000 &      0.84 $\pm$ 0.001 &      0.83 $\pm$ 0.001 \\
279 +  60 -  80  &   0.95 $\pm$ 0.001 &      0.84 $\pm$ 0.002 &      0.83 $\pm$ 0.002 \\
280 +  80 - 100  &   0.94 $\pm$ 0.002 &      0.84 $\pm$ 0.004 &      0.83 $\pm$ 0.006 \\
281 + 100 - 150  &   0.94 $\pm$ 0.003 &      0.84 $\pm$ 0.005 &      0.83 $\pm$ 0.008 \\
282 + 150 - 200  &   0.93 $\pm$ 0.006 &      0.84 $\pm$ 0.011 &      0.82 $\pm$ 0.018 \\
283 + $>$200     &   0.92 $\pm$ 0.010 &      0.82 $\pm$ 0.017 &      0.82 $\pm$ 0.031 \\
284   \hline
340 N jets $= 3$ (sensitive to $\ttbar+1$ extra jet from radiation)   &       $0.97 \pm 0.03$\\
341 N jets $\ge4$ (sensitive to $\ttbar+\ge2$ extra jets from radiation)   &       $0.91 \pm 0.04$\\
285   \hline
286 +
287   \end{tabular}
344 \caption{Data/MC scale factors used to account for differences in the
345  fraction of events with additional hard jets from radiation in
346  \ttll\ events. \label{tab:njetskfactors}}
288   \end{center}
289   \end{table}
290  
291 + \begin{table}[htb]
292 + \begin{center}
293 + \footnotesize
294 + \caption{\label{tab:eltriggeff}
295 + Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
296 + \begin{tabular}{c|c|c}
297 +
298 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
299 + % Probe trigger        : HLT_Ele27_WP80_probe > 0
300 + % Total data yield     : 3405966
301  
302 + \hline
303 + \hline
304 +  \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
305 + \hline
306 +  20 -  22   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
307 +  22 -  24   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.001 \\
308 +  24 -  26   &  0.00 $\pm$ 0.000 &      0.02 $\pm$ 0.001 \\
309 +  26 -  28   &  0.08 $\pm$ 0.001 &      0.18 $\pm$ 0.003 \\
310 +  28 -  30   &  0.61 $\pm$ 0.002 &      0.50 $\pm$ 0.004 \\
311 +  30 -  32   &  0.86 $\pm$ 0.001 &      0.63 $\pm$ 0.003 \\
312 +  32 -  34   &  0.88 $\pm$ 0.001 &      0.68 $\pm$ 0.003 \\
313 +  34 -  36   &  0.90 $\pm$ 0.001 &      0.70 $\pm$ 0.002 \\
314 +  36 -  38   &  0.91 $\pm$ 0.001 &      0.72 $\pm$ 0.002 \\
315 +  38 -  40   &  0.92 $\pm$ 0.001 &      0.74 $\pm$ 0.002 \\
316 +  40 -  50   &  0.94 $\pm$ 0.000 &      0.76 $\pm$ 0.001 \\
317 +  50 -  60   &  0.95 $\pm$ 0.000 &      0.77 $\pm$ 0.002 \\
318 +  60 -  80   &  0.96 $\pm$ 0.001 &      0.78 $\pm$ 0.003 \\
319 +  80 - 100   &  0.96 $\pm$ 0.002 &      0.80 $\pm$ 0.008 \\
320 +  100 - 150  &  0.96 $\pm$ 0.002 &      0.79 $\pm$ 0.010 \\
321 +  150 - 200  &  0.97 $\pm$ 0.004 &      0.76 $\pm$ 0.026 \\
322 + $>$200       &  0.97 $\pm$ 0.005 &      0.81 $\pm$ 0.038 \\
323 + \hline
324 + \hline
325  
326 < \subsubsection{Efficiency Corrections}
327 <
328 < [TO BE UDPATED WITH T\&P STUDIES ON ID, TRIGGER ETC]
326 > \end{tabular}
327 > \end{center}
328 > \end{table}
329  
330 + \clearpage

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines