ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex (file contents):
Revision 1.3 by benhoob, Fri Jun 29 18:23:24 2012 UTC vs.
Revision 1.23 by benhoob, Thu Oct 11 20:57:05 2012 UTC

# Line 1 | Line 1
1 + Here we define the selections of leptons, jets, and \met.
2 + We also describe our measurements of the lepton and trigger efficiency.
3 + The analysis uses several different Control Regions (CRs) in addition
4 + to the Signal
5 + Regions (SRs).
6 + All of these different regions are defined in this section.
7 + This section also includes some information on the basic MC
8 + corrections that we apply.  
9 + %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
10  
11 + \subsection{Single Lepton Selection}
12 + \label{sec:singlelepselection}
13  
14 < The preselection sample is based on the following criteria
14 > The single lepton selection is based on the following criteria, starting from the requirements described
15 > on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20)
16   \begin{itemize}
17   \item satisfy the trigger requirement (see
18 <  Table.~\ref{tab:DatasetsData})
18 >  Table.~\ref{tab:TrigData}).
19 > Note that the analysis triggers are inclusive single lepton triggers.
20 > Dilepton triggers are used only for the dilepton control region.
21   \item select events with one high \pt\ electron or muon, requiring
22    \begin{itemize}
23 <  \item $\pt>30~\GeVc$ and $|\eta|<2.5(2.1)$ for \E(\M)
24 <  \item satisfy the identification and isolation requirements detailed
25 <    in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign
26 <    SUSY analysis (SUS-11-011) for muons
23 >  \item $\pt>30~\GeVc$  and $|\eta|<1.4442 (2.4)$ for electrons (muons). The restriction to the barrel for electrons
24 > is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region,
25 > and does not significantly reduce the signal acceptance since the leptons tend to be central.
26 >  \item muon ID criteria is based on the 2012 POG recommended tight working point
27 >  \item electron ID critera is based on the 2012 POG recommended medium working point
28 >  \item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections
29 > are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs).
30 >  \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
31 >  \item $E/p_{\rm{in}} < 4$ (electrons only)
32 >  \item We remove electron events with $\met > 50$ GeV and $M_T > 100$
33 >    GeV with at least one crystal in the supercluster with laser
34 >    correction in $>$2.\footnote{This is an ad-hoc removal based on
35 >      run-event numbers, since the
36 >      problem was found very recently and the filter was not available
37 >      when we processed the events.}
38    \end{itemize}
39    \item require at least 4 PF jets in the event with $\pt>30~\GeV$
40 <    within $|\eta|<2.5$, out of which at least 1 is b-tagged based on
41 <    the SSV medium working point.
42 <  \item require moderate $\met>50~\GeV$
40 >    within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
41 >    medium working point b-tagging requirement
42 >  \item require moderate $\met>50~\GeV$  (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}).
43 > \item Isolated track veto, see Section~\ref{sec:tkveto}
44 >
45   \end{itemize}
46  
47 < Currently, we focus on the muon channel because it is cleaner (the QCD contribution is negligible)
48 < and the triggers are simpler (we use single muon triggers, as opposed to electron + 3-jet triggers).
49 < We will add the electron channel, time permitting. However, since this is a systematics-dominated
50 < analysis, increasing the statistics by adding the electrons is not expected to significantly improve
51 < the sensitivity, especialy because the electron selection efficiency is smaller and the systematic
52 < uncertainty associated with the QCD background is larger.
47 > %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
48 >
49 > %\begin{table}[!h]
50 > %\begin{center}
51 > %\begin{tabular}{c|c}
52 > %\hline
53 > %\hline
54 > %\end{tabular}
55 > %\caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
56 > %\end{center}
57 > %\end{table}
58 >
59 > \subsection{Isolated track veto}
60 > \label{sec:tkveto}
61 >
62 > The isolated track veto is intended to remove top dilepton events.
63 > Looking for an isolated track is an effective way of identifying $W
64 > \to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to
65 > h^{\pm} + n\pi^{0}$.  The requirements on the track are
66  
27 A benchmark signal region is selected by tightening the \met\ and
28 adding an \mt\ requirement
67   \begin{itemize}
68 < \item $\met>100~\GeV$
69 < \item $\mt>150~\GeV$
68 > \item $P_T > 10$ GeV
69 > \item Relative track isolation $< 10\%$  computed from charged PF
70 >  candidates with dZ $<$ 0.05 cm from the primary vertex.
71   \end{itemize}
72  
34 {\bf We have not looked at the data in the signal region after the first 1 fb$^{-1}$ of data.}
73  
74 < \subsection{Corrections to Jets and \met}
74 > \subsection{Signal Region Selection}
75 > \label{sec:SR}
76  
77 < The official recommendations from the Jet/MET group are used for
78 < the data and MC samples. In particular, the jet
79 < energy corrections (JEC) are updated using the official recipe.
80 < L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
42 < based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for
43 < data (MC). In addition, these jet energy corrections are propagated to
44 < the \met\ calculation, following the official prescription for
45 < deriving the Type I corrections. It may be noted that events with
46 < anomalous ``rho'' pile-up corrections are excluded from the sample since these
47 < correspond to events with unphysically large \met\ and \mt\ tail
48 < signal region (see Figure~\ref{fig:mtrhocomp}). An additional correction to remove
49 < the $\phi$-modulation observed in the \met\ is included, improving
50 < the agreement between the data and the MC, as shown in
51 < Figure~\ref{fig:metphicomp}. This correction has an effect on this analysis,
52 < since the azimuthal angle enters the \mt\ distribution.
77 > The signal regions (SRs) are selected to improve the sensitivity for the
78 > single lepton requirements and cover a range of scalar top
79 > scenarios. The \mt\ and \met\ variables are used to define the signal
80 > regions and the requirements are listed in Table~\ref{tab:srdef}.
81  
82 < \clearpage
82 > \begin{table}[!h]
83 > \begin{center}
84 > \begin{tabular}{l|c|c}
85 > \hline
86 > Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
87 > \hline
88 > \hline
89 > SRA & 150 & 100 \\
90 > SRB & 120 & 150 \\
91 > SRC & 120 & 200 \\
92 > SRD & 120 & 250 \\
93 > SRE & 120 & 300 \\
94 > SRF & 120 & 350 \\
95 > SRG & 120 & 400 \\
96 > \hline
97 > \end{tabular}
98 > \caption{ Signal region definitions based on \mt\ and \met\
99 >  requirements. These requirements are applied in addition to the
100 >  baseline single lepton selection.
101 > \label{tab:srdef}}
102 > \end{center}
103 > \end{table}
104  
105 < \begin{figure}[!ht]
106 <  \begin{center}
107 <        \includegraphics[width=0.5\linewidth]{plots/mt_rho_comp.png}
108 <        \caption{ \label{fig:mtrhocomp}%\protect
109 <          Comparison of the \mt\ distribution for events with
110 <          unphysical energy corrections ($\rho <0$ or $ \rho > 40$, where $\rho$ is a
62 <          measure of the average pileup energy density) and the
63 <          nominal sample. Events with large pileup corrections
64 <          correspond to noisy events. Since this correction is applied
65 <          to the jets and propagated to the \met, these events have
66 <          anomalously large \met\ and populate the \mt\ tail. These
67 <          pathological events are excluded from the analysis sample.}
68 <  \end{center}
69 < \end{figure}
105 > Table~\ref{tab:srrawmcyields} shows the expected number of SM
106 > background yields for the SRs. A few stop signal yields for four
107 > values of the parameters are also shown for comparison. The signal
108 > regions with looser requirements are sensitive to lower stop masses
109 > M(\sctop), while those with tighter requirements are more sensitive to
110 > higher M(\sctop).
111  
112 < \begin{figure}[!hb]
113 <  \begin{center}
114 <        \includegraphics[width=0.5\linewidth]{plots/metphi.pdf}%
115 <        \includegraphics[width=0.5\linewidth]{plots/metphi_phicorr.pdf}
116 <        \caption{ \label{fig:metphicomp}%\protect
117 <          The PF \met\ $\phi$ distribution (left) exhibits a
118 <          modulation. After applying a dedicated correction, the
119 <          azimuthal dependence is reduced (right).}
120 <  \end{center}
121 < \end{figure}
112 > \begin{table}[!h]
113 > \begin{center}
114 > \footnotesize
115 > \begin{tabular}{l||c|c|c|c|c|c|c}
116 > \hline
117 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
118 > \hline
119 > \hline
120 > \ttdl\           & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\
121 > \ttsl\ \& single top (1\Lep)             & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\
122 > \wjets\                  & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
123 > Rare             & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\
124 > \hline
125 > Total            & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\
126 > \hline
127 > Yield UL (optimistic)  & 147 (10\%) & 94 (10\%)  & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%)  \\
128 > Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\
129 > \hline
130 > T2tt m(stop) = 250 m($\chi^0$) = 0      & $424 \pm 19$& $256 \pm 15$& $71 \pm 8$& $19 \pm 4$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
131 > T2tt m(stop) = 300 m($\chi^0$) = 50     & $396 \pm 11$& $316 \pm 10$& $113 \pm 6$& $37 \pm 3$& $14 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\
132 > T2tt m(stop) = 300 m($\chi^0$) = 100    & $174 \pm 7$& $130 \pm 7$& $42 \pm 4$& $16 \pm 2$& $8 \pm 2$& $3 \pm 1$& $2 \pm 1$ \\
133 > T2tt m(stop) = 350 m($\chi^0$) = 0      & $305 \pm 6$& $282 \pm 6$& $162 \pm 5$& $69 \pm 3$& $26 \pm 2$& $11 \pm 1$& $4 \pm 1$ \\
134 > T2tt m(stop) = 450 m($\chi^0$) = 0      & $96 \pm 2$& $96 \pm 2$& $72 \pm 1$& $48 \pm 1$& $28 \pm 1$& $14 \pm 1$& $6 \pm 0$ \\
135 > \hline
136 > \end{tabular}
137 > \caption{ Expected SM background contributions and signal yields for a few sample points,
138 > including both muon and electron channels. This is ``dead reckoning'' MC with no
139 > correction. It is meant only as a general guide. The uncertainties are statistical only.
140 > The signal yield upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses.
141 > [{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ].
142 > %HOOBERMAN
143 > \label{tab:srrawmcyields}}
144 > \end{center}
145 > \end{table}
146  
147 < \clearpage
147 > \subsection{Control Region Selection}
148 > \label{sec:CR}
149 >
150 > Control regions (CRs) are used to validate the background estimation
151 > procedure and derive systematic uncertainties for some
152 > contributions. The CRs are selected to have similar
153 > kinematics to the SRs, but have a different requirement in terms of
154 > number of b-tags and number of leptons, thus enhancing them in
155 > different SM contributions. The four CRs used in this analysis are
156 > summarized in Table~\ref{tab:crdef}.  
157 >
158 > \begin{table}
159 > \begin{center}
160 > {\small
161 > \begin{tabular}{l|c|c|c}
162 > \hline
163 > Selection       & \multirow{2}{*}{exactly 1 lepton}     & \multirow{2}{*}{exactly 2
164 >        leptons}                & \multirow{2}{*}{1 lepton + isolated
165 >        track}\\
166 >      Criteria & & & \\
167 > \hline
168 > \hline
169 > \multirow{4}{*}{0 b-tags}        
170 > &        CR1) W+Jets dominated:
171 > &        CR2) apply \Z-mass constraint                  
172 > &        CR3) not used \\  
173 > &        
174 > &       $\rightarrow$ Z+Jets dominated: Validate
175 > &      \\
176 > &      Validate W+Jets \mt\ tail
177 > &        \ttsl\ \mt\ tail comparing
178 > &        \\  
179 > &
180 > &        data vs. MC ``pseudo-\mt ''
181 > &        \\  
182 > \hline
183 > \multirow{4}{*}{$\ge$ 1 b-tags}          
184 > &      
185 > &       CR4) Apply \Z-mass veto
186 > &      CR5) \ttdl, \ttlt\ and \\
187 > &     SIGNAL
188 > &      $\rightarrow$ \ttdl\ dominated: Validate
189 > &       \ttlf\ dominated:  Validate \\
190 > &     REGION
191 > &      ``physics'' modelling of \ttdl\    
192 > &      \Tau\  and fake lepton modeling/\\
193 > &
194 > &
195 > &      detector effects in \ttdl\     \\
196 > \hline
197 > \end{tabular}
198 > }
199 > \caption{Summary of signal and control regions.
200 >  \label{tab:crdef}%\protect
201 > }
202 > \end{center}
203 > \end{table}
204 >
205 > \subsection{Definition of $M_T$ peak region}
206 > \label{sec:mtpeakdef}
207 >
208 > This region is defined as $50 < M_T < 80$ GeV.
209  
210 < \subsection{Branching Fraction Correction}
210 >
211 > \subsection{Default \ttbar\  MC sample}
212 >
213 > Our default \ttbar\ MC sample is Powheg.
214 >
215 > \subsection{MC Corrections}
216 > \label{sec:MCCorr}
217 >
218 > All MC samples are corrected for trigger efficiency.  In the case of
219 > single lepton selections, we apply the $P_T$ and $\eta$-dependent
220 > scale factors that we measure ourselves, see Sections~\ref{sec:trg}.
221 > In the case of dilepton selections that require the dilepton triggers,
222 > we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$,
223 > $\mu\mu$,
224 > and $e\mu$ respectively~\cite{didar}.
225  
226   The leptonic branching fraction used in some of the \ttbar\ MC samples
227   differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
# Line 98 | Line 238 | of the corrected and incorrect branching
238           \ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\
239   \hline
240   \hline
241 < Madgraph   &       0.111\\
242 < MC@NLO    &       0.111\\
243 < Pythia         &       0.108\\
241 > Madgraph     &       0.111\\
242 > MC@NLO       &       0.111\\
243 > Pythia       &       0.108\\
244   Powheg       &       0.108\\
245   \hline
246   \end{tabular}
247   \caption{Leptonic branching fractions for the various \ttbar\ samples
248 <  used in the analysis. The primary \ttbar\ MC sample produced with
249 <  Madgraph has a branching fraction that is almost $3\%$ higher than
248 >  used in the analysis. The \ttbar\ MC samples produced with
249 >  Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than
250    the PDG value. \label{tab:wlepbf}}
251   \end{center}
252   \end{table}
253  
254 + All \ttbar\ dilepton samples are corrected (when needed and
255 + appropriate)
256 + in order to have the correct number of jet distribution.  This
257 + correction procedure is described in Section~\ref{sec:jetmultiplicity}.
258 +
259 +
260 + \subsubsection{Corrections to Jets and \met}
261 + \label{sec:JetMet}
262 +
263 + The official recommendations from the Jet/MET group are used for
264 + the data and MC samples. In particular, the jet
265 + energy corrections (JEC) are updated using the official recipe.
266 + L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
267 + based on the global tags GR\_R\_52\_V9 (START52\_V9B) for
268 + data (MC). In addition, these jet energy corrections are propagated to
269 + the \met\ calculation, following the official prescription for
270 + deriving the Type I corrections.
271 +
272 + Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
273 + correspond to events with unphysically large \met\ and \mt\ tail
274 + signal region. In addition, the recommended MET filters are applied.
275 + A correction to remove the $\phi$ modulation in \met\ is also applied
276 + to the data.
277 +
278 +
279 + \subsection{Lepton Selection Efficiency Measurements}
280 + \label{sec:lepEff}
281 +
282 + In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies.
283 + The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
284 + lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons.
285 + The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement,
286 + to measure the isolation efficiency we require the probe to pass the
287 + identification requirement.
288 +
289 + The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
290 + In order to suppress lepton pairs from sources other than Z boson
291 + decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged
292 + jets (CSV loose working point).
293 +
294 + The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for
295 + several different jet multiplicity requirements.
296 + We currently observe good agreement for muons with \pt\ up to about 300 GeV.
297 + For high \pt\ muons we observe a source of background in the data with large impact parameters, which we suppress by requiring muon $d_0<0.02$~cm and $d_Z<0.5$~cm.
298 + %For muons with \pt\ $>$ 200 GeV the data efficiency
299 + %begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV.
300 + We are currently investigating the source of this inefficiency.
301 + The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff}
302 + for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies.
303 +
304 + Pending a better understanding of the very high \pt\ muon efficiency,  we
305 + do not correct the MC for differences in lepton efficiency.  In the
306 + background calculation, we do not take any systematics due to lepton
307 + selection
308 + efficiency uncertainties.  This is because all backgrounds except the
309 + rare MC background are normalized to the $M_T$ peak, thus the lepton
310 + identification uncertainty cancels out.  For the rare MC these
311 + uncertainties
312 + are negligible compared to the assumed cross-section uncertainty
313 + (Section~\ref{sec:bkg_other}).
314 +
315 +
316 +
317 +
318 + \begin{table}[htb]
319 + \begin{center}
320 + \scriptsize
321 + \caption{\label{tab:mutnpeff}
322 + Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.}
323 + \begin{tabular}{c|c|c|c}
324 +
325 + %Selection  : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0)
326 + %Ndata      : 4751710
327 + %NMC        : 4127153
328 +
329 + \hline
330 + \hline
331 + MC ID & & & \\
332 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
333 + \hline
334 +    20 -   30  &        0.9638 $\pm$ 0.0005 &   0.9590 $\pm$ 0.0006 &   0.9381 $\pm$ 0.0008 \\
335 +    30 -   40  &        0.9649 $\pm$ 0.0002 &   0.9612 $\pm$ 0.0003 &   0.9372 $\pm$ 0.0005 \\
336 +    40 -   50  &        0.9674 $\pm$ 0.0002 &   0.9651 $\pm$ 0.0002 &   0.9368 $\pm$ 0.0004 \\
337 +    50 -   60  &        0.9644 $\pm$ 0.0005 &   0.9589 $\pm$ 0.0006 &   0.9325 $\pm$ 0.0009 \\
338 +    60 -   80  &        0.9644 $\pm$ 0.0009 &   0.9586 $\pm$ 0.0011 &   0.9258 $\pm$ 0.0019 \\
339 +    80 -  100  &        0.9674 $\pm$ 0.0022 &   0.9602 $\pm$ 0.0029 &   0.9148 $\pm$ 0.0053 \\
340 +   100 -  150  &        0.9632 $\pm$ 0.0031 &   0.9621 $\pm$ 0.0037 &   0.9270 $\pm$ 0.0068 \\
341 +   150 -  200  &        0.9615 $\pm$ 0.0070 &   0.9519 $\pm$ 0.0092 &   0.8844 $\pm$ 0.0213 \\
342 +   200 -  300  &        0.9615 $\pm$ 0.0119 &   0.9353 $\pm$ 0.0173 &   0.8923 $\pm$ 0.0384 \\
343 +   300 - 10000  &       0.9667 $\pm$ 0.0232 &   0.9697 $\pm$ 0.0298 &   0.4000 $\pm$ 0.1549 \\
344 + \hline
345 + \hline
346 + MC ISO  & & & \\
347 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
348 + \hline
349 +    20 -   30  &        0.8968 $\pm$ 0.0007 &   0.9156 $\pm$ 0.0008 &   0.9301 $\pm$ 0.0009 \\
350 +    30 -   40  &        0.9610 $\pm$ 0.0002 &   0.9633 $\pm$ 0.0003 &   0.9706 $\pm$ 0.0003 \\
351 +    40 -   50  &        0.9877 $\pm$ 0.0001 &   0.9897 $\pm$ 0.0001 &   0.9912 $\pm$ 0.0002 \\
352 +    50 -   60  &        0.9918 $\pm$ 0.0002 &   0.9928 $\pm$ 0.0002 &   0.9939 $\pm$ 0.0003 \\
353 +    60 -   80  &        0.9926 $\pm$ 0.0004 &   0.9936 $\pm$ 0.0004 &   0.9948 $\pm$ 0.0005 \\
354 +    80 -  100  &        0.9918 $\pm$ 0.0012 &   0.9923 $\pm$ 0.0013 &   0.9933 $\pm$ 0.0016 \\
355 +   100 -  150  &        0.9900 $\pm$ 0.0016 &   0.9939 $\pm$ 0.0015 &   0.9927 $\pm$ 0.0023 \\
356 +   150 -  200  &        0.9904 $\pm$ 0.0036 &   0.9904 $\pm$ 0.0043 &   0.9950 $\pm$ 0.0050 \\
357 +   200 -  300  &        0.9921 $\pm$ 0.0056 &   1.0000 $\pm$ 0.0000 &   0.9831 $\pm$ 0.0168 \\
358 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
359 + \hline
360 + \hline
361 + DATA ID & & & \\
362 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
363 + \hline
364 +    20 -   30  &        0.9446 $\pm$ 0.0005 &   0.9430 $\pm$ 0.0006 &   0.9203 $\pm$ 0.0008 \\
365 +    30 -   40  &        0.9474 $\pm$ 0.0003 &   0.9448 $\pm$ 0.0003 &   0.9237 $\pm$ 0.0005 \\
366 +    40 -   50  &        0.9515 $\pm$ 0.0002 &   0.9502 $\pm$ 0.0003 &   0.9252 $\pm$ 0.0004 \\
367 +    50 -   60  &        0.9458 $\pm$ 0.0005 &   0.9405 $\pm$ 0.0006 &   0.9163 $\pm$ 0.0010 \\
368 +    60 -   80  &        0.9457 $\pm$ 0.0010 &   0.9386 $\pm$ 0.0013 &   0.9115 $\pm$ 0.0020 \\
369 +    80 -  100  &        0.9393 $\pm$ 0.0029 &   0.9346 $\pm$ 0.0035 &   0.9091 $\pm$ 0.0055 \\
370 +   100 -  150  &        0.9355 $\pm$ 0.0040 &   0.9392 $\pm$ 0.0045 &   0.8843 $\pm$ 0.0085 \\
371 +   150 -  200  &        0.9526 $\pm$ 0.0078 &   0.9534 $\pm$ 0.0099 &   0.8772 $\pm$ 0.0217 \\
372 +   200 -  300  &        0.9017 $\pm$ 0.0195 &   0.9302 $\pm$ 0.0194 &   0.8448 $\pm$ 0.0475 \\
373 +   300 - 10000  &       0.7083 $\pm$ 0.0656 &   0.7333 $\pm$ 0.1142 &   0.2000 $\pm$ 0.1033 \\
374 + \hline
375 + \hline
376 + DATA ISO  & & & \\
377 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
378 + \hline
379 +    20 -   30  &        0.8943 $\pm$ 0.0007 &   0.9144 $\pm$ 0.0008 &   0.9359 $\pm$ 0.0008 \\
380 +    30 -   40  &        0.9598 $\pm$ 0.0002 &   0.9646 $\pm$ 0.0003 &   0.9746 $\pm$ 0.0003 \\
381 +    40 -   50  &        0.9870 $\pm$ 0.0001 &   0.9903 $\pm$ 0.0001 &   0.9920 $\pm$ 0.0001 \\
382 +    50 -   60  &        0.9913 $\pm$ 0.0002 &   0.9935 $\pm$ 0.0002 &   0.9952 $\pm$ 0.0003 \\
383 +    60 -   80  &        0.9921 $\pm$ 0.0004 &   0.9931 $\pm$ 0.0004 &   0.9952 $\pm$ 0.0005 \\
384 +    80 -  100  &        0.9920 $\pm$ 0.0011 &   0.9938 $\pm$ 0.0011 &   0.9943 $\pm$ 0.0015 \\
385 +   100 -  150  &        0.9900 $\pm$ 0.0017 &   0.9943 $\pm$ 0.0015 &   0.9968 $\pm$ 0.0016 \\
386 +   150 -  200  &        0.9972 $\pm$ 0.0020 &   0.9977 $\pm$ 0.0023 &   0.9950 $\pm$ 0.0050 \\
387 +   200 -  300  &        1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
388 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
389 + \hline
390 + \hline
391 + Scale Factor ID  & & & \\
392 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
393 + \hline
394 +    20 -   30  &        0.9801 $\pm$ 0.0007 &   0.9833 $\pm$ 0.0009 &   0.9810 $\pm$ 0.0012 \\
395 +    30 -   40  &        0.9819 $\pm$ 0.0004 &   0.9829 $\pm$ 0.0005 &   0.9856 $\pm$ 0.0007 \\
396 +    40 -   50  &        0.9836 $\pm$ 0.0003 &   0.9845 $\pm$ 0.0004 &   0.9875 $\pm$ 0.0006 \\
397 +    50 -   60  &        0.9808 $\pm$ 0.0007 &   0.9808 $\pm$ 0.0009 &   0.9826 $\pm$ 0.0014 \\
398 +    60 -   80  &        0.9806 $\pm$ 0.0014 &   0.9791 $\pm$ 0.0017 &   0.9846 $\pm$ 0.0029 \\
399 +    80 -  100  &        0.9709 $\pm$ 0.0037 &   0.9733 $\pm$ 0.0047 &   0.9937 $\pm$ 0.0084 \\
400 +   100 -  150  &        0.9713 $\pm$ 0.0052 &   0.9762 $\pm$ 0.0060 &   0.9539 $\pm$ 0.0115 \\
401 +   150 -  200  &        0.9907 $\pm$ 0.0109 &   1.0017 $\pm$ 0.0142 &   0.9918 $\pm$ 0.0343 \\
402 +   200 -  300  &        0.9378 $\pm$ 0.0233 &   0.9946 $\pm$ 0.0278 &   0.9468 $\pm$ 0.0671 \\
403 +   300 - 10000  &       0.7328 $\pm$ 0.0701 &   0.7562 $\pm$ 0.1200 &   0.5000 $\pm$ 0.3227 \\
404 + \hline
405 + \hline
406 + Scale Factor ISO & & & \\
407 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
408 + \hline
409 +    20 -   30  &        0.9971 $\pm$ 0.0011 &   0.9987 $\pm$ 0.0012 &   1.0062 $\pm$ 0.0012 \\
410 +    30 -   40  &        0.9987 $\pm$ 0.0003 &   1.0014 $\pm$ 0.0004 &   1.0042 $\pm$ 0.0004 \\
411 +    40 -   50  &        0.9994 $\pm$ 0.0002 &   1.0006 $\pm$ 0.0002 &   1.0008 $\pm$ 0.0002 \\
412 +    50 -   60  &        0.9995 $\pm$ 0.0003 &   1.0007 $\pm$ 0.0003 &   1.0014 $\pm$ 0.0004 \\
413 +    60 -   80  &        0.9995 $\pm$ 0.0006 &   0.9994 $\pm$ 0.0006 &   1.0005 $\pm$ 0.0007 \\
414 +    80 -  100  &        1.0002 $\pm$ 0.0016 &   1.0015 $\pm$ 0.0017 &   1.0010 $\pm$ 0.0022 \\
415 +   100 -  150  &        1.0000 $\pm$ 0.0024 &   1.0005 $\pm$ 0.0021 &   1.0041 $\pm$ 0.0028 \\
416 +   150 -  200  &        1.0068 $\pm$ 0.0042 &   1.0074 $\pm$ 0.0049 &   1.0000 $\pm$ 0.0071 \\
417 +   200 -  300  &        1.0080 $\pm$ 0.0057 &   1.0000 $\pm$ 0.0000 &   1.0172 $\pm$ 0.0174 \\
418 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
419 + \hline
420 + \hline
421 +
422 +
423 + \end{tabular}
424 + \end{center}
425 + \end{table}
426 +
427 + \begin{figure}[hbt]
428 +  \begin{center}
429 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}%
430 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf}
431 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}%
432 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf}
433 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}%
434 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf}
435 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}%
436 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf}
437 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}%
438 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf}
439 +        \caption{
440 +          \label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }  
441 +      \end{center}
442 + \end{figure}
443 +
444 + \clearpage
445 +
446 + \begin{table}[htb]
447 + \begin{center}
448 + \scriptsize
449 + \caption{\label{tab:eltnpeff}
450 + Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.}
451 + \begin{tabular}{c|c|c}
452 +
453 + %Selection  : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0)
454 + %Ndata      : 3577620
455 + %NMC        : 3240624
456 + %ID cut     : (leptonSelection&8)==8
457 + %iso cut    : (leptonSelection&16)==16
458 +
459 + \hline
460 + \hline
461 + MC ID & & \\
462 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
463 + \hline
464 +    20 -   30  &        0.8156 $\pm$ 0.0008 &   0.6565 $\pm$ 0.0019 \\
465 +    30 -   40  &        0.8670 $\pm$ 0.0004 &   0.7450 $\pm$ 0.0010 \\
466 +    40 -   50  &        0.8922 $\pm$ 0.0003 &   0.7847 $\pm$ 0.0008 \\
467 +    50 -   60  &        0.9023 $\pm$ 0.0006 &   0.7956 $\pm$ 0.0018 \\
468 +    60 -   80  &        0.9097 $\pm$ 0.0011 &   0.8166 $\pm$ 0.0034 \\
469 +    80 -  100  &        0.9203 $\pm$ 0.0028 &   0.8196 $\pm$ 0.0090 \\
470 +   100 -  150  &        0.9162 $\pm$ 0.0037 &   0.8378 $\pm$ 0.0117 \\
471 +   150 -  200  &        0.9106 $\pm$ 0.0087 &   0.8111 $\pm$ 0.0292 \\
472 +   200 -  300  &        0.9304 $\pm$ 0.0119 &   0.9153 $\pm$ 0.0363 \\
473 +   300 - 10000  &       0.8684 $\pm$ 0.0388 &   0.8000 $\pm$ 0.1789 \\
474 + \hline
475 + \hline
476 + MC ISO  & & \\
477 +
478 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
479 + \hline
480 +    20 -   30  &        0.9245 $\pm$ 0.0006 &   0.9466 $\pm$ 0.0011 \\
481 +    30 -   40  &        0.9682 $\pm$ 0.0002 &   0.9741 $\pm$ 0.0004 \\
482 +    40 -   50  &        0.9876 $\pm$ 0.0001 &   0.9883 $\pm$ 0.0002 \\
483 +    50 -   60  &        0.9909 $\pm$ 0.0002 &   0.9912 $\pm$ 0.0005 \\
484 +    60 -   80  &        0.9916 $\pm$ 0.0004 &   0.9930 $\pm$ 0.0008 \\
485 +    80 -  100  &        0.9915 $\pm$ 0.0010 &   0.9908 $\pm$ 0.0025 \\
486 +   100 -  150  &        0.9929 $\pm$ 0.0012 &   0.9894 $\pm$ 0.0035 \\
487 +   150 -  200  &        0.9919 $\pm$ 0.0029 &   0.9932 $\pm$ 0.0068 \\
488 +   200 -  300  &        0.9953 $\pm$ 0.0033 &   1.0000 $\pm$ 0.0000 \\
489 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
490 + \hline
491 + \hline
492 + DATA ID & & \\
493 +
494 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
495 + \hline
496 +    20 -   30  &        0.8145 $\pm$ 0.0008 &   0.6528 $\pm$ 0.0018 \\
497 +    30 -   40  &        0.8676 $\pm$ 0.0004 &   0.7462 $\pm$ 0.0010 \\
498 +    40 -   50  &        0.8955 $\pm$ 0.0003 &   0.7922 $\pm$ 0.0008 \\
499 +    50 -   60  &        0.9049 $\pm$ 0.0006 &   0.8072 $\pm$ 0.0018 \\
500 +    60 -   80  &        0.9110 $\pm$ 0.0011 &   0.8212 $\pm$ 0.0035 \\
501 +    80 -  100  &        0.9156 $\pm$ 0.0028 &   0.8358 $\pm$ 0.0091 \\
502 +   100 -  150  &        0.9257 $\pm$ 0.0036 &   0.8507 $\pm$ 0.0116 \\
503 +   150 -  200  &        0.9186 $\pm$ 0.0084 &   0.8929 $\pm$ 0.0292 \\
504 +   200 -  300  &        0.9106 $\pm$ 0.0149 &   0.7576 $\pm$ 0.0746 \\
505 +   300 - 10000  &       0.9400 $\pm$ 0.0336 &   1.0000 $\pm$ 0.0000 \\
506 + \hline
507 + \hline
508 + DATA ISO  & & \\
509 +
510 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
511 + \hline
512 +    20 -   30  &        0.9201 $\pm$ 0.0006 &   0.9419 $\pm$ 0.0011 \\
513 +    30 -   40  &        0.9667 $\pm$ 0.0002 &   0.9734 $\pm$ 0.0004 \\
514 +    40 -   50  &        0.9872 $\pm$ 0.0001 &   0.9892 $\pm$ 0.0002 \\
515 +    50 -   60  &        0.9904 $\pm$ 0.0002 &   0.9922 $\pm$ 0.0004 \\
516 +    60 -   80  &        0.9923 $\pm$ 0.0004 &   0.9916 $\pm$ 0.0009 \\
517 +    80 -  100  &        0.9914 $\pm$ 0.0010 &   0.9921 $\pm$ 0.0024 \\
518 +   100 -  150  &        0.9945 $\pm$ 0.0011 &   1.0000 $\pm$ 0.0000 \\
519 +   150 -  200  &        0.9908 $\pm$ 0.0031 &   1.0000 $\pm$ 0.0000 \\
520 +   200 -  300  &        0.9941 $\pm$ 0.0042 &   1.0000 $\pm$ 0.0000 \\
521 +   300 - 10000  &       0.9792 $\pm$ 0.0206 &   1.0000 $\pm$ 0.0000 \\
522 + \hline
523 + \hline
524 + Scale Factor ID  & & \\
525 +
526 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
527 + \hline
528 +    20 -   30  &        0.9987 $\pm$ 0.0014 &   0.9944 $\pm$ 0.0040 \\
529 +    30 -   40  &        1.0007 $\pm$ 0.0006 &   1.0015 $\pm$ 0.0019 \\
530 +    40 -   50  &        1.0036 $\pm$ 0.0005 &   1.0096 $\pm$ 0.0015 \\
531 +    50 -   60  &        1.0029 $\pm$ 0.0010 &   1.0146 $\pm$ 0.0031 \\
532 +    60 -   80  &        1.0014 $\pm$ 0.0018 &   1.0057 $\pm$ 0.0060 \\
533 +    80 -  100  &        0.9949 $\pm$ 0.0043 &   1.0197 $\pm$ 0.0158 \\
534 +   100 -  150  &        1.0104 $\pm$ 0.0057 &   1.0154 $\pm$ 0.0198 \\
535 +   150 -  200  &        1.0087 $\pm$ 0.0134 &   1.1008 $\pm$ 0.0535 \\
536 +   200 -  300  &        0.9786 $\pm$ 0.0203 &   0.8277 $\pm$ 0.0879 \\
537 +   300 - 10000  &       1.0824 $\pm$ 0.0619 &   1.2500 $\pm$ 0.2795 \\
538 + \hline
539 + \hline
540 + Scale Factor ISO & & \\
541 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
542 + \hline
543 +    20 -   30  &        0.9952 $\pm$ 0.0009 &   0.9950 $\pm$ 0.0016 \\
544 +    30 -   40  &        0.9984 $\pm$ 0.0003 &   0.9992 $\pm$ 0.0006 \\
545 +    40 -   50  &        0.9996 $\pm$ 0.0002 &   1.0009 $\pm$ 0.0003 \\
546 +    50 -   60  &        0.9995 $\pm$ 0.0003 &   1.0009 $\pm$ 0.0006 \\
547 +    60 -   80  &        1.0006 $\pm$ 0.0005 &   0.9985 $\pm$ 0.0012 \\
548 +    80 -  100  &        0.9999 $\pm$ 0.0014 &   1.0013 $\pm$ 0.0035 \\
549 +   100 -  150  &        1.0016 $\pm$ 0.0016 &   1.0108 $\pm$ 0.0036 \\
550 +   150 -  200  &        0.9989 $\pm$ 0.0042 &   1.0068 $\pm$ 0.0069 \\
551 +   200 -  300  &        0.9987 $\pm$ 0.0053 &   1.0000 $\pm$ 0.0000 \\
552 +   300 - 10000  &       0.9792 $\pm$ 0.0206 &   1.0000 $\pm$ 0.0000 \\
553 + \hline
554 + \hline
555 +
556 + \end{tabular}
557 + \end{center}
558 + \end{table}
559 +
560 + \begin{figure}[hbt]
561 +  \begin{center}
562 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}%
563 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf}
564 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}%
565 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf}
566 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}%
567 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf}
568 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}%
569 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf}
570 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}%
571 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf}
572 +        \caption{
573 +          \label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }  
574 +      \end{center}
575 + \end{figure}
576 +
577 + \clearpage
578 +
579 +
580 + \subsection{Trigger Efficiency Measurements}
581 + \label{sec:trg}
582 +
583 + In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
584 + approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
585 + lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
586 + in order to measure the \pt\ turn-on curve. The tag-probe pair is
587 + required to have opposite-sign and an invariant mass in the range
588 + 76--106 GeV.
589 +
590 + The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
591 + These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers.
592 +
593 +
594 + \begin{figure}[!ht]
595 + \begin{center}
596 + \begin{tabular}{cc}
597 + \includegraphics[width=0.4\textwidth]{plots/mutrig_pt_etabins.pdf} &
598 + \includegraphics[width=0.4\textwidth]{plots/eltrig_pt_etabins.pdf} \\
599 + \end{tabular}
600 + \caption{\label{fig:trigeff}
601 + Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
602 + for several bins in lepton $|\eta|$.
603 + }
604 + \end{center}
605 + \end{figure}
606 +
607 + \clearpage
608 +
609 + \begin{table}[htb]
610 + \begin{center}
611 + \footnotesize
612 + \caption{\label{tab:mutriggeff}
613 + Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
614 + \begin{tabular}{c|c|c|c}
615 +
616 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
617 + % Probe trigger        : HLT_IsoMu24_probe > 0
618 + % Total data yield     : 5161723
619 +
620 + \hline
621 + \hline
622 +  \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
623 + \hline
624 +  20 -  22  &   0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
625 +  22 -  24  &   0.03 $\pm$ 0.001 &      0.05 $\pm$ 0.001 &      0.11 $\pm$ 0.002 \\
626 +  24 -  26  &   0.87 $\pm$ 0.002 &      0.78 $\pm$ 0.002 &      0.76 $\pm$ 0.003 \\
627 +  26 -  28  &   0.90 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.78 $\pm$ 0.002 \\
628 +  28 -  30  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.79 $\pm$ 0.002 \\
629 +  30 -  32  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
630 +  32 -  34  &   0.92 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
631 +  34 -  36  &   0.93 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
632 +  36 -  38  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
633 +  38 -  40  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.82 $\pm$ 0.001 \\
634 +  40 -  50  &   0.94 $\pm$ 0.000 &      0.84 $\pm$ 0.000 &      0.82 $\pm$ 0.001 \\
635 +  50 -  60  &   0.95 $\pm$ 0.000 &      0.84 $\pm$ 0.001 &      0.83 $\pm$ 0.001 \\
636 +  60 -  80  &   0.95 $\pm$ 0.001 &      0.84 $\pm$ 0.002 &      0.83 $\pm$ 0.002 \\
637 +  80 - 100  &   0.94 $\pm$ 0.002 &      0.84 $\pm$ 0.004 &      0.83 $\pm$ 0.006 \\
638 + 100 - 150  &   0.94 $\pm$ 0.003 &      0.84 $\pm$ 0.005 &      0.83 $\pm$ 0.008 \\
639 + 150 - 200  &   0.93 $\pm$ 0.006 &      0.84 $\pm$ 0.011 &      0.82 $\pm$ 0.018 \\
640 + $>$200     &   0.92 $\pm$ 0.010 &      0.82 $\pm$ 0.017 &      0.82 $\pm$ 0.031 \\
641 + \hline
642 + \hline
643 +
644 + \end{tabular}
645 + \end{center}
646 + \end{table}
647 +
648 + \begin{table}[htb]
649 + \begin{center}
650 + \footnotesize
651 + \caption{\label{tab:eltriggeff}
652 + Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
653 + \begin{tabular}{c|c|c}
654 +
655 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
656 + % Probe trigger        : HLT_Ele27_WP80_probe > 0
657 + % Total data yield     : 3405966
658 +
659 + \hline
660 + \hline
661 +  \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
662 + \hline
663 +  20 -  22   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
664 +  22 -  24   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.001 \\
665 +  24 -  26   &  0.00 $\pm$ 0.000 &      0.02 $\pm$ 0.001 \\
666 +  26 -  28   &  0.08 $\pm$ 0.001 &      0.18 $\pm$ 0.003 \\
667 +  28 -  30   &  0.61 $\pm$ 0.002 &      0.50 $\pm$ 0.004 \\
668 +  30 -  32   &  0.86 $\pm$ 0.001 &      0.63 $\pm$ 0.003 \\
669 +  32 -  34   &  0.88 $\pm$ 0.001 &      0.68 $\pm$ 0.003 \\
670 +  34 -  36   &  0.90 $\pm$ 0.001 &      0.70 $\pm$ 0.002 \\
671 +  36 -  38   &  0.91 $\pm$ 0.001 &      0.72 $\pm$ 0.002 \\
672 +  38 -  40   &  0.92 $\pm$ 0.001 &      0.74 $\pm$ 0.002 \\
673 +  40 -  50   &  0.94 $\pm$ 0.000 &      0.76 $\pm$ 0.001 \\
674 +  50 -  60   &  0.95 $\pm$ 0.000 &      0.77 $\pm$ 0.002 \\
675 +  60 -  80   &  0.96 $\pm$ 0.001 &      0.78 $\pm$ 0.003 \\
676 +  80 - 100   &  0.96 $\pm$ 0.002 &      0.80 $\pm$ 0.008 \\
677 +  100 - 150  &  0.96 $\pm$ 0.002 &      0.79 $\pm$ 0.010 \\
678 +  150 - 200  &  0.97 $\pm$ 0.004 &      0.76 $\pm$ 0.026 \\
679 + $>$200       &  0.97 $\pm$ 0.005 &      0.81 $\pm$ 0.038 \\
680 + \hline
681 + \hline
682 +
683 + \end{tabular}
684 + \end{center}
685 + \end{table}
686 +
687 + \clearpage

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines