1 |
+ |
Here we define the selections of leptons, jets, and \met. |
2 |
+ |
We also describe our measurements of the lepton and trigger efficiency. |
3 |
+ |
The analysis uses several different Control Regions (CRs) in addition |
4 |
+ |
to the Signal |
5 |
+ |
Regions (SRs). |
6 |
+ |
All of these different regions are defined in this section. |
7 |
+ |
This section also includes some information on the basic MC |
8 |
+ |
corrections that we apply. |
9 |
+ |
%Figure~\ref{fig:venndiagram} illustrates the relationship between these regions. |
10 |
|
|
11 |
+ |
\subsection{Single Lepton Selection} |
12 |
+ |
\label{sec:singlelepselection} |
13 |
|
|
14 |
< |
The preselection sample is based on the following criteria |
14 |
> |
The single lepton selection is based on the following criteria, starting from the requirements described |
15 |
> |
on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20) |
16 |
|
\begin{itemize} |
17 |
|
\item satisfy the trigger requirement (see |
18 |
< |
Table.~\ref{tab:DatasetsData}) |
18 |
> |
Table.~\ref{tab:TrigData}). |
19 |
> |
Note that the analysis triggers are inclusive single lepton triggers. |
20 |
> |
Dilepton triggers are used only for the dilepton control region. |
21 |
|
\item select events with one high \pt\ electron or muon, requiring |
22 |
|
\begin{itemize} |
23 |
< |
\item $\pt>30~\GeVc$ and $|\eta|<2.5(2.1)$ for \E(\M) |
24 |
< |
\item satisfy the identification and isolation requirements detailed |
25 |
< |
in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign |
26 |
< |
SUSY analysis (SUS-11-011) for muons |
23 |
> |
\item $\pt>30~\GeVc$ and $|\eta|<1.4442 (2.4)$ for electrons (muons). The restriction to the barrel for electrons |
24 |
> |
is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region, |
25 |
> |
and does not significantly reduce the signal acceptance since the leptons tend to be central. |
26 |
> |
\item muon ID criteria is based on the 2012 POG recommended tight working point |
27 |
> |
\item electron ID critera is based on the 2012 POG recommended medium working point |
28 |
> |
\item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections |
29 |
> |
are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs). |
30 |
> |
\item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$ |
31 |
> |
\item $E/p_{\rm{in}} < 4$ (electrons only) |
32 |
> |
\item We remove electron events with $\met > 50$ GeV and $M_T > 100$ |
33 |
> |
GeV with at least one crystal in the supercluster with laser |
34 |
> |
correction in $>$2.\footnote{This is an ad-hoc removal based on |
35 |
> |
run-event numbers, since the |
36 |
> |
problem was found very recently and the filter was not available |
37 |
> |
when we processed the events.} |
38 |
|
\end{itemize} |
39 |
|
\item require at least 4 PF jets in the event with $\pt>30~\GeV$ |
40 |
< |
within $|\eta|<2.5$, out of which at least 1 is b-tagged based on |
41 |
< |
the SSV medium working point. |
42 |
< |
\item require moderate $\met>50~\GeV$ |
40 |
> |
within $|\eta|<2.5$ out of which at least 1 satisfies the CSV |
41 |
> |
medium working point b-tagging requirement |
42 |
> |
\item require moderate $\met>50~\GeV$ (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}). |
43 |
> |
\item Isolated track veto, see Section~\ref{sec:tkveto} |
44 |
> |
|
45 |
|
\end{itemize} |
46 |
|
|
47 |
< |
Currently, we focus on the muon channel because it is cleaner (the QCD contribution is negligible) |
48 |
< |
and the triggers are simpler (we use single muon triggers, as opposed to electron + 3-jet triggers). |
49 |
< |
We will add the electron channel, time permitting. However, since this is a systematics-dominated |
50 |
< |
analysis, increasing the statistics by adding the electrons is not expected to significantly improve |
51 |
< |
the sensitivity, especialy because the electron selection efficiency is smaller and the systematic |
52 |
< |
uncertainty associated with the QCD background is larger. |
47 |
> |
%Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region. |
48 |
> |
|
49 |
> |
%\begin{table}[!h] |
50 |
> |
%\begin{center} |
51 |
> |
%\begin{tabular}{c|c} |
52 |
> |
%\hline |
53 |
> |
%\hline |
54 |
> |
%\end{tabular} |
55 |
> |
%\caption{ Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}} |
56 |
> |
%\end{center} |
57 |
> |
%\end{table} |
58 |
> |
|
59 |
> |
\subsection{Isolated track veto} |
60 |
> |
\label{sec:tkveto} |
61 |
> |
|
62 |
> |
The isolated track veto is intended to remove top dilepton events. |
63 |
> |
Looking for an isolated track is an effective way of identifying $W |
64 |
> |
\to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to |
65 |
> |
h^{\pm} + n\pi^{0}$. The requirements on the track are |
66 |
|
|
27 |
– |
A benchmark signal region is selected by tightening the \met\ and |
28 |
– |
adding an \mt\ requirement |
67 |
|
\begin{itemize} |
68 |
< |
\item $\met>100~\GeV$ |
69 |
< |
\item $\mt>150~\GeV$ |
68 |
> |
\item $P_T > 10$ GeV |
69 |
> |
\item Relative track isolation $< 10\%$ computed from charged PF |
70 |
> |
candidates with dZ $<$ 0.05 cm from the primary vertex. |
71 |
|
\end{itemize} |
72 |
|
|
34 |
– |
{\bf We have not looked at the data in the signal region after the first 1 fb$^{-1}$ of data.} |
73 |
|
|
74 |
< |
\subsection{Corrections to Jets and \met} |
74 |
> |
\subsection{Signal Region Selection} |
75 |
> |
\label{sec:SR} |
76 |
|
|
77 |
< |
The official recommendations from the Jet/MET group are used for |
78 |
< |
the data and MC samples. In particular, the jet |
79 |
< |
energy corrections (JEC) are updated using the official recipe. |
80 |
< |
L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC), |
42 |
< |
based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for |
43 |
< |
data (MC). In addition, these jet energy corrections are propagated to |
44 |
< |
the \met\ calculation, following the official prescription for |
45 |
< |
deriving the Type I corrections. It may be noted that events with |
46 |
< |
anomalous ``rho'' pile-up corrections are excluded from the sample since these |
47 |
< |
correspond to events with unphysically large \met\ and \mt\ tail |
48 |
< |
signal region (see Figure~\ref{fig:mtrhocomp}). An additional correction to remove |
49 |
< |
the $\phi$-modulation observed in the \met\ is included, improving |
50 |
< |
the agreement between the data and the MC, as shown in |
51 |
< |
Figure~\ref{fig:metphicomp}. This correction has an effect on this analysis, |
52 |
< |
since the azimuthal angle enters the \mt\ distribution. |
77 |
> |
The signal regions (SRs) are selected to improve the sensitivity for the |
78 |
> |
single lepton requirements and cover a range of scalar top |
79 |
> |
scenarios. The \mt\ and \met\ variables are used to define the signal |
80 |
> |
regions and the requirements are listed in Table~\ref{tab:srdef}. |
81 |
|
|
82 |
< |
\clearpage |
82 |
> |
\begin{table}[!h] |
83 |
> |
\begin{center} |
84 |
> |
\begin{tabular}{l|c|c} |
85 |
> |
\hline |
86 |
> |
Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\ |
87 |
> |
\hline |
88 |
> |
\hline |
89 |
> |
SRA & 150 & 100 \\ |
90 |
> |
SRB & 120 & 150 \\ |
91 |
> |
SRC & 120 & 200 \\ |
92 |
> |
SRD & 120 & 250 \\ |
93 |
> |
SRE & 120 & 300 \\ |
94 |
> |
SRF & 120 & 350 \\ |
95 |
> |
SRG & 120 & 400 \\ |
96 |
> |
\hline |
97 |
> |
\end{tabular} |
98 |
> |
\caption{ Signal region definitions based on \mt\ and \met\ |
99 |
> |
requirements. These requirements are applied in addition to the |
100 |
> |
baseline single lepton selection. |
101 |
> |
\label{tab:srdef}} |
102 |
> |
\end{center} |
103 |
> |
\end{table} |
104 |
|
|
105 |
< |
\begin{figure}[!ht] |
106 |
< |
\begin{center} |
107 |
< |
\includegraphics[width=0.5\linewidth]{plots/mt_rho_comp.png} |
108 |
< |
\caption{ \label{fig:mtrhocomp}%\protect |
109 |
< |
Comparison of the \mt\ distribution for events with |
110 |
< |
unphysical energy corrections ($\rho <0$ or $ \rho > 40$, where $\rho$ is a |
62 |
< |
measure of the average pileup energy density) and the |
63 |
< |
nominal sample. Events with large pileup corrections |
64 |
< |
correspond to noisy events. Since this correction is applied |
65 |
< |
to the jets and propagated to the \met, these events have |
66 |
< |
anomalously large \met\ and populate the \mt\ tail. These |
67 |
< |
pathological events are excluded from the analysis sample.} |
68 |
< |
\end{center} |
69 |
< |
\end{figure} |
105 |
> |
Table~\ref{tab:srrawmcyields} shows the expected number of SM |
106 |
> |
background yields for the SRs. A few stop signal yields for four |
107 |
> |
values of the parameters are also shown for comparison. The signal |
108 |
> |
regions with looser requirements are sensitive to lower stop masses |
109 |
> |
M(\sctop), while those with tighter requirements are more sensitive to |
110 |
> |
higher M(\sctop). |
111 |
|
|
112 |
< |
\begin{figure}[!hb] |
113 |
< |
\begin{center} |
114 |
< |
\includegraphics[width=0.5\linewidth]{plots/metphi.pdf}% |
115 |
< |
\includegraphics[width=0.5\linewidth]{plots/metphi_phicorr.pdf} |
116 |
< |
\caption{ \label{fig:metphicomp}%\protect |
117 |
< |
The PF \met\ $\phi$ distribution (left) exhibits a |
118 |
< |
modulation. After applying a dedicated correction, the |
119 |
< |
azimuthal dependence is reduced (right).} |
120 |
< |
\end{center} |
121 |
< |
\end{figure} |
112 |
> |
\begin{table}[!h] |
113 |
> |
\begin{center} |
114 |
> |
\footnotesize |
115 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
116 |
> |
\hline |
117 |
> |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\ |
118 |
> |
\hline |
119 |
> |
\hline |
120 |
> |
\ttdl\ & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\ |
121 |
> |
\ttsl\ \& single top (1\Lep) & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\ |
122 |
> |
\wjets\ & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\ |
123 |
> |
Rare & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\ |
124 |
> |
\hline |
125 |
> |
Total & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\ |
126 |
> |
\hline |
127 |
> |
Yield UL (optimistic) & 147 (10\%) & 94 (10\%) & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%) \\ |
128 |
> |
Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\ |
129 |
> |
\hline |
130 |
> |
T2tt m(stop) = 250 m($\chi^0$) = 0 & $424 \pm 19$& $256 \pm 15$& $71 \pm 8$& $19 \pm 4$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\ |
131 |
> |
T2tt m(stop) = 300 m($\chi^0$) = 50 & $396 \pm 11$& $316 \pm 10$& $113 \pm 6$& $37 \pm 3$& $14 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\ |
132 |
> |
T2tt m(stop) = 300 m($\chi^0$) = 100 & $174 \pm 7$& $130 \pm 7$& $42 \pm 4$& $16 \pm 2$& $8 \pm 2$& $3 \pm 1$& $2 \pm 1$ \\ |
133 |
> |
T2tt m(stop) = 350 m($\chi^0$) = 0 & $305 \pm 6$& $282 \pm 6$& $162 \pm 5$& $69 \pm 3$& $26 \pm 2$& $11 \pm 1$& $4 \pm 1$ \\ |
134 |
> |
T2tt m(stop) = 450 m($\chi^0$) = 0 & $96 \pm 2$& $96 \pm 2$& $72 \pm 1$& $48 \pm 1$& $28 \pm 1$& $14 \pm 1$& $6 \pm 0$ \\ |
135 |
> |
\hline |
136 |
> |
\end{tabular} |
137 |
> |
\caption{ Expected SM background contributions and signal yields for a few sample points, |
138 |
> |
including both muon and electron channels. This is ``dead reckoning'' MC with no |
139 |
> |
correction. It is meant only as a general guide. The uncertainties are statistical only. |
140 |
> |
The signal yield upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses. |
141 |
> |
[{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ]. |
142 |
> |
%HOOBERMAN |
143 |
> |
\label{tab:srrawmcyields}} |
144 |
> |
\end{center} |
145 |
> |
\end{table} |
146 |
|
|
147 |
< |
\clearpage |
147 |
> |
\subsection{Control Region Selection} |
148 |
> |
\label{sec:CR} |
149 |
> |
|
150 |
> |
Control regions (CRs) are used to validate the background estimation |
151 |
> |
procedure and derive systematic uncertainties for some |
152 |
> |
contributions. The CRs are selected to have similar |
153 |
> |
kinematics to the SRs, but have a different requirement in terms of |
154 |
> |
number of b-tags and number of leptons, thus enhancing them in |
155 |
> |
different SM contributions. The four CRs used in this analysis are |
156 |
> |
summarized in Table~\ref{tab:crdef}. |
157 |
> |
|
158 |
> |
\begin{table} |
159 |
> |
\begin{center} |
160 |
> |
{\small |
161 |
> |
\begin{tabular}{l|c|c|c} |
162 |
> |
\hline |
163 |
> |
Selection & \multirow{2}{*}{exactly 1 lepton} & \multirow{2}{*}{exactly 2 |
164 |
> |
leptons} & \multirow{2}{*}{1 lepton + isolated |
165 |
> |
track}\\ |
166 |
> |
Criteria & & & \\ |
167 |
> |
\hline |
168 |
> |
\hline |
169 |
> |
\multirow{4}{*}{0 b-tags} |
170 |
> |
& CR1) W+Jets dominated: |
171 |
> |
& CR2) apply \Z-mass constraint |
172 |
> |
& CR3) not used \\ |
173 |
> |
& |
174 |
> |
& $\rightarrow$ Z+Jets dominated: Validate |
175 |
> |
& \\ |
176 |
> |
& Validate W+Jets \mt\ tail |
177 |
> |
& \ttsl\ \mt\ tail comparing |
178 |
> |
& \\ |
179 |
> |
& |
180 |
> |
& data vs. MC ``pseudo-\mt '' |
181 |
> |
& \\ |
182 |
> |
\hline |
183 |
> |
\multirow{4}{*}{$\ge$ 1 b-tags} |
184 |
> |
& |
185 |
> |
& CR4) Apply \Z-mass veto |
186 |
> |
& CR5) \ttdl, \ttlt\ and \\ |
187 |
> |
& SIGNAL |
188 |
> |
& $\rightarrow$ \ttdl\ dominated: Validate |
189 |
> |
& \ttlf\ dominated: Validate \\ |
190 |
> |
& REGION |
191 |
> |
& ``physics'' modelling of \ttdl\ |
192 |
> |
& \Tau\ and fake lepton modeling/\\ |
193 |
> |
& |
194 |
> |
& |
195 |
> |
& detector effects in \ttdl\ \\ |
196 |
> |
\hline |
197 |
> |
\end{tabular} |
198 |
> |
} |
199 |
> |
\caption{Summary of signal and control regions. |
200 |
> |
\label{tab:crdef}%\protect |
201 |
> |
} |
202 |
> |
\end{center} |
203 |
> |
\end{table} |
204 |
> |
|
205 |
> |
\subsection{Definition of $M_T$ peak region} |
206 |
> |
\label{sec:mtpeakdef} |
207 |
> |
|
208 |
> |
This region is defined as $50 < M_T < 80$ GeV. |
209 |
|
|
210 |
< |
\subsection{Branching Fraction Correction} |
210 |
> |
|
211 |
> |
\subsection{Default \ttbar\ MC sample} |
212 |
> |
|
213 |
> |
Our default \ttbar\ MC sample is Powheg. |
214 |
> |
|
215 |
> |
\subsection{MC Corrections} |
216 |
> |
\label{sec:MCCorr} |
217 |
> |
|
218 |
> |
All MC samples are corrected for trigger efficiency. In the case of |
219 |
> |
single lepton selections, we apply the $P_T$ and $\eta$-dependent |
220 |
> |
scale factors that we measure ourselves, see Sections~\ref{sec:trg}. |
221 |
> |
In the case of dilepton selections that require the dilepton triggers, |
222 |
> |
we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$, |
223 |
> |
$\mu\mu$, |
224 |
> |
and $e\mu$ respectively~\cite{didar}. |
225 |
|
|
226 |
|
The leptonic branching fraction used in some of the \ttbar\ MC samples |
227 |
|
differs from the value listed in the PDG $(10.80 \pm 0.09)\%$. |
238 |
|
\ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\ |
239 |
|
\hline |
240 |
|
\hline |
241 |
< |
Madgraph & 0.111\\ |
242 |
< |
MC@NLO & 0.111\\ |
243 |
< |
Pythia & 0.108\\ |
241 |
> |
Madgraph & 0.111\\ |
242 |
> |
MC@NLO & 0.111\\ |
243 |
> |
Pythia & 0.108\\ |
244 |
|
Powheg & 0.108\\ |
245 |
|
\hline |
246 |
|
\end{tabular} |
247 |
|
\caption{Leptonic branching fractions for the various \ttbar\ samples |
248 |
< |
used in the analysis. The primary \ttbar\ MC sample produced with |
249 |
< |
Madgraph has a branching fraction that is almost $3\%$ higher than |
248 |
> |
used in the analysis. The \ttbar\ MC samples produced with |
249 |
> |
Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than |
250 |
|
the PDG value. \label{tab:wlepbf}} |
251 |
|
\end{center} |
252 |
|
\end{table} |
253 |
|
|
254 |
+ |
All \ttbar\ dilepton samples are corrected (when needed and |
255 |
+ |
appropriate) |
256 |
+ |
in order to have the correct number of jet distribution. This |
257 |
+ |
correction procedure is described in Section~\ref{sec:jetmultiplicity}. |
258 |
+ |
|
259 |
+ |
|
260 |
+ |
\subsubsection{Corrections to Jets and \met} |
261 |
+ |
\label{sec:JetMet} |
262 |
+ |
|
263 |
+ |
The official recommendations from the Jet/MET group are used for |
264 |
+ |
the data and MC samples. In particular, the jet |
265 |
+ |
energy corrections (JEC) are updated using the official recipe. |
266 |
+ |
L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC), |
267 |
+ |
based on the global tags GR\_R\_52\_V9 (START52\_V9B) for |
268 |
+ |
data (MC). In addition, these jet energy corrections are propagated to |
269 |
+ |
the \met\ calculation, following the official prescription for |
270 |
+ |
deriving the Type I corrections. |
271 |
+ |
|
272 |
+ |
Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these |
273 |
+ |
correspond to events with unphysically large \met\ and \mt\ tail |
274 |
+ |
signal region. In addition, the recommended MET filters are applied. |
275 |
+ |
A correction to remove the $\phi$ modulation in \met\ is also applied |
276 |
+ |
to the data. |
277 |
+ |
|
278 |
+ |
|
279 |
+ |
\subsection{Lepton Selection Efficiency Measurements} |
280 |
+ |
\label{sec:lepEff} |
281 |
+ |
|
282 |
+ |
In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies. |
283 |
+ |
The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single |
284 |
+ |
lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons. |
285 |
+ |
The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement, |
286 |
+ |
to measure the isolation efficiency we require the probe to pass the |
287 |
+ |
identification requirement. |
288 |
+ |
|
289 |
+ |
The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV. |
290 |
+ |
In order to suppress lepton pairs from sources other than Z boson |
291 |
+ |
decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged |
292 |
+ |
jets (CSV loose working point). |
293 |
+ |
|
294 |
+ |
The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for |
295 |
+ |
several different jet multiplicity requirements. |
296 |
+ |
We currently observe good agreement for muons with \pt\ up to about 300 GeV. |
297 |
+ |
For high \pt\ muons we observe a source of background in the data with large impact parameters, which we suppress by requiring muon $d_0<0.02$~cm and $d_Z<0.5$~cm. |
298 |
+ |
%For muons with \pt\ $>$ 200 GeV the data efficiency |
299 |
+ |
%begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV. |
300 |
+ |
We are currently investigating the source of this inefficiency. |
301 |
+ |
The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff} |
302 |
+ |
for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies. |
303 |
+ |
|
304 |
+ |
Pending a better understanding of the very high \pt\ muon efficiency, we |
305 |
+ |
do not correct the MC for differences in lepton efficiency. In the |
306 |
+ |
background calculation, we do not take any systematics due to lepton |
307 |
+ |
selection |
308 |
+ |
efficiency uncertainties. This is because all backgrounds except the |
309 |
+ |
rare MC background are normalized to the $M_T$ peak, thus the lepton |
310 |
+ |
identification uncertainty cancels out. For the rare MC these |
311 |
+ |
uncertainties |
312 |
+ |
are negligible compared to the assumed cross-section uncertainty |
313 |
+ |
(Section~\ref{sec:bkg_other}). |
314 |
+ |
|
315 |
+ |
|
316 |
+ |
|
317 |
+ |
|
318 |
+ |
\begin{table}[htb] |
319 |
+ |
\begin{center} |
320 |
+ |
\scriptsize |
321 |
+ |
\caption{\label{tab:mutnpeff} |
322 |
+ |
Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.} |
323 |
+ |
\begin{tabular}{c|c|c|c} |
324 |
+ |
|
325 |
+ |
%Selection : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0) |
326 |
+ |
%Ndata : 4751710 |
327 |
+ |
%NMC : 4127153 |
328 |
+ |
|
329 |
+ |
\hline |
330 |
+ |
\hline |
331 |
+ |
MC ID & & & \\ |
332 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
333 |
+ |
\hline |
334 |
+ |
20 - 30 & 0.9638 $\pm$ 0.0005 & 0.9590 $\pm$ 0.0006 & 0.9381 $\pm$ 0.0008 \\ |
335 |
+ |
30 - 40 & 0.9649 $\pm$ 0.0002 & 0.9612 $\pm$ 0.0003 & 0.9372 $\pm$ 0.0005 \\ |
336 |
+ |
40 - 50 & 0.9674 $\pm$ 0.0002 & 0.9651 $\pm$ 0.0002 & 0.9368 $\pm$ 0.0004 \\ |
337 |
+ |
50 - 60 & 0.9644 $\pm$ 0.0005 & 0.9589 $\pm$ 0.0006 & 0.9325 $\pm$ 0.0009 \\ |
338 |
+ |
60 - 80 & 0.9644 $\pm$ 0.0009 & 0.9586 $\pm$ 0.0011 & 0.9258 $\pm$ 0.0019 \\ |
339 |
+ |
80 - 100 & 0.9674 $\pm$ 0.0022 & 0.9602 $\pm$ 0.0029 & 0.9148 $\pm$ 0.0053 \\ |
340 |
+ |
100 - 150 & 0.9632 $\pm$ 0.0031 & 0.9621 $\pm$ 0.0037 & 0.9270 $\pm$ 0.0068 \\ |
341 |
+ |
150 - 200 & 0.9615 $\pm$ 0.0070 & 0.9519 $\pm$ 0.0092 & 0.8844 $\pm$ 0.0213 \\ |
342 |
+ |
200 - 300 & 0.9615 $\pm$ 0.0119 & 0.9353 $\pm$ 0.0173 & 0.8923 $\pm$ 0.0384 \\ |
343 |
+ |
300 - 10000 & 0.9667 $\pm$ 0.0232 & 0.9697 $\pm$ 0.0298 & 0.4000 $\pm$ 0.1549 \\ |
344 |
+ |
\hline |
345 |
+ |
\hline |
346 |
+ |
MC ISO & & & \\ |
347 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
348 |
+ |
\hline |
349 |
+ |
20 - 30 & 0.8968 $\pm$ 0.0007 & 0.9156 $\pm$ 0.0008 & 0.9301 $\pm$ 0.0009 \\ |
350 |
+ |
30 - 40 & 0.9610 $\pm$ 0.0002 & 0.9633 $\pm$ 0.0003 & 0.9706 $\pm$ 0.0003 \\ |
351 |
+ |
40 - 50 & 0.9877 $\pm$ 0.0001 & 0.9897 $\pm$ 0.0001 & 0.9912 $\pm$ 0.0002 \\ |
352 |
+ |
50 - 60 & 0.9918 $\pm$ 0.0002 & 0.9928 $\pm$ 0.0002 & 0.9939 $\pm$ 0.0003 \\ |
353 |
+ |
60 - 80 & 0.9926 $\pm$ 0.0004 & 0.9936 $\pm$ 0.0004 & 0.9948 $\pm$ 0.0005 \\ |
354 |
+ |
80 - 100 & 0.9918 $\pm$ 0.0012 & 0.9923 $\pm$ 0.0013 & 0.9933 $\pm$ 0.0016 \\ |
355 |
+ |
100 - 150 & 0.9900 $\pm$ 0.0016 & 0.9939 $\pm$ 0.0015 & 0.9927 $\pm$ 0.0023 \\ |
356 |
+ |
150 - 200 & 0.9904 $\pm$ 0.0036 & 0.9904 $\pm$ 0.0043 & 0.9950 $\pm$ 0.0050 \\ |
357 |
+ |
200 - 300 & 0.9921 $\pm$ 0.0056 & 1.0000 $\pm$ 0.0000 & 0.9831 $\pm$ 0.0168 \\ |
358 |
+ |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
359 |
+ |
\hline |
360 |
+ |
\hline |
361 |
+ |
DATA ID & & & \\ |
362 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
363 |
+ |
\hline |
364 |
+ |
20 - 30 & 0.9446 $\pm$ 0.0005 & 0.9430 $\pm$ 0.0006 & 0.9203 $\pm$ 0.0008 \\ |
365 |
+ |
30 - 40 & 0.9474 $\pm$ 0.0003 & 0.9448 $\pm$ 0.0003 & 0.9237 $\pm$ 0.0005 \\ |
366 |
+ |
40 - 50 & 0.9515 $\pm$ 0.0002 & 0.9502 $\pm$ 0.0003 & 0.9252 $\pm$ 0.0004 \\ |
367 |
+ |
50 - 60 & 0.9458 $\pm$ 0.0005 & 0.9405 $\pm$ 0.0006 & 0.9163 $\pm$ 0.0010 \\ |
368 |
+ |
60 - 80 & 0.9457 $\pm$ 0.0010 & 0.9386 $\pm$ 0.0013 & 0.9115 $\pm$ 0.0020 \\ |
369 |
+ |
80 - 100 & 0.9393 $\pm$ 0.0029 & 0.9346 $\pm$ 0.0035 & 0.9091 $\pm$ 0.0055 \\ |
370 |
+ |
100 - 150 & 0.9355 $\pm$ 0.0040 & 0.9392 $\pm$ 0.0045 & 0.8843 $\pm$ 0.0085 \\ |
371 |
+ |
150 - 200 & 0.9526 $\pm$ 0.0078 & 0.9534 $\pm$ 0.0099 & 0.8772 $\pm$ 0.0217 \\ |
372 |
+ |
200 - 300 & 0.9017 $\pm$ 0.0195 & 0.9302 $\pm$ 0.0194 & 0.8448 $\pm$ 0.0475 \\ |
373 |
+ |
300 - 10000 & 0.7083 $\pm$ 0.0656 & 0.7333 $\pm$ 0.1142 & 0.2000 $\pm$ 0.1033 \\ |
374 |
+ |
\hline |
375 |
+ |
\hline |
376 |
+ |
DATA ISO & & & \\ |
377 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
378 |
+ |
\hline |
379 |
+ |
20 - 30 & 0.8943 $\pm$ 0.0007 & 0.9144 $\pm$ 0.0008 & 0.9359 $\pm$ 0.0008 \\ |
380 |
+ |
30 - 40 & 0.9598 $\pm$ 0.0002 & 0.9646 $\pm$ 0.0003 & 0.9746 $\pm$ 0.0003 \\ |
381 |
+ |
40 - 50 & 0.9870 $\pm$ 0.0001 & 0.9903 $\pm$ 0.0001 & 0.9920 $\pm$ 0.0001 \\ |
382 |
+ |
50 - 60 & 0.9913 $\pm$ 0.0002 & 0.9935 $\pm$ 0.0002 & 0.9952 $\pm$ 0.0003 \\ |
383 |
+ |
60 - 80 & 0.9921 $\pm$ 0.0004 & 0.9931 $\pm$ 0.0004 & 0.9952 $\pm$ 0.0005 \\ |
384 |
+ |
80 - 100 & 0.9920 $\pm$ 0.0011 & 0.9938 $\pm$ 0.0011 & 0.9943 $\pm$ 0.0015 \\ |
385 |
+ |
100 - 150 & 0.9900 $\pm$ 0.0017 & 0.9943 $\pm$ 0.0015 & 0.9968 $\pm$ 0.0016 \\ |
386 |
+ |
150 - 200 & 0.9972 $\pm$ 0.0020 & 0.9977 $\pm$ 0.0023 & 0.9950 $\pm$ 0.0050 \\ |
387 |
+ |
200 - 300 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
388 |
+ |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
389 |
+ |
\hline |
390 |
+ |
\hline |
391 |
+ |
Scale Factor ID & & & \\ |
392 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
393 |
+ |
\hline |
394 |
+ |
20 - 30 & 0.9801 $\pm$ 0.0007 & 0.9833 $\pm$ 0.0009 & 0.9810 $\pm$ 0.0012 \\ |
395 |
+ |
30 - 40 & 0.9819 $\pm$ 0.0004 & 0.9829 $\pm$ 0.0005 & 0.9856 $\pm$ 0.0007 \\ |
396 |
+ |
40 - 50 & 0.9836 $\pm$ 0.0003 & 0.9845 $\pm$ 0.0004 & 0.9875 $\pm$ 0.0006 \\ |
397 |
+ |
50 - 60 & 0.9808 $\pm$ 0.0007 & 0.9808 $\pm$ 0.0009 & 0.9826 $\pm$ 0.0014 \\ |
398 |
+ |
60 - 80 & 0.9806 $\pm$ 0.0014 & 0.9791 $\pm$ 0.0017 & 0.9846 $\pm$ 0.0029 \\ |
399 |
+ |
80 - 100 & 0.9709 $\pm$ 0.0037 & 0.9733 $\pm$ 0.0047 & 0.9937 $\pm$ 0.0084 \\ |
400 |
+ |
100 - 150 & 0.9713 $\pm$ 0.0052 & 0.9762 $\pm$ 0.0060 & 0.9539 $\pm$ 0.0115 \\ |
401 |
+ |
150 - 200 & 0.9907 $\pm$ 0.0109 & 1.0017 $\pm$ 0.0142 & 0.9918 $\pm$ 0.0343 \\ |
402 |
+ |
200 - 300 & 0.9378 $\pm$ 0.0233 & 0.9946 $\pm$ 0.0278 & 0.9468 $\pm$ 0.0671 \\ |
403 |
+ |
300 - 10000 & 0.7328 $\pm$ 0.0701 & 0.7562 $\pm$ 0.1200 & 0.5000 $\pm$ 0.3227 \\ |
404 |
+ |
\hline |
405 |
+ |
\hline |
406 |
+ |
Scale Factor ISO & & & \\ |
407 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
408 |
+ |
\hline |
409 |
+ |
20 - 30 & 0.9971 $\pm$ 0.0011 & 0.9987 $\pm$ 0.0012 & 1.0062 $\pm$ 0.0012 \\ |
410 |
+ |
30 - 40 & 0.9987 $\pm$ 0.0003 & 1.0014 $\pm$ 0.0004 & 1.0042 $\pm$ 0.0004 \\ |
411 |
+ |
40 - 50 & 0.9994 $\pm$ 0.0002 & 1.0006 $\pm$ 0.0002 & 1.0008 $\pm$ 0.0002 \\ |
412 |
+ |
50 - 60 & 0.9995 $\pm$ 0.0003 & 1.0007 $\pm$ 0.0003 & 1.0014 $\pm$ 0.0004 \\ |
413 |
+ |
60 - 80 & 0.9995 $\pm$ 0.0006 & 0.9994 $\pm$ 0.0006 & 1.0005 $\pm$ 0.0007 \\ |
414 |
+ |
80 - 100 & 1.0002 $\pm$ 0.0016 & 1.0015 $\pm$ 0.0017 & 1.0010 $\pm$ 0.0022 \\ |
415 |
+ |
100 - 150 & 1.0000 $\pm$ 0.0024 & 1.0005 $\pm$ 0.0021 & 1.0041 $\pm$ 0.0028 \\ |
416 |
+ |
150 - 200 & 1.0068 $\pm$ 0.0042 & 1.0074 $\pm$ 0.0049 & 1.0000 $\pm$ 0.0071 \\ |
417 |
+ |
200 - 300 & 1.0080 $\pm$ 0.0057 & 1.0000 $\pm$ 0.0000 & 1.0172 $\pm$ 0.0174 \\ |
418 |
+ |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
419 |
+ |
\hline |
420 |
+ |
\hline |
421 |
+ |
|
422 |
+ |
|
423 |
+ |
\end{tabular} |
424 |
+ |
\end{center} |
425 |
+ |
\end{table} |
426 |
+ |
|
427 |
+ |
\begin{figure}[hbt] |
428 |
+ |
\begin{center} |
429 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}% |
430 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf} |
431 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}% |
432 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf} |
433 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}% |
434 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf} |
435 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}% |
436 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf} |
437 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}% |
438 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf} |
439 |
+ |
\caption{ |
440 |
+ |
\label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. } |
441 |
+ |
\end{center} |
442 |
+ |
\end{figure} |
443 |
+ |
|
444 |
+ |
\clearpage |
445 |
+ |
|
446 |
+ |
\begin{table}[htb] |
447 |
+ |
\begin{center} |
448 |
+ |
\scriptsize |
449 |
+ |
\caption{\label{tab:eltnpeff} |
450 |
+ |
Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.} |
451 |
+ |
\begin{tabular}{c|c|c} |
452 |
+ |
|
453 |
+ |
%Selection : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0) |
454 |
+ |
%Ndata : 3577620 |
455 |
+ |
%NMC : 3240624 |
456 |
+ |
%ID cut : (leptonSelection&8)==8 |
457 |
+ |
%iso cut : (leptonSelection&16)==16 |
458 |
+ |
|
459 |
+ |
\hline |
460 |
+ |
\hline |
461 |
+ |
MC ID & & \\ |
462 |
+ |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
463 |
+ |
\hline |
464 |
+ |
20 - 30 & 0.8156 $\pm$ 0.0008 & 0.6565 $\pm$ 0.0019 \\ |
465 |
+ |
30 - 40 & 0.8670 $\pm$ 0.0004 & 0.7450 $\pm$ 0.0010 \\ |
466 |
+ |
40 - 50 & 0.8922 $\pm$ 0.0003 & 0.7847 $\pm$ 0.0008 \\ |
467 |
+ |
50 - 60 & 0.9023 $\pm$ 0.0006 & 0.7956 $\pm$ 0.0018 \\ |
468 |
+ |
60 - 80 & 0.9097 $\pm$ 0.0011 & 0.8166 $\pm$ 0.0034 \\ |
469 |
+ |
80 - 100 & 0.9203 $\pm$ 0.0028 & 0.8196 $\pm$ 0.0090 \\ |
470 |
+ |
100 - 150 & 0.9162 $\pm$ 0.0037 & 0.8378 $\pm$ 0.0117 \\ |
471 |
+ |
150 - 200 & 0.9106 $\pm$ 0.0087 & 0.8111 $\pm$ 0.0292 \\ |
472 |
+ |
200 - 300 & 0.9304 $\pm$ 0.0119 & 0.9153 $\pm$ 0.0363 \\ |
473 |
+ |
300 - 10000 & 0.8684 $\pm$ 0.0388 & 0.8000 $\pm$ 0.1789 \\ |
474 |
+ |
\hline |
475 |
+ |
\hline |
476 |
+ |
MC ISO & & \\ |
477 |
+ |
|
478 |
+ |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
479 |
+ |
\hline |
480 |
+ |
20 - 30 & 0.9245 $\pm$ 0.0006 & 0.9466 $\pm$ 0.0011 \\ |
481 |
+ |
30 - 40 & 0.9682 $\pm$ 0.0002 & 0.9741 $\pm$ 0.0004 \\ |
482 |
+ |
40 - 50 & 0.9876 $\pm$ 0.0001 & 0.9883 $\pm$ 0.0002 \\ |
483 |
+ |
50 - 60 & 0.9909 $\pm$ 0.0002 & 0.9912 $\pm$ 0.0005 \\ |
484 |
+ |
60 - 80 & 0.9916 $\pm$ 0.0004 & 0.9930 $\pm$ 0.0008 \\ |
485 |
+ |
80 - 100 & 0.9915 $\pm$ 0.0010 & 0.9908 $\pm$ 0.0025 \\ |
486 |
+ |
100 - 150 & 0.9929 $\pm$ 0.0012 & 0.9894 $\pm$ 0.0035 \\ |
487 |
+ |
150 - 200 & 0.9919 $\pm$ 0.0029 & 0.9932 $\pm$ 0.0068 \\ |
488 |
+ |
200 - 300 & 0.9953 $\pm$ 0.0033 & 1.0000 $\pm$ 0.0000 \\ |
489 |
+ |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
490 |
+ |
\hline |
491 |
+ |
\hline |
492 |
+ |
DATA ID & & \\ |
493 |
+ |
|
494 |
+ |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
495 |
+ |
\hline |
496 |
+ |
20 - 30 & 0.8145 $\pm$ 0.0008 & 0.6528 $\pm$ 0.0018 \\ |
497 |
+ |
30 - 40 & 0.8676 $\pm$ 0.0004 & 0.7462 $\pm$ 0.0010 \\ |
498 |
+ |
40 - 50 & 0.8955 $\pm$ 0.0003 & 0.7922 $\pm$ 0.0008 \\ |
499 |
+ |
50 - 60 & 0.9049 $\pm$ 0.0006 & 0.8072 $\pm$ 0.0018 \\ |
500 |
+ |
60 - 80 & 0.9110 $\pm$ 0.0011 & 0.8212 $\pm$ 0.0035 \\ |
501 |
+ |
80 - 100 & 0.9156 $\pm$ 0.0028 & 0.8358 $\pm$ 0.0091 \\ |
502 |
+ |
100 - 150 & 0.9257 $\pm$ 0.0036 & 0.8507 $\pm$ 0.0116 \\ |
503 |
+ |
150 - 200 & 0.9186 $\pm$ 0.0084 & 0.8929 $\pm$ 0.0292 \\ |
504 |
+ |
200 - 300 & 0.9106 $\pm$ 0.0149 & 0.7576 $\pm$ 0.0746 \\ |
505 |
+ |
300 - 10000 & 0.9400 $\pm$ 0.0336 & 1.0000 $\pm$ 0.0000 \\ |
506 |
+ |
\hline |
507 |
+ |
\hline |
508 |
+ |
DATA ISO & & \\ |
509 |
+ |
|
510 |
+ |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
511 |
+ |
\hline |
512 |
+ |
20 - 30 & 0.9201 $\pm$ 0.0006 & 0.9419 $\pm$ 0.0011 \\ |
513 |
+ |
30 - 40 & 0.9667 $\pm$ 0.0002 & 0.9734 $\pm$ 0.0004 \\ |
514 |
+ |
40 - 50 & 0.9872 $\pm$ 0.0001 & 0.9892 $\pm$ 0.0002 \\ |
515 |
+ |
50 - 60 & 0.9904 $\pm$ 0.0002 & 0.9922 $\pm$ 0.0004 \\ |
516 |
+ |
60 - 80 & 0.9923 $\pm$ 0.0004 & 0.9916 $\pm$ 0.0009 \\ |
517 |
+ |
80 - 100 & 0.9914 $\pm$ 0.0010 & 0.9921 $\pm$ 0.0024 \\ |
518 |
+ |
100 - 150 & 0.9945 $\pm$ 0.0011 & 1.0000 $\pm$ 0.0000 \\ |
519 |
+ |
150 - 200 & 0.9908 $\pm$ 0.0031 & 1.0000 $\pm$ 0.0000 \\ |
520 |
+ |
200 - 300 & 0.9941 $\pm$ 0.0042 & 1.0000 $\pm$ 0.0000 \\ |
521 |
+ |
300 - 10000 & 0.9792 $\pm$ 0.0206 & 1.0000 $\pm$ 0.0000 \\ |
522 |
+ |
\hline |
523 |
+ |
\hline |
524 |
+ |
Scale Factor ID & & \\ |
525 |
+ |
|
526 |
+ |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
527 |
+ |
\hline |
528 |
+ |
20 - 30 & 0.9987 $\pm$ 0.0014 & 0.9944 $\pm$ 0.0040 \\ |
529 |
+ |
30 - 40 & 1.0007 $\pm$ 0.0006 & 1.0015 $\pm$ 0.0019 \\ |
530 |
+ |
40 - 50 & 1.0036 $\pm$ 0.0005 & 1.0096 $\pm$ 0.0015 \\ |
531 |
+ |
50 - 60 & 1.0029 $\pm$ 0.0010 & 1.0146 $\pm$ 0.0031 \\ |
532 |
+ |
60 - 80 & 1.0014 $\pm$ 0.0018 & 1.0057 $\pm$ 0.0060 \\ |
533 |
+ |
80 - 100 & 0.9949 $\pm$ 0.0043 & 1.0197 $\pm$ 0.0158 \\ |
534 |
+ |
100 - 150 & 1.0104 $\pm$ 0.0057 & 1.0154 $\pm$ 0.0198 \\ |
535 |
+ |
150 - 200 & 1.0087 $\pm$ 0.0134 & 1.1008 $\pm$ 0.0535 \\ |
536 |
+ |
200 - 300 & 0.9786 $\pm$ 0.0203 & 0.8277 $\pm$ 0.0879 \\ |
537 |
+ |
300 - 10000 & 1.0824 $\pm$ 0.0619 & 1.2500 $\pm$ 0.2795 \\ |
538 |
+ |
\hline |
539 |
+ |
\hline |
540 |
+ |
Scale Factor ISO & & \\ |
541 |
+ |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
542 |
+ |
\hline |
543 |
+ |
20 - 30 & 0.9952 $\pm$ 0.0009 & 0.9950 $\pm$ 0.0016 \\ |
544 |
+ |
30 - 40 & 0.9984 $\pm$ 0.0003 & 0.9992 $\pm$ 0.0006 \\ |
545 |
+ |
40 - 50 & 0.9996 $\pm$ 0.0002 & 1.0009 $\pm$ 0.0003 \\ |
546 |
+ |
50 - 60 & 0.9995 $\pm$ 0.0003 & 1.0009 $\pm$ 0.0006 \\ |
547 |
+ |
60 - 80 & 1.0006 $\pm$ 0.0005 & 0.9985 $\pm$ 0.0012 \\ |
548 |
+ |
80 - 100 & 0.9999 $\pm$ 0.0014 & 1.0013 $\pm$ 0.0035 \\ |
549 |
+ |
100 - 150 & 1.0016 $\pm$ 0.0016 & 1.0108 $\pm$ 0.0036 \\ |
550 |
+ |
150 - 200 & 0.9989 $\pm$ 0.0042 & 1.0068 $\pm$ 0.0069 \\ |
551 |
+ |
200 - 300 & 0.9987 $\pm$ 0.0053 & 1.0000 $\pm$ 0.0000 \\ |
552 |
+ |
300 - 10000 & 0.9792 $\pm$ 0.0206 & 1.0000 $\pm$ 0.0000 \\ |
553 |
+ |
\hline |
554 |
+ |
\hline |
555 |
+ |
|
556 |
+ |
\end{tabular} |
557 |
+ |
\end{center} |
558 |
+ |
\end{table} |
559 |
+ |
|
560 |
+ |
\begin{figure}[hbt] |
561 |
+ |
\begin{center} |
562 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}% |
563 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf} |
564 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}% |
565 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf} |
566 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}% |
567 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf} |
568 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}% |
569 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf} |
570 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}% |
571 |
+ |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf} |
572 |
+ |
\caption{ |
573 |
+ |
\label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. } |
574 |
+ |
\end{center} |
575 |
+ |
\end{figure} |
576 |
+ |
|
577 |
+ |
\clearpage |
578 |
+ |
|
579 |
+ |
|
580 |
+ |
\subsection{Trigger Efficiency Measurements} |
581 |
+ |
\label{sec:trg} |
582 |
+ |
|
583 |
+ |
In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe |
584 |
+ |
approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single |
585 |
+ |
lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV |
586 |
+ |
in order to measure the \pt\ turn-on curve. The tag-probe pair is |
587 |
+ |
required to have opposite-sign and an invariant mass in the range |
588 |
+ |
76--106 GeV. |
589 |
+ |
|
590 |
+ |
The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons). |
591 |
+ |
These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers. |
592 |
+ |
|
593 |
+ |
|
594 |
+ |
\begin{figure}[!ht] |
595 |
+ |
\begin{center} |
596 |
+ |
\begin{tabular}{cc} |
597 |
+ |
\includegraphics[width=0.4\textwidth]{plots/mutrig_pt_etabins.pdf} & |
598 |
+ |
\includegraphics[width=0.4\textwidth]{plots/eltrig_pt_etabins.pdf} \\ |
599 |
+ |
\end{tabular} |
600 |
+ |
\caption{\label{fig:trigeff} |
601 |
+ |
Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt, |
602 |
+ |
for several bins in lepton $|\eta|$. |
603 |
+ |
} |
604 |
+ |
\end{center} |
605 |
+ |
\end{figure} |
606 |
+ |
|
607 |
+ |
\clearpage |
608 |
+ |
|
609 |
+ |
\begin{table}[htb] |
610 |
+ |
\begin{center} |
611 |
+ |
\footnotesize |
612 |
+ |
\caption{\label{tab:mutriggeff} |
613 |
+ |
Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.} |
614 |
+ |
\begin{tabular}{c|c|c|c} |
615 |
+ |
|
616 |
+ |
% Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072) |
617 |
+ |
% Probe trigger : HLT_IsoMu24_probe > 0 |
618 |
+ |
% Total data yield : 5161723 |
619 |
+ |
|
620 |
+ |
\hline |
621 |
+ |
\hline |
622 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
623 |
+ |
\hline |
624 |
+ |
20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\ |
625 |
+ |
22 - 24 & 0.03 $\pm$ 0.001 & 0.05 $\pm$ 0.001 & 0.11 $\pm$ 0.002 \\ |
626 |
+ |
24 - 26 & 0.87 $\pm$ 0.002 & 0.78 $\pm$ 0.002 & 0.76 $\pm$ 0.003 \\ |
627 |
+ |
26 - 28 & 0.90 $\pm$ 0.001 & 0.81 $\pm$ 0.002 & 0.78 $\pm$ 0.002 \\ |
628 |
+ |
28 - 30 & 0.91 $\pm$ 0.001 & 0.81 $\pm$ 0.002 & 0.79 $\pm$ 0.002 \\ |
629 |
+ |
30 - 32 & 0.91 $\pm$ 0.001 & 0.81 $\pm$ 0.001 & 0.80 $\pm$ 0.002 \\ |
630 |
+ |
32 - 34 & 0.92 $\pm$ 0.001 & 0.82 $\pm$ 0.001 & 0.80 $\pm$ 0.002 \\ |
631 |
+ |
34 - 36 & 0.93 $\pm$ 0.001 & 0.82 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\ |
632 |
+ |
36 - 38 & 0.93 $\pm$ 0.001 & 0.83 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\ |
633 |
+ |
38 - 40 & 0.93 $\pm$ 0.001 & 0.83 $\pm$ 0.001 & 0.82 $\pm$ 0.001 \\ |
634 |
+ |
40 - 50 & 0.94 $\pm$ 0.000 & 0.84 $\pm$ 0.000 & 0.82 $\pm$ 0.001 \\ |
635 |
+ |
50 - 60 & 0.95 $\pm$ 0.000 & 0.84 $\pm$ 0.001 & 0.83 $\pm$ 0.001 \\ |
636 |
+ |
60 - 80 & 0.95 $\pm$ 0.001 & 0.84 $\pm$ 0.002 & 0.83 $\pm$ 0.002 \\ |
637 |
+ |
80 - 100 & 0.94 $\pm$ 0.002 & 0.84 $\pm$ 0.004 & 0.83 $\pm$ 0.006 \\ |
638 |
+ |
100 - 150 & 0.94 $\pm$ 0.003 & 0.84 $\pm$ 0.005 & 0.83 $\pm$ 0.008 \\ |
639 |
+ |
150 - 200 & 0.93 $\pm$ 0.006 & 0.84 $\pm$ 0.011 & 0.82 $\pm$ 0.018 \\ |
640 |
+ |
$>$200 & 0.92 $\pm$ 0.010 & 0.82 $\pm$ 0.017 & 0.82 $\pm$ 0.031 \\ |
641 |
+ |
\hline |
642 |
+ |
\hline |
643 |
+ |
|
644 |
+ |
\end{tabular} |
645 |
+ |
\end{center} |
646 |
+ |
\end{table} |
647 |
+ |
|
648 |
+ |
\begin{table}[htb] |
649 |
+ |
\begin{center} |
650 |
+ |
\footnotesize |
651 |
+ |
\caption{\label{tab:eltriggeff} |
652 |
+ |
Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.} |
653 |
+ |
\begin{tabular}{c|c|c} |
654 |
+ |
|
655 |
+ |
% Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16) |
656 |
+ |
% Probe trigger : HLT_Ele27_WP80_probe > 0 |
657 |
+ |
% Total data yield : 3405966 |
658 |
+ |
|
659 |
+ |
\hline |
660 |
+ |
\hline |
661 |
+ |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
662 |
+ |
\hline |
663 |
+ |
20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\ |
664 |
+ |
22 - 24 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.001 \\ |
665 |
+ |
24 - 26 & 0.00 $\pm$ 0.000 & 0.02 $\pm$ 0.001 \\ |
666 |
+ |
26 - 28 & 0.08 $\pm$ 0.001 & 0.18 $\pm$ 0.003 \\ |
667 |
+ |
28 - 30 & 0.61 $\pm$ 0.002 & 0.50 $\pm$ 0.004 \\ |
668 |
+ |
30 - 32 & 0.86 $\pm$ 0.001 & 0.63 $\pm$ 0.003 \\ |
669 |
+ |
32 - 34 & 0.88 $\pm$ 0.001 & 0.68 $\pm$ 0.003 \\ |
670 |
+ |
34 - 36 & 0.90 $\pm$ 0.001 & 0.70 $\pm$ 0.002 \\ |
671 |
+ |
36 - 38 & 0.91 $\pm$ 0.001 & 0.72 $\pm$ 0.002 \\ |
672 |
+ |
38 - 40 & 0.92 $\pm$ 0.001 & 0.74 $\pm$ 0.002 \\ |
673 |
+ |
40 - 50 & 0.94 $\pm$ 0.000 & 0.76 $\pm$ 0.001 \\ |
674 |
+ |
50 - 60 & 0.95 $\pm$ 0.000 & 0.77 $\pm$ 0.002 \\ |
675 |
+ |
60 - 80 & 0.96 $\pm$ 0.001 & 0.78 $\pm$ 0.003 \\ |
676 |
+ |
80 - 100 & 0.96 $\pm$ 0.002 & 0.80 $\pm$ 0.008 \\ |
677 |
+ |
100 - 150 & 0.96 $\pm$ 0.002 & 0.79 $\pm$ 0.010 \\ |
678 |
+ |
150 - 200 & 0.97 $\pm$ 0.004 & 0.76 $\pm$ 0.026 \\ |
679 |
+ |
$>$200 & 0.97 $\pm$ 0.005 & 0.81 $\pm$ 0.038 \\ |
680 |
+ |
\hline |
681 |
+ |
\hline |
682 |
+ |
|
683 |
+ |
\end{tabular} |
684 |
+ |
\end{center} |
685 |
+ |
\end{table} |
686 |
+ |
|
687 |
+ |
\clearpage |