ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex (file contents):
Revision 1.5 by fkw, Tue Jul 3 10:43:43 2012 UTC vs.
Revision 1.23 by benhoob, Thu Oct 11 20:57:05 2012 UTC

# Line 1 | Line 1
1 + Here we define the selections of leptons, jets, and \met.
2 + We also describe our measurements of the lepton and trigger efficiency.
3 + The analysis uses several different Control Regions (CRs) in addition
4 + to the Signal
5 + Regions (SRs).
6 + All of these different regions are defined in this section.
7 + This section also includes some information on the basic MC
8 + corrections that we apply.  
9 + %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
10  
11 < This analysis uses several different control regions in addition to the signal regions.
12 < All of these different regions are defined in this section.
4 < Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
11 > \subsection{Single Lepton Selection}
12 > \label{sec:singlelepselection}
13  
14 < \subsection{Single Lepton Selections}
15 <
8 < The single lepton preselection sample is based on the following criteria
14 > The single lepton selection is based on the following criteria, starting from the requirements described
15 > on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20)
16   \begin{itemize}
17   \item satisfy the trigger requirement (see
18 <  Table.~\ref{tab:DatasetsData}). Dilepton triggers are used only for the dilepton control region.
18 >  Table.~\ref{tab:TrigData}).
19 > Note that the analysis triggers are inclusive single lepton triggers.
20 > Dilepton triggers are used only for the dilepton control region.
21   \item select events with one high \pt\ electron or muon, requiring
22    \begin{itemize}
23 <  \item $\pt>30~\GeVc$ and $|\eta|<2.5(2.1)$ for \E(\M)
24 <  \item satisfy the identification and isolation requirements detailed
25 <    in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign
26 <    SUSY analysis (SUS-11-011) for muons
23 >  \item $\pt>30~\GeVc$  and $|\eta|<1.4442 (2.4)$ for electrons (muons). The restriction to the barrel for electrons
24 > is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region,
25 > and does not significantly reduce the signal acceptance since the leptons tend to be central.
26 >  \item muon ID criteria is based on the 2012 POG recommended tight working point
27 >  \item electron ID critera is based on the 2012 POG recommended medium working point
28 >  \item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections
29 > are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs).
30 >  \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
31 >  \item $E/p_{\rm{in}} < 4$ (electrons only)
32 >  \item We remove electron events with $\met > 50$ GeV and $M_T > 100$
33 >    GeV with at least one crystal in the supercluster with laser
34 >    correction in $>$2.\footnote{This is an ad-hoc removal based on
35 >      run-event numbers, since the
36 >      problem was found very recently and the filter was not available
37 >      when we processed the events.}
38    \end{itemize}
39    \item require at least 4 PF jets in the event with $\pt>30~\GeV$
40 <    within $|\eta|<2.5$
41 <  \item require moderate $\met>50~\GeV$
40 >    within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
41 >    medium working point b-tagging requirement
42 >  \item require moderate $\met>50~\GeV$  (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}).
43 > \item Isolated track veto, see Section~\ref{sec:tkveto}
44 >
45   \end{itemize}
46  
47 < In addition, we count the number of SSV medium working point b-tags, $N_{b-tag}$.
47 > %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
48 >
49 > %\begin{table}[!h]
50 > %\begin{center}
51 > %\begin{tabular}{c|c}
52 > %\hline
53 > %\hline
54 > %\end{tabular}
55 > %\caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
56 > %\end{center}
57 > %\end{table}
58 >
59 > \subsection{Isolated track veto}
60 > \label{sec:tkveto}
61 >
62 > The isolated track veto is intended to remove top dilepton events.
63 > Looking for an isolated track is an effective way of identifying $W
64 > \to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to
65 > h^{\pm} + n\pi^{0}$.  The requirements on the track are
66  
26 Currently, we focus on the muon channel because it is cleaner (the QCD contribution is negligible)
27 and the triggers are simpler (we use single muon triggers, as opposed to electron + 3-jet triggers).
28 We will add the electron channel, time permitting. However, since this is a systematics-dominated
29 analysis, increasing the statistics by adding the electrons is not expected to significantly improve
30 the sensitivity, especially because the electron selection efficiency is smaller and the systematic
31 uncertainty associated with the QCD background is larger.
32    
33 We then define the following subsamples within this preselection sample:
34 \begin{itemize}
35 \item $N_{b-tag} = 0$, i.e. b-veto region
36 \item $N_{b-tag} \ge 1 $, i.e. b-tagged region
67   \begin{itemize}
68 < \item without an additional isolated track veto
69 < \item with an additional isolated track veto
70 < \end{itemize}
68 > \item $P_T > 10$ GeV
69 > \item Relative track isolation $< 10\%$  computed from charged PF
70 >  candidates with dZ $<$ 0.05 cm from the primary vertex.
71   \end{itemize}
72  
43 For the signal regions, we then furthermore require $\met>100~\GeV$ while some of the background predictions and scale factors
44 are done for both \met
45 requirements to show stability of the method.
46 Within each of these subsamples we then define an \mt peak ($60 < \mt < 100~\GeV$) region and an \mt tail ($\mt > 150~\GeV$) region
47 %
48 We generally use the \mt peak region yields in data and multiply it by the ratio of tail divided by peak in MC times appropriate corrections
49 in order to estimate the background in data in the tail region.
73  
74 < {\bf We have not looked at the data in the signal region after the first 1 fb$^{-1}$ of data.}
74 > \subsection{Signal Region Selection}
75 > \label{sec:SR}
76  
77 < \subsection{Dilepton control region}
77 > The signal regions (SRs) are selected to improve the sensitivity for the
78 > single lepton requirements and cover a range of scalar top
79 > scenarios. The \mt\ and \met\ variables are used to define the signal
80 > regions and the requirements are listed in Table~\ref{tab:srdef}.
81  
82 < We define a dilepton control region requiring two isolated leptons, $ee, e\mu$, or $\mu\mu$ to study the jet multiplicity in data and MC, and derive
83 < scale factors based on their consistency. This study is documented in Section~\ref{sec:jetmultiplicity}.
82 > \begin{table}[!h]
83 > \begin{center}
84 > \begin{tabular}{l|c|c}
85 > \hline
86 > Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
87 > \hline
88 > \hline
89 > SRA & 150 & 100 \\
90 > SRB & 120 & 150 \\
91 > SRC & 120 & 200 \\
92 > SRD & 120 & 250 \\
93 > SRE & 120 & 300 \\
94 > SRF & 120 & 350 \\
95 > SRG & 120 & 400 \\
96 > \hline
97 > \end{tabular}
98 > \caption{ Signal region definitions based on \mt\ and \met\
99 >  requirements. These requirements are applied in addition to the
100 >  baseline single lepton selection.
101 > \label{tab:srdef}}
102 > \end{center}
103 > \end{table}
104  
105 < {\bf Fix me: Need to describe here the actual selection. What lepton pT's, \met , etc. }
105 > Table~\ref{tab:srrawmcyields} shows the expected number of SM
106 > background yields for the SRs. A few stop signal yields for four
107 > values of the parameters are also shown for comparison. The signal
108 > regions with looser requirements are sensitive to lower stop masses
109 > M(\sctop), while those with tighter requirements are more sensitive to
110 > higher M(\sctop).
111  
112 < This sample is only partially overlapping with the single lepton preselection as it requires the dilepton rather than the single lepton triggers.
112 > \begin{table}[!h]
113 > \begin{center}
114 > \footnotesize
115 > \begin{tabular}{l||c|c|c|c|c|c|c}
116 > \hline
117 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
118 > \hline
119 > \hline
120 > \ttdl\           & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\
121 > \ttsl\ \& single top (1\Lep)             & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\
122 > \wjets\                  & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
123 > Rare             & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\
124 > \hline
125 > Total            & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\
126 > \hline
127 > Yield UL (optimistic)  & 147 (10\%) & 94 (10\%)  & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%)  \\
128 > Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\
129 > \hline
130 > T2tt m(stop) = 250 m($\chi^0$) = 0      & $424 \pm 19$& $256 \pm 15$& $71 \pm 8$& $19 \pm 4$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
131 > T2tt m(stop) = 300 m($\chi^0$) = 50     & $396 \pm 11$& $316 \pm 10$& $113 \pm 6$& $37 \pm 3$& $14 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\
132 > T2tt m(stop) = 300 m($\chi^0$) = 100    & $174 \pm 7$& $130 \pm 7$& $42 \pm 4$& $16 \pm 2$& $8 \pm 2$& $3 \pm 1$& $2 \pm 1$ \\
133 > T2tt m(stop) = 350 m($\chi^0$) = 0      & $305 \pm 6$& $282 \pm 6$& $162 \pm 5$& $69 \pm 3$& $26 \pm 2$& $11 \pm 1$& $4 \pm 1$ \\
134 > T2tt m(stop) = 450 m($\chi^0$) = 0      & $96 \pm 2$& $96 \pm 2$& $72 \pm 1$& $48 \pm 1$& $28 \pm 1$& $14 \pm 1$& $6 \pm 0$ \\
135 > \hline
136 > \end{tabular}
137 > \caption{ Expected SM background contributions and signal yields for a few sample points,
138 > including both muon and electron channels. This is ``dead reckoning'' MC with no
139 > correction. It is meant only as a general guide. The uncertainties are statistical only.
140 > The signal yield upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses.
141 > [{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ].
142 > %HOOBERMAN
143 > \label{tab:srrawmcyields}}
144 > \end{center}
145 > \end{table}
146  
147 < \subsection{Corrections to Jets and \met}
147 > \subsection{Control Region Selection}
148 > \label{sec:CR}
149  
150 < The official recommendations from the Jet/MET group are used for
151 < the data and MC samples. In particular, the jet
152 < energy corrections (JEC) are updated using the official recipe.
153 < L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
154 < based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for
155 < data (MC). In addition, these jet energy corrections are propagated to
156 < the \met\ calculation, following the official prescription for
71 < deriving the Type I corrections. It may be noted that events with
72 < anomalous ``rho'' pile-up corrections are excluded from the sample since these
73 < correspond to events with unphysically large \met\ and \mt\ tail
74 < signal region (see Figure~\ref{fig:mtrhocomp}). An additional correction to remove
75 < the $\phi$-modulation observed in the \met\ is included, improving
76 < the agreement between the data and the MC, as shown in
77 < Figure~\ref{fig:metphicomp}. This correction has an effect on this analysis,
78 < since the azimuthal angle enters the \mt\ distribution.
150 > Control regions (CRs) are used to validate the background estimation
151 > procedure and derive systematic uncertainties for some
152 > contributions. The CRs are selected to have similar
153 > kinematics to the SRs, but have a different requirement in terms of
154 > number of b-tags and number of leptons, thus enhancing them in
155 > different SM contributions. The four CRs used in this analysis are
156 > summarized in Table~\ref{tab:crdef}.  
157  
158 < \clearpage
158 > \begin{table}
159 > \begin{center}
160 > {\small
161 > \begin{tabular}{l|c|c|c}
162 > \hline
163 > Selection       & \multirow{2}{*}{exactly 1 lepton}     & \multirow{2}{*}{exactly 2
164 >        leptons}                & \multirow{2}{*}{1 lepton + isolated
165 >        track}\\
166 >      Criteria & & & \\
167 > \hline
168 > \hline
169 > \multirow{4}{*}{0 b-tags}        
170 > &        CR1) W+Jets dominated:
171 > &        CR2) apply \Z-mass constraint                  
172 > &        CR3) not used \\  
173 > &        
174 > &       $\rightarrow$ Z+Jets dominated: Validate
175 > &      \\
176 > &      Validate W+Jets \mt\ tail
177 > &        \ttsl\ \mt\ tail comparing
178 > &        \\  
179 > &
180 > &        data vs. MC ``pseudo-\mt ''
181 > &        \\  
182 > \hline
183 > \multirow{4}{*}{$\ge$ 1 b-tags}          
184 > &      
185 > &       CR4) Apply \Z-mass veto
186 > &      CR5) \ttdl, \ttlt\ and \\
187 > &     SIGNAL
188 > &      $\rightarrow$ \ttdl\ dominated: Validate
189 > &       \ttlf\ dominated:  Validate \\
190 > &     REGION
191 > &      ``physics'' modelling of \ttdl\    
192 > &      \Tau\  and fake lepton modeling/\\
193 > &
194 > &
195 > &      detector effects in \ttdl\     \\
196 > \hline
197 > \end{tabular}
198 > }
199 > \caption{Summary of signal and control regions.
200 >  \label{tab:crdef}%\protect
201 > }
202 > \end{center}
203 > \end{table}
204  
205 < \begin{figure}[!ht]
206 <  \begin{center}
84 <        \includegraphics[width=0.5\linewidth]{plots/mt_rho_comp.png}
85 <        \caption{ \label{fig:mtrhocomp}%\protect
86 <          Comparison of the \mt\ distribution for events with
87 <          unphysical energy corrections ($\rho <0$ or $ \rho > 40$, where $\rho$ is a
88 <          measure of the average pileup energy density) and the
89 <          nominal sample. Events with large pileup corrections
90 <          correspond to noisy events. Since this correction is applied
91 <          to the jets and propagated to the \met, these events have
92 <          anomalously large \met\ and populate the \mt\ tail. These
93 <          pathological events are excluded from the analysis sample.}
94 <  \end{center}
95 < \end{figure}
205 > \subsection{Definition of $M_T$ peak region}
206 > \label{sec:mtpeakdef}
207  
208 < \begin{figure}[!hb]
98 <  \begin{center}
99 <        \includegraphics[width=0.5\linewidth]{plots/metphi.pdf}%
100 <        \includegraphics[width=0.5\linewidth]{plots/metphi_phicorr.pdf}
101 <        \caption{ \label{fig:metphicomp}%\protect
102 <          The PF \met\ $\phi$ distribution (left) exhibits a
103 <          modulation. After applying a dedicated correction, the
104 <          azimuthal dependence is reduced (right).}
105 <  \end{center}
106 < \end{figure}
208 > This region is defined as $50 < M_T < 80$ GeV.
209  
108 \clearpage
210  
211 < \subsection{Branching Fraction Correction}
211 > \subsection{Default \ttbar\  MC sample}
212 >
213 > Our default \ttbar\ MC sample is Powheg.
214 >
215 > \subsection{MC Corrections}
216 > \label{sec:MCCorr}
217 >
218 > All MC samples are corrected for trigger efficiency.  In the case of
219 > single lepton selections, we apply the $P_T$ and $\eta$-dependent
220 > scale factors that we measure ourselves, see Sections~\ref{sec:trg}.
221 > In the case of dilepton selections that require the dilepton triggers,
222 > we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$,
223 > $\mu\mu$,
224 > and $e\mu$ respectively~\cite{didar}.
225  
226   The leptonic branching fraction used in some of the \ttbar\ MC samples
227   differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
# Line 124 | Line 238 | of the corrected and incorrect branching
238           \ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\
239   \hline
240   \hline
241 < Madgraph   &       0.111\\
242 < MC@NLO    &       0.111\\
243 < Pythia         &       0.108\\
241 > Madgraph     &       0.111\\
242 > MC@NLO       &       0.111\\
243 > Pythia       &       0.108\\
244   Powheg       &       0.108\\
245   \hline
246   \end{tabular}
247   \caption{Leptonic branching fractions for the various \ttbar\ samples
248 <  used in the analysis. The primary \ttbar\ MC sample produced with
249 <  Madgraph has a branching fraction that is almost $3\%$ higher than
248 >  used in the analysis. The \ttbar\ MC samples produced with
249 >  Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than
250    the PDG value. \label{tab:wlepbf}}
251   \end{center}
252   \end{table}
253  
254 + All \ttbar\ dilepton samples are corrected (when needed and
255 + appropriate)
256 + in order to have the correct number of jet distribution.  This
257 + correction procedure is described in Section~\ref{sec:jetmultiplicity}.
258 +
259 +
260 + \subsubsection{Corrections to Jets and \met}
261 + \label{sec:JetMet}
262 +
263 + The official recommendations from the Jet/MET group are used for
264 + the data and MC samples. In particular, the jet
265 + energy corrections (JEC) are updated using the official recipe.
266 + L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
267 + based on the global tags GR\_R\_52\_V9 (START52\_V9B) for
268 + data (MC). In addition, these jet energy corrections are propagated to
269 + the \met\ calculation, following the official prescription for
270 + deriving the Type I corrections.
271 +
272 + Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
273 + correspond to events with unphysically large \met\ and \mt\ tail
274 + signal region. In addition, the recommended MET filters are applied.
275 + A correction to remove the $\phi$ modulation in \met\ is also applied
276 + to the data.
277 +
278 +
279 + \subsection{Lepton Selection Efficiency Measurements}
280 + \label{sec:lepEff}
281 +
282 + In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies.
283 + The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
284 + lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons.
285 + The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement,
286 + to measure the isolation efficiency we require the probe to pass the
287 + identification requirement.
288 +
289 + The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
290 + In order to suppress lepton pairs from sources other than Z boson
291 + decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged
292 + jets (CSV loose working point).
293 +
294 + The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for
295 + several different jet multiplicity requirements.
296 + We currently observe good agreement for muons with \pt\ up to about 300 GeV.
297 + For high \pt\ muons we observe a source of background in the data with large impact parameters, which we suppress by requiring muon $d_0<0.02$~cm and $d_Z<0.5$~cm.
298 + %For muons with \pt\ $>$ 200 GeV the data efficiency
299 + %begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV.
300 + We are currently investigating the source of this inefficiency.
301 + The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff}
302 + for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies.
303 +
304 + Pending a better understanding of the very high \pt\ muon efficiency,  we
305 + do not correct the MC for differences in lepton efficiency.  In the
306 + background calculation, we do not take any systematics due to lepton
307 + selection
308 + efficiency uncertainties.  This is because all backgrounds except the
309 + rare MC background are normalized to the $M_T$ peak, thus the lepton
310 + identification uncertainty cancels out.  For the rare MC these
311 + uncertainties
312 + are negligible compared to the assumed cross-section uncertainty
313 + (Section~\ref{sec:bkg_other}).
314 +
315 +
316 +
317 +
318 + \begin{table}[htb]
319 + \begin{center}
320 + \scriptsize
321 + \caption{\label{tab:mutnpeff}
322 + Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.}
323 + \begin{tabular}{c|c|c|c}
324 +
325 + %Selection  : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0)
326 + %Ndata      : 4751710
327 + %NMC        : 4127153
328 +
329 + \hline
330 + \hline
331 + MC ID & & & \\
332 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
333 + \hline
334 +    20 -   30  &        0.9638 $\pm$ 0.0005 &   0.9590 $\pm$ 0.0006 &   0.9381 $\pm$ 0.0008 \\
335 +    30 -   40  &        0.9649 $\pm$ 0.0002 &   0.9612 $\pm$ 0.0003 &   0.9372 $\pm$ 0.0005 \\
336 +    40 -   50  &        0.9674 $\pm$ 0.0002 &   0.9651 $\pm$ 0.0002 &   0.9368 $\pm$ 0.0004 \\
337 +    50 -   60  &        0.9644 $\pm$ 0.0005 &   0.9589 $\pm$ 0.0006 &   0.9325 $\pm$ 0.0009 \\
338 +    60 -   80  &        0.9644 $\pm$ 0.0009 &   0.9586 $\pm$ 0.0011 &   0.9258 $\pm$ 0.0019 \\
339 +    80 -  100  &        0.9674 $\pm$ 0.0022 &   0.9602 $\pm$ 0.0029 &   0.9148 $\pm$ 0.0053 \\
340 +   100 -  150  &        0.9632 $\pm$ 0.0031 &   0.9621 $\pm$ 0.0037 &   0.9270 $\pm$ 0.0068 \\
341 +   150 -  200  &        0.9615 $\pm$ 0.0070 &   0.9519 $\pm$ 0.0092 &   0.8844 $\pm$ 0.0213 \\
342 +   200 -  300  &        0.9615 $\pm$ 0.0119 &   0.9353 $\pm$ 0.0173 &   0.8923 $\pm$ 0.0384 \\
343 +   300 - 10000  &       0.9667 $\pm$ 0.0232 &   0.9697 $\pm$ 0.0298 &   0.4000 $\pm$ 0.1549 \\
344 + \hline
345 + \hline
346 + MC ISO  & & & \\
347 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
348 + \hline
349 +    20 -   30  &        0.8968 $\pm$ 0.0007 &   0.9156 $\pm$ 0.0008 &   0.9301 $\pm$ 0.0009 \\
350 +    30 -   40  &        0.9610 $\pm$ 0.0002 &   0.9633 $\pm$ 0.0003 &   0.9706 $\pm$ 0.0003 \\
351 +    40 -   50  &        0.9877 $\pm$ 0.0001 &   0.9897 $\pm$ 0.0001 &   0.9912 $\pm$ 0.0002 \\
352 +    50 -   60  &        0.9918 $\pm$ 0.0002 &   0.9928 $\pm$ 0.0002 &   0.9939 $\pm$ 0.0003 \\
353 +    60 -   80  &        0.9926 $\pm$ 0.0004 &   0.9936 $\pm$ 0.0004 &   0.9948 $\pm$ 0.0005 \\
354 +    80 -  100  &        0.9918 $\pm$ 0.0012 &   0.9923 $\pm$ 0.0013 &   0.9933 $\pm$ 0.0016 \\
355 +   100 -  150  &        0.9900 $\pm$ 0.0016 &   0.9939 $\pm$ 0.0015 &   0.9927 $\pm$ 0.0023 \\
356 +   150 -  200  &        0.9904 $\pm$ 0.0036 &   0.9904 $\pm$ 0.0043 &   0.9950 $\pm$ 0.0050 \\
357 +   200 -  300  &        0.9921 $\pm$ 0.0056 &   1.0000 $\pm$ 0.0000 &   0.9831 $\pm$ 0.0168 \\
358 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
359 + \hline
360 + \hline
361 + DATA ID & & & \\
362 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
363 + \hline
364 +    20 -   30  &        0.9446 $\pm$ 0.0005 &   0.9430 $\pm$ 0.0006 &   0.9203 $\pm$ 0.0008 \\
365 +    30 -   40  &        0.9474 $\pm$ 0.0003 &   0.9448 $\pm$ 0.0003 &   0.9237 $\pm$ 0.0005 \\
366 +    40 -   50  &        0.9515 $\pm$ 0.0002 &   0.9502 $\pm$ 0.0003 &   0.9252 $\pm$ 0.0004 \\
367 +    50 -   60  &        0.9458 $\pm$ 0.0005 &   0.9405 $\pm$ 0.0006 &   0.9163 $\pm$ 0.0010 \\
368 +    60 -   80  &        0.9457 $\pm$ 0.0010 &   0.9386 $\pm$ 0.0013 &   0.9115 $\pm$ 0.0020 \\
369 +    80 -  100  &        0.9393 $\pm$ 0.0029 &   0.9346 $\pm$ 0.0035 &   0.9091 $\pm$ 0.0055 \\
370 +   100 -  150  &        0.9355 $\pm$ 0.0040 &   0.9392 $\pm$ 0.0045 &   0.8843 $\pm$ 0.0085 \\
371 +   150 -  200  &        0.9526 $\pm$ 0.0078 &   0.9534 $\pm$ 0.0099 &   0.8772 $\pm$ 0.0217 \\
372 +   200 -  300  &        0.9017 $\pm$ 0.0195 &   0.9302 $\pm$ 0.0194 &   0.8448 $\pm$ 0.0475 \\
373 +   300 - 10000  &       0.7083 $\pm$ 0.0656 &   0.7333 $\pm$ 0.1142 &   0.2000 $\pm$ 0.1033 \\
374 + \hline
375 + \hline
376 + DATA ISO  & & & \\
377 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
378 + \hline
379 +    20 -   30  &        0.8943 $\pm$ 0.0007 &   0.9144 $\pm$ 0.0008 &   0.9359 $\pm$ 0.0008 \\
380 +    30 -   40  &        0.9598 $\pm$ 0.0002 &   0.9646 $\pm$ 0.0003 &   0.9746 $\pm$ 0.0003 \\
381 +    40 -   50  &        0.9870 $\pm$ 0.0001 &   0.9903 $\pm$ 0.0001 &   0.9920 $\pm$ 0.0001 \\
382 +    50 -   60  &        0.9913 $\pm$ 0.0002 &   0.9935 $\pm$ 0.0002 &   0.9952 $\pm$ 0.0003 \\
383 +    60 -   80  &        0.9921 $\pm$ 0.0004 &   0.9931 $\pm$ 0.0004 &   0.9952 $\pm$ 0.0005 \\
384 +    80 -  100  &        0.9920 $\pm$ 0.0011 &   0.9938 $\pm$ 0.0011 &   0.9943 $\pm$ 0.0015 \\
385 +   100 -  150  &        0.9900 $\pm$ 0.0017 &   0.9943 $\pm$ 0.0015 &   0.9968 $\pm$ 0.0016 \\
386 +   150 -  200  &        0.9972 $\pm$ 0.0020 &   0.9977 $\pm$ 0.0023 &   0.9950 $\pm$ 0.0050 \\
387 +   200 -  300  &        1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
388 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
389 + \hline
390 + \hline
391 + Scale Factor ID  & & & \\
392 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
393 + \hline
394 +    20 -   30  &        0.9801 $\pm$ 0.0007 &   0.9833 $\pm$ 0.0009 &   0.9810 $\pm$ 0.0012 \\
395 +    30 -   40  &        0.9819 $\pm$ 0.0004 &   0.9829 $\pm$ 0.0005 &   0.9856 $\pm$ 0.0007 \\
396 +    40 -   50  &        0.9836 $\pm$ 0.0003 &   0.9845 $\pm$ 0.0004 &   0.9875 $\pm$ 0.0006 \\
397 +    50 -   60  &        0.9808 $\pm$ 0.0007 &   0.9808 $\pm$ 0.0009 &   0.9826 $\pm$ 0.0014 \\
398 +    60 -   80  &        0.9806 $\pm$ 0.0014 &   0.9791 $\pm$ 0.0017 &   0.9846 $\pm$ 0.0029 \\
399 +    80 -  100  &        0.9709 $\pm$ 0.0037 &   0.9733 $\pm$ 0.0047 &   0.9937 $\pm$ 0.0084 \\
400 +   100 -  150  &        0.9713 $\pm$ 0.0052 &   0.9762 $\pm$ 0.0060 &   0.9539 $\pm$ 0.0115 \\
401 +   150 -  200  &        0.9907 $\pm$ 0.0109 &   1.0017 $\pm$ 0.0142 &   0.9918 $\pm$ 0.0343 \\
402 +   200 -  300  &        0.9378 $\pm$ 0.0233 &   0.9946 $\pm$ 0.0278 &   0.9468 $\pm$ 0.0671 \\
403 +   300 - 10000  &       0.7328 $\pm$ 0.0701 &   0.7562 $\pm$ 0.1200 &   0.5000 $\pm$ 0.3227 \\
404 + \hline
405 + \hline
406 + Scale Factor ISO & & & \\
407 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
408 + \hline
409 +    20 -   30  &        0.9971 $\pm$ 0.0011 &   0.9987 $\pm$ 0.0012 &   1.0062 $\pm$ 0.0012 \\
410 +    30 -   40  &        0.9987 $\pm$ 0.0003 &   1.0014 $\pm$ 0.0004 &   1.0042 $\pm$ 0.0004 \\
411 +    40 -   50  &        0.9994 $\pm$ 0.0002 &   1.0006 $\pm$ 0.0002 &   1.0008 $\pm$ 0.0002 \\
412 +    50 -   60  &        0.9995 $\pm$ 0.0003 &   1.0007 $\pm$ 0.0003 &   1.0014 $\pm$ 0.0004 \\
413 +    60 -   80  &        0.9995 $\pm$ 0.0006 &   0.9994 $\pm$ 0.0006 &   1.0005 $\pm$ 0.0007 \\
414 +    80 -  100  &        1.0002 $\pm$ 0.0016 &   1.0015 $\pm$ 0.0017 &   1.0010 $\pm$ 0.0022 \\
415 +   100 -  150  &        1.0000 $\pm$ 0.0024 &   1.0005 $\pm$ 0.0021 &   1.0041 $\pm$ 0.0028 \\
416 +   150 -  200  &        1.0068 $\pm$ 0.0042 &   1.0074 $\pm$ 0.0049 &   1.0000 $\pm$ 0.0071 \\
417 +   200 -  300  &        1.0080 $\pm$ 0.0057 &   1.0000 $\pm$ 0.0000 &   1.0172 $\pm$ 0.0174 \\
418 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
419 + \hline
420 + \hline
421 +
422 +
423 + \end{tabular}
424 + \end{center}
425 + \end{table}
426 +
427 + \begin{figure}[hbt]
428 +  \begin{center}
429 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}%
430 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf}
431 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}%
432 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf}
433 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}%
434 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf}
435 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}%
436 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf}
437 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}%
438 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf}
439 +        \caption{
440 +          \label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }  
441 +      \end{center}
442 + \end{figure}
443 +
444 + \clearpage
445 +
446 + \begin{table}[htb]
447 + \begin{center}
448 + \scriptsize
449 + \caption{\label{tab:eltnpeff}
450 + Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.}
451 + \begin{tabular}{c|c|c}
452 +
453 + %Selection  : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0)
454 + %Ndata      : 3577620
455 + %NMC        : 3240624
456 + %ID cut     : (leptonSelection&8)==8
457 + %iso cut    : (leptonSelection&16)==16
458 +
459 + \hline
460 + \hline
461 + MC ID & & \\
462 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
463 + \hline
464 +    20 -   30  &        0.8156 $\pm$ 0.0008 &   0.6565 $\pm$ 0.0019 \\
465 +    30 -   40  &        0.8670 $\pm$ 0.0004 &   0.7450 $\pm$ 0.0010 \\
466 +    40 -   50  &        0.8922 $\pm$ 0.0003 &   0.7847 $\pm$ 0.0008 \\
467 +    50 -   60  &        0.9023 $\pm$ 0.0006 &   0.7956 $\pm$ 0.0018 \\
468 +    60 -   80  &        0.9097 $\pm$ 0.0011 &   0.8166 $\pm$ 0.0034 \\
469 +    80 -  100  &        0.9203 $\pm$ 0.0028 &   0.8196 $\pm$ 0.0090 \\
470 +   100 -  150  &        0.9162 $\pm$ 0.0037 &   0.8378 $\pm$ 0.0117 \\
471 +   150 -  200  &        0.9106 $\pm$ 0.0087 &   0.8111 $\pm$ 0.0292 \\
472 +   200 -  300  &        0.9304 $\pm$ 0.0119 &   0.9153 $\pm$ 0.0363 \\
473 +   300 - 10000  &       0.8684 $\pm$ 0.0388 &   0.8000 $\pm$ 0.1789 \\
474 + \hline
475 + \hline
476 + MC ISO  & & \\
477 +
478 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
479 + \hline
480 +    20 -   30  &        0.9245 $\pm$ 0.0006 &   0.9466 $\pm$ 0.0011 \\
481 +    30 -   40  &        0.9682 $\pm$ 0.0002 &   0.9741 $\pm$ 0.0004 \\
482 +    40 -   50  &        0.9876 $\pm$ 0.0001 &   0.9883 $\pm$ 0.0002 \\
483 +    50 -   60  &        0.9909 $\pm$ 0.0002 &   0.9912 $\pm$ 0.0005 \\
484 +    60 -   80  &        0.9916 $\pm$ 0.0004 &   0.9930 $\pm$ 0.0008 \\
485 +    80 -  100  &        0.9915 $\pm$ 0.0010 &   0.9908 $\pm$ 0.0025 \\
486 +   100 -  150  &        0.9929 $\pm$ 0.0012 &   0.9894 $\pm$ 0.0035 \\
487 +   150 -  200  &        0.9919 $\pm$ 0.0029 &   0.9932 $\pm$ 0.0068 \\
488 +   200 -  300  &        0.9953 $\pm$ 0.0033 &   1.0000 $\pm$ 0.0000 \\
489 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
490 + \hline
491 + \hline
492 + DATA ID & & \\
493 +
494 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
495 + \hline
496 +    20 -   30  &        0.8145 $\pm$ 0.0008 &   0.6528 $\pm$ 0.0018 \\
497 +    30 -   40  &        0.8676 $\pm$ 0.0004 &   0.7462 $\pm$ 0.0010 \\
498 +    40 -   50  &        0.8955 $\pm$ 0.0003 &   0.7922 $\pm$ 0.0008 \\
499 +    50 -   60  &        0.9049 $\pm$ 0.0006 &   0.8072 $\pm$ 0.0018 \\
500 +    60 -   80  &        0.9110 $\pm$ 0.0011 &   0.8212 $\pm$ 0.0035 \\
501 +    80 -  100  &        0.9156 $\pm$ 0.0028 &   0.8358 $\pm$ 0.0091 \\
502 +   100 -  150  &        0.9257 $\pm$ 0.0036 &   0.8507 $\pm$ 0.0116 \\
503 +   150 -  200  &        0.9186 $\pm$ 0.0084 &   0.8929 $\pm$ 0.0292 \\
504 +   200 -  300  &        0.9106 $\pm$ 0.0149 &   0.7576 $\pm$ 0.0746 \\
505 +   300 - 10000  &       0.9400 $\pm$ 0.0336 &   1.0000 $\pm$ 0.0000 \\
506 + \hline
507 + \hline
508 + DATA ISO  & & \\
509 +
510 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
511 + \hline
512 +    20 -   30  &        0.9201 $\pm$ 0.0006 &   0.9419 $\pm$ 0.0011 \\
513 +    30 -   40  &        0.9667 $\pm$ 0.0002 &   0.9734 $\pm$ 0.0004 \\
514 +    40 -   50  &        0.9872 $\pm$ 0.0001 &   0.9892 $\pm$ 0.0002 \\
515 +    50 -   60  &        0.9904 $\pm$ 0.0002 &   0.9922 $\pm$ 0.0004 \\
516 +    60 -   80  &        0.9923 $\pm$ 0.0004 &   0.9916 $\pm$ 0.0009 \\
517 +    80 -  100  &        0.9914 $\pm$ 0.0010 &   0.9921 $\pm$ 0.0024 \\
518 +   100 -  150  &        0.9945 $\pm$ 0.0011 &   1.0000 $\pm$ 0.0000 \\
519 +   150 -  200  &        0.9908 $\pm$ 0.0031 &   1.0000 $\pm$ 0.0000 \\
520 +   200 -  300  &        0.9941 $\pm$ 0.0042 &   1.0000 $\pm$ 0.0000 \\
521 +   300 - 10000  &       0.9792 $\pm$ 0.0206 &   1.0000 $\pm$ 0.0000 \\
522 + \hline
523 + \hline
524 + Scale Factor ID  & & \\
525 +
526 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
527 + \hline
528 +    20 -   30  &        0.9987 $\pm$ 0.0014 &   0.9944 $\pm$ 0.0040 \\
529 +    30 -   40  &        1.0007 $\pm$ 0.0006 &   1.0015 $\pm$ 0.0019 \\
530 +    40 -   50  &        1.0036 $\pm$ 0.0005 &   1.0096 $\pm$ 0.0015 \\
531 +    50 -   60  &        1.0029 $\pm$ 0.0010 &   1.0146 $\pm$ 0.0031 \\
532 +    60 -   80  &        1.0014 $\pm$ 0.0018 &   1.0057 $\pm$ 0.0060 \\
533 +    80 -  100  &        0.9949 $\pm$ 0.0043 &   1.0197 $\pm$ 0.0158 \\
534 +   100 -  150  &        1.0104 $\pm$ 0.0057 &   1.0154 $\pm$ 0.0198 \\
535 +   150 -  200  &        1.0087 $\pm$ 0.0134 &   1.1008 $\pm$ 0.0535 \\
536 +   200 -  300  &        0.9786 $\pm$ 0.0203 &   0.8277 $\pm$ 0.0879 \\
537 +   300 - 10000  &       1.0824 $\pm$ 0.0619 &   1.2500 $\pm$ 0.2795 \\
538 + \hline
539 + \hline
540 + Scale Factor ISO & & \\
541 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
542 + \hline
543 +    20 -   30  &        0.9952 $\pm$ 0.0009 &   0.9950 $\pm$ 0.0016 \\
544 +    30 -   40  &        0.9984 $\pm$ 0.0003 &   0.9992 $\pm$ 0.0006 \\
545 +    40 -   50  &        0.9996 $\pm$ 0.0002 &   1.0009 $\pm$ 0.0003 \\
546 +    50 -   60  &        0.9995 $\pm$ 0.0003 &   1.0009 $\pm$ 0.0006 \\
547 +    60 -   80  &        1.0006 $\pm$ 0.0005 &   0.9985 $\pm$ 0.0012 \\
548 +    80 -  100  &        0.9999 $\pm$ 0.0014 &   1.0013 $\pm$ 0.0035 \\
549 +   100 -  150  &        1.0016 $\pm$ 0.0016 &   1.0108 $\pm$ 0.0036 \\
550 +   150 -  200  &        0.9989 $\pm$ 0.0042 &   1.0068 $\pm$ 0.0069 \\
551 +   200 -  300  &        0.9987 $\pm$ 0.0053 &   1.0000 $\pm$ 0.0000 \\
552 +   300 - 10000  &       0.9792 $\pm$ 0.0206 &   1.0000 $\pm$ 0.0000 \\
553 + \hline
554 + \hline
555 +
556 + \end{tabular}
557 + \end{center}
558 + \end{table}
559 +
560 + \begin{figure}[hbt]
561 +  \begin{center}
562 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}%
563 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf}
564 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}%
565 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf}
566 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}%
567 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf}
568 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}%
569 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf}
570 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}%
571 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf}
572 +        \caption{
573 +          \label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }  
574 +      \end{center}
575 + \end{figure}
576 +
577 + \clearpage
578 +
579 +
580 + \subsection{Trigger Efficiency Measurements}
581 + \label{sec:trg}
582 +
583 + In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
584 + approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
585 + lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
586 + in order to measure the \pt\ turn-on curve. The tag-probe pair is
587 + required to have opposite-sign and an invariant mass in the range
588 + 76--106 GeV.
589 +
590 + The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
591 + These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers.
592 +
593 +
594 + \begin{figure}[!ht]
595 + \begin{center}
596 + \begin{tabular}{cc}
597 + \includegraphics[width=0.4\textwidth]{plots/mutrig_pt_etabins.pdf} &
598 + \includegraphics[width=0.4\textwidth]{plots/eltrig_pt_etabins.pdf} \\
599 + \end{tabular}
600 + \caption{\label{fig:trigeff}
601 + Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
602 + for several bins in lepton $|\eta|$.
603 + }
604 + \end{center}
605 + \end{figure}
606 +
607 + \clearpage
608 +
609 + \begin{table}[htb]
610 + \begin{center}
611 + \footnotesize
612 + \caption{\label{tab:mutriggeff}
613 + Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
614 + \begin{tabular}{c|c|c|c}
615 +
616 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
617 + % Probe trigger        : HLT_IsoMu24_probe > 0
618 + % Total data yield     : 5161723
619 +
620 + \hline
621 + \hline
622 +  \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
623 + \hline
624 +  20 -  22  &   0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
625 +  22 -  24  &   0.03 $\pm$ 0.001 &      0.05 $\pm$ 0.001 &      0.11 $\pm$ 0.002 \\
626 +  24 -  26  &   0.87 $\pm$ 0.002 &      0.78 $\pm$ 0.002 &      0.76 $\pm$ 0.003 \\
627 +  26 -  28  &   0.90 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.78 $\pm$ 0.002 \\
628 +  28 -  30  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.79 $\pm$ 0.002 \\
629 +  30 -  32  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
630 +  32 -  34  &   0.92 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
631 +  34 -  36  &   0.93 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
632 +  36 -  38  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
633 +  38 -  40  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.82 $\pm$ 0.001 \\
634 +  40 -  50  &   0.94 $\pm$ 0.000 &      0.84 $\pm$ 0.000 &      0.82 $\pm$ 0.001 \\
635 +  50 -  60  &   0.95 $\pm$ 0.000 &      0.84 $\pm$ 0.001 &      0.83 $\pm$ 0.001 \\
636 +  60 -  80  &   0.95 $\pm$ 0.001 &      0.84 $\pm$ 0.002 &      0.83 $\pm$ 0.002 \\
637 +  80 - 100  &   0.94 $\pm$ 0.002 &      0.84 $\pm$ 0.004 &      0.83 $\pm$ 0.006 \\
638 + 100 - 150  &   0.94 $\pm$ 0.003 &      0.84 $\pm$ 0.005 &      0.83 $\pm$ 0.008 \\
639 + 150 - 200  &   0.93 $\pm$ 0.006 &      0.84 $\pm$ 0.011 &      0.82 $\pm$ 0.018 \\
640 + $>$200     &   0.92 $\pm$ 0.010 &      0.82 $\pm$ 0.017 &      0.82 $\pm$ 0.031 \\
641 + \hline
642 + \hline
643 +
644 + \end{tabular}
645 + \end{center}
646 + \end{table}
647 +
648 + \begin{table}[htb]
649 + \begin{center}
650 + \footnotesize
651 + \caption{\label{tab:eltriggeff}
652 + Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
653 + \begin{tabular}{c|c|c}
654 +
655 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
656 + % Probe trigger        : HLT_Ele27_WP80_probe > 0
657 + % Total data yield     : 3405966
658 +
659 + \hline
660 + \hline
661 +  \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
662 + \hline
663 +  20 -  22   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
664 +  22 -  24   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.001 \\
665 +  24 -  26   &  0.00 $\pm$ 0.000 &      0.02 $\pm$ 0.001 \\
666 +  26 -  28   &  0.08 $\pm$ 0.001 &      0.18 $\pm$ 0.003 \\
667 +  28 -  30   &  0.61 $\pm$ 0.002 &      0.50 $\pm$ 0.004 \\
668 +  30 -  32   &  0.86 $\pm$ 0.001 &      0.63 $\pm$ 0.003 \\
669 +  32 -  34   &  0.88 $\pm$ 0.001 &      0.68 $\pm$ 0.003 \\
670 +  34 -  36   &  0.90 $\pm$ 0.001 &      0.70 $\pm$ 0.002 \\
671 +  36 -  38   &  0.91 $\pm$ 0.001 &      0.72 $\pm$ 0.002 \\
672 +  38 -  40   &  0.92 $\pm$ 0.001 &      0.74 $\pm$ 0.002 \\
673 +  40 -  50   &  0.94 $\pm$ 0.000 &      0.76 $\pm$ 0.001 \\
674 +  50 -  60   &  0.95 $\pm$ 0.000 &      0.77 $\pm$ 0.002 \\
675 +  60 -  80   &  0.96 $\pm$ 0.001 &      0.78 $\pm$ 0.003 \\
676 +  80 - 100   &  0.96 $\pm$ 0.002 &      0.80 $\pm$ 0.008 \\
677 +  100 - 150  &  0.96 $\pm$ 0.002 &      0.79 $\pm$ 0.010 \\
678 +  150 - 200  &  0.97 $\pm$ 0.004 &      0.76 $\pm$ 0.026 \\
679 + $>$200       &  0.97 $\pm$ 0.005 &      0.81 $\pm$ 0.038 \\
680 + \hline
681 + \hline
682 +
683 + \end{tabular}
684 + \end{center}
685 + \end{table}
686 +
687 + \clearpage

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines