ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex (file contents):
Revision 1.13 by vimartin, Fri Oct 5 20:11:57 2012 UTC vs.
Revision 1.29 by linacre, Fri Oct 12 21:56:02 2012 UTC

# Line 1 | Line 1
1 <
2 < This analysis uses several different control regions in addition to the signal regions.
3 < All of these different regions are defined in this section.
1 > Here we define the selections of leptons, jets, and \met.
2 > We also describe our measurements of the lepton and trigger efficiency.
3 > The analysis uses several different Control Regions (CRs) in addition
4 > to the Signal
5 > Regions (SRs).
6 > All of these different regions are defined in this section.
7 > This section also includes some information on the basic MC
8 > corrections that we apply.  
9   %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
10  
11   \subsection{Single Lepton Selection}
12 + \label{sec:singlelepselection}
13  
14 < [UPDATE SELECTION]
15 <
10 < The single lepton preselection sample is based on the following criteria, starting from the requirements described
11 < on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL}
14 > The single lepton selection is based on the following criteria, starting from the requirements described
15 > on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20)
16   \begin{itemize}
17   \item satisfy the trigger requirement (see
18 <  Table.~\ref{tab:DatasetsData}).
18 >  Table~\ref{tab:TrigData}).
19   Note that the analysis triggers are inclusive single lepton triggers.
20   Dilepton triggers are used only for the dilepton control region.
21   \item select events with one high \pt\ electron or muon, requiring
22    \begin{itemize}
23 <  \item $\pt>30~\GeVc$  and $|\eta|<1.4442 (2.4)$ for electrons (muons)
23 >  \item $\pt>30~\GeVc$  and $|\eta|<1.4442 (2.1)$ for electrons (muons). The restriction to the barrel for electrons
24 > is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region,
25 > and does not significantly reduce the signal acceptance since the leptons tend to be central.
26    \item muon ID criteria is based on the 2012 POG recommended tight working point
27    \item electron ID critera is based on the 2012 POG recommended medium working point
28 <  \item PF-based isolation ($\Delta R < 0.3$, $\Delta\beta$ corrected) relative  $<$ 0.15 and absolute $<$ 5~GeV
28 >  \item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections
29 > are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs).
30    \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
31 <  \item $E/p_{in} < 4$ (electrons only)
31 >  \item $E/p_{\rm{in}} < 4$ (electrons only)
32 >  \item We remove electron events with $\met > 50$ GeV and $M_T > 100$
33 >    GeV with at least one crystal in the supercluster with laser
34 >    correction $>$2.\footnote{This is an ad-hoc removal based on
35 >      run-event numbers, since the
36 >      problem was found very recently and the filter was not available
37 >      when we processed the events.}
38    \end{itemize}
39    \item require at least 4 PF jets in the event with $\pt>30~\GeV$
40      within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
41      medium working point b-tagging requirement
42 <  \item require moderate $\met>50~\GeV$
42 >  \item require moderate $\met>50~\GeV$  (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}).
43 > \item Isolated track veto, see Section~\ref{sec:tkveto}
44 >
45   \end{itemize}
46  
47   %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
# Line 41 | Line 56 | Dilepton triggers are used only for the
56   %\end{center}
57   %\end{table}
58  
59 < \subsection{Signal Region Selection}
59 > \subsection{Isolated track veto}
60 > \label{sec:tkveto}
61 >
62 > The isolated track veto is intended to remove top dilepton events.
63 > Looking for an isolated track is an effective way of identifying $W
64 > \to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to
65 > h^{\pm} + n\pi^{0}$.  The requirements on the track are
66  
67 < [MOTIVATIONAL BLURB ON MET AND MT, \\
68 < CAN ADD SIGNAL VS. TTBAR MC PLOT \\
69 < ADD SIGNAL YIELDS FOR AVAILABLE POINTS, \\
70 < DISCUSS CHOICE SIG REGIONS]
67 > \begin{itemize}
68 > \item $P_T > 10$ GeV
69 > \item Relative track isolation $< 10\%$  computed from charged PF
70 >  candidates with dZ $<$ 0.05 cm from the primary vertex.
71 > \end{itemize}
72 >
73 >
74 > \subsection{Signal Region Selection}
75 > \label{sec:SR}
76  
77   The signal regions (SRs) are selected to improve the sensitivity for the
78   single lepton requirements and cover a range of scalar top
# Line 65 | Line 91 | SRB & 120 & 150 \\
91   SRC & 120 & 200 \\
92   SRD & 120 & 250 \\
93   SRE & 120 & 300 \\
94 + SRF & 120 & 350 \\
95 + SRG & 120 & 400 \\
96   \hline
97   \end{tabular}
98   \caption{ Signal region definitions based on \mt\ and \met\
# Line 83 | Line 111 | higher M(\sctop).
111  
112   \begin{table}[!h]
113   \begin{center}
114 < \begin{tabular}{l||c|c|c|c|c}
114 > \footnotesize
115 > \begin{tabular}{l||c|c|c|c|c|c|c}
116 > \hline
117 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
118 > \hline
119   \hline
120 < Sample              & SRA & SRB & SRC & SRD & SRE\\
120 > \ttdl\           & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\
121 > \ttsl\ \& single top (1\Lep)             & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\
122 > \wjets\                  & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
123 > Rare             & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\
124   \hline
125 + Total            & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\
126   \hline
127 < \ttdl\           & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$ \\
128 < \ttsl\ \& single top (1\Lep)             & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$ \\
93 < \wjets\                  & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$ \\
94 < Rare             & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$ \\
127 > Yield UL (optimistic)  & 147 (10\%) & 94 (10\%)  & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%)  \\
128 > Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\
129   \hline
130 < Total            & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$ \\
130 > T2tt m(stop) = 250 m($\chi^0$) = 0 & $315 \pm 18$& $193 \pm 14$& $53 \pm 8$& $13 \pm 4$& $2 \pm 2$& $0 \pm 0$& $0 \pm 0$ \\ \hline
131 > T2tt m(stop) = 300 m($\chi^0$) = 50 & $296 \pm 11$& $236 \pm 10$& $88 \pm 6$& $28 \pm 3$& $10 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\ \hline
132 > T2tt m(stop) = 300 m($\chi^0$) = 100 & $128 \pm 7$& $93 \pm 6$& $29 \pm 3$& $10 \pm 2$& $5 \pm 1$& $2 \pm 1$& $1 \pm 1$ \\ \hline
133 > T2tt m(stop) = 350 m($\chi^0$) = 0 & $224 \pm 6$& $206 \pm 6$& $119 \pm 4$& $52 \pm 3$& $20 \pm 2$& $8 \pm 1$& $3 \pm 1$ \\ \hline
134 > T2tt m(stop) = 450 m($\chi^0$) = 0 & $71 \pm 2$& $71 \pm 2$& $53 \pm 1$& $36 \pm 1$& $21 \pm 1$& $11 \pm 1$& $5 \pm 0$ \\
135   \hline
136   \end{tabular}
137 < \caption{ Expected SM background contributions, including both muon
138 <  and electron channels. This is ``dead reckoning'' MC with no
139 <  correction.
140 < It is meant only as a general guide. The uncertainties are statistical only. ADD
141 <  SIGNAL POINTS.
137 > \caption{ Expected SM background contributions and signal yields for a few sample points,
138 > including both muon and electron channels. This is ``dead reckoning'' MC with no
139 > correction. It is meant only as a general guide. The uncertainties are statistical only.
140 > The signal yield expected upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses.
141 > %[{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ].
142 > %HOOBERMAN
143   \label{tab:srrawmcyields}}
144   \end{center}
145   \end{table}
146  
147   \subsection{Control Region Selection}
148 <
110 < [1 PARAGRAPH BLURB RELATING BACKGROUNDS (IN TABLE FROM PREVIOUS SECTION)
111 < TO INTRODUCE CONTROL REGIONS]
148 > \label{sec:CRsel}
149  
150   Control regions (CRs) are used to validate the background estimation
151   procedure and derive systematic uncertainties for some
# Line 116 | Line 153 | contributions. The CRs are selected to h
153   kinematics to the SRs, but have a different requirement in terms of
154   number of b-tags and number of leptons, thus enhancing them in
155   different SM contributions. The four CRs used in this analysis are
156 < summarized in Table~\ref{tab:crdef}.
156 > summarized in Table~\ref{tab:crdef}.  
157  
158   \begin{table}
159   \begin{center}
# Line 165 | Line 202 | Selection      & \multirow{2}{*}{exactly 1 l
202   \end{center}
203   \end{table}
204  
205 + \subsection{Definition of $M_T$ peak region}
206 + \label{sec:mtpeakdef}
207  
208 < \subsection{MC Corrections}
208 > This region is defined as $50 < M_T < 80$ GeV.
209  
171 [UPDATE SECTION]
210  
211 < \subsubsection{Corrections to Jets and \met}
211 > \subsection{Default \ttbar\  MC sample}
212  
213 < [UPDATE, ADD FEW MORE DETAILS ON WHAT IS DONE HERE]
176 <
177 < The official recommendations from the Jet/MET group are used for
178 < the data and MC samples. In particular, the jet
179 < energy corrections (JEC) are updated using the official recipe.
180 < L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
181 < based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for
182 < data (MC). In addition, these jet energy corrections are propagated to
183 < the \met\ calculation, following the official prescription for
184 < deriving the Type I corrections.
185 <
186 < Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
187 < correspond to events with unphysically large \met\ and \mt\ tail
188 < signal region. In addition, the recommended MET filters are applied.
213 > Our default \ttbar\ MC sample is Powheg.
214  
215 + \subsection{MC Corrections}
216 + \label{sec:MCCorr}
217  
218 < \subsubsection{Branching Fraction Correction}
218 > All MC samples are corrected for trigger efficiency.  In the case of
219 > single lepton selections, we apply the $P_T$ and $\eta$-dependent
220 > scale factors that we measure ourselves, see Section~\ref{sec:trg}.
221 > In the case of dilepton selections that require the dilepton triggers,
222 > we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$,
223 > $\mu\mu$,
224 > and $e\mu$ respectively~\cite{didar}.
225  
226   The leptonic branching fraction used in some of the \ttbar\ MC samples
227   differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
228 < Table.~\ref{tab:wlepbf} summarizes the branching fractions used in
228 > Table~\ref{tab:wlepbf} summarizes the branching fractions used in
229   the generation of the various \ttbar\ MC samples.
230   For \ttbar\ samples with the incorrect leptonic branching fraction, event
231   weights are applied based on the number of true leptons and the ratio
# Line 205 | Line 238 | of the corrected and incorrect branching
238           \ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\
239   \hline
240   \hline
241 < Madgraph   &       0.111\\
242 < MC@NLO    &       0.111\\
243 < Pythia         &       0.108\\
241 > Madgraph     &       0.111\\
242 > MC@NLO       &       0.111\\
243 > Pythia       &       0.108\\
244   Powheg       &       0.108\\
245   \hline
246   \end{tabular}
247   \caption{Leptonic branching fractions for the various \ttbar\ samples
248 <  used in the analysis. The primary \ttbar\ MC sample produced with
249 <  Madgraph has a branching fraction that is almost $3\%$ higher than
248 >  used in the analysis. The \ttbar\ MC samples produced with
249 >  Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than
250    the PDG value. \label{tab:wlepbf}}
251   \end{center}
252   \end{table}
253  
254 + All \ttbar\ dilepton samples are corrected (when needed and
255 + appropriate)
256 + in order to have the correct jet multiplicity distribution.  This
257 + correction procedure is described in Section~\ref{sec:jetmultiplicity}.
258 +
259 +
260 + \subsubsection{Corrections to Jets and \met}
261 + \label{sec:JetMet}
262 +
263 + The official recommendations from the Jet/MET group are used for
264 + the data and MC samples. In particular, the jet
265 + energy corrections (JEC) are updated using the official recipe.
266 + L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
267 + based on the global tags GR\_R\_52\_V9 (START52\_V9B) for
268 + data (MC). In addition, these jet energy corrections are propagated to
269 + the \met\ calculation, following the official prescription for
270 + deriving the Type I corrections.
271 +
272 + Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
273 + correspond to events with unphysically large \met\ and \mt.
274 + %tail signal region.
275 + In addition, the recommended MET filters are applied.
276 + A correction to remove the $\phi$ modulation in \met\ is also applied
277 + to the data.
278 +
279 +
280 + \subsection{Lepton Selection Efficiency Measurements}
281 + \label{sec:lepEff}
282 +
283 + In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies.
284 + The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
285 + lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons.
286 + The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement,
287 + to measure the isolation efficiency we require the probe to pass the
288 + identification requirement.
289 +
290 + The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
291 + In order to suppress lepton pairs from sources other than Z boson
292 + decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged
293 + jets (CSV loose working point).
294 +
295 + The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for
296 + several different jet multiplicity requirements.
297 + We currently observe good agreement for muons with \pt\ up to about 300 GeV.
298 + For high \pt\ muons we observe a source of background in the data with large impact parameters, which we suppress by requiring muon $d_0<0.02$~cm and $d_Z<0.5$~cm.
299 + %For muons with \pt\ $>$ 200 GeV the data efficiency
300 + %begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV.
301 + We are currently investigating the source of this inefficiency.
302 + The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff}
303 + for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies.
304 +
305 + % Pending a better understanding of the very high \pt\ muon efficiency,
306 + We
307 + do not correct the MC for differences in lepton efficiency.  In the
308 + background calculation, we do not take any systematics due to lepton
309 + selection
310 + efficiency uncertainties.  This is because all backgrounds except the
311 + rare MC background are normalized to the $M_T$ peak, thus the lepton
312 + identification uncertainty cancels out.  For the rare MC these
313 + uncertainties
314 + are negligible compared to the assumed cross-section uncertainty
315 + (Section~\ref{sec:bkg_other}).
316 +
317 +
318 +
319 +
320 + \begin{table}[htb]
321 + \begin{center}
322 + \scriptsize
323 + \caption{\label{tab:mutnpeff}
324 + Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.}
325 + \begin{tabular}{c|c|c|c}
326 +
327 + %Selection  : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0)
328 + %Ndata      : 4751710
329 + %NMC        : 4127153
330 +
331 + \hline
332 + \hline
333 + MC ID & & & \\
334 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
335 + \hline
336 +    20 -   30  &        0.9672 $\pm$ 0.0005 &   0.9640 $\pm$ 0.0006 &   0.9471 $\pm$ 0.0008 \\
337 +    30 -   40  &        0.9684 $\pm$ 0.0002 &   0.9657 $\pm$ 0.0003 &   0.9446 $\pm$ 0.0004 \\
338 +    40 -   50  &        0.9704 $\pm$ 0.0002 &   0.9687 $\pm$ 0.0002 &   0.9432 $\pm$ 0.0004 \\
339 +    50 -   60  &        0.9684 $\pm$ 0.0005 &   0.9640 $\pm$ 0.0005 &   0.9414 $\pm$ 0.0009 \\
340 +    60 -   80  &        0.9678 $\pm$ 0.0009 &   0.9640 $\pm$ 0.0010 &   0.9354 $\pm$ 0.0018 \\
341 +    80 -  100  &        0.9709 $\pm$ 0.0021 &   0.9642 $\pm$ 0.0027 &   0.9234 $\pm$ 0.0051 \\
342 +   100 -  150  &        0.9679 $\pm$ 0.0029 &   0.9654 $\pm$ 0.0035 &   0.9261 $\pm$ 0.0069 \\
343 +   150 -  200  &        0.9643 $\pm$ 0.0069 &   0.9568 $\pm$ 0.0088 &   0.9045 $\pm$ 0.0198 \\
344 +   200 -  300  &        0.9647 $\pm$ 0.0116 &   0.9388 $\pm$ 0.0171 &   0.8906 $\pm$ 0.0390 \\
345 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
346 + \hline
347 + \hline
348 + MC ISO  & & & \\
349 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
350 + \hline
351 +    20 -   30  &        0.8966 $\pm$ 0.0007 &   0.9153 $\pm$ 0.0008 &   0.9298 $\pm$ 0.0009 \\
352 +    30 -   40  &        0.9610 $\pm$ 0.0002 &   0.9632 $\pm$ 0.0003 &   0.9707 $\pm$ 0.0003 \\
353 +    40 -   50  &        0.9876 $\pm$ 0.0001 &   0.9897 $\pm$ 0.0001 &   0.9912 $\pm$ 0.0002 \\
354 +    50 -   60  &        0.9921 $\pm$ 0.0002 &   0.9927 $\pm$ 0.0003 &   0.9939 $\pm$ 0.0003 \\
355 +    60 -   80  &        0.9927 $\pm$ 0.0004 &   0.9937 $\pm$ 0.0004 &   0.9947 $\pm$ 0.0005 \\
356 +    80 -  100  &        0.9920 $\pm$ 0.0012 &   0.9921 $\pm$ 0.0013 &   0.9932 $\pm$ 0.0016 \\
357 +   100 -  150  &        0.9898 $\pm$ 0.0017 &   0.9923 $\pm$ 0.0017 &   0.9933 $\pm$ 0.0022 \\
358 +   150 -  200  &        0.9901 $\pm$ 0.0037 &   0.9922 $\pm$ 0.0039 &   0.9950 $\pm$ 0.0050 \\
359 +   200 -  300  &        0.9919 $\pm$ 0.0057 &   1.0000 $\pm$ 0.0000 &   0.9828 $\pm$ 0.0171 \\
360 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
361 + \hline
362 + \hline
363 + DATA ID & & & \\
364 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
365 + \hline
366 +    20 -   30  &        0.9530 $\pm$ 0.0005 &   0.9517 $\pm$ 0.0006 &   0.9369 $\pm$ 0.0008 \\
367 +    30 -   40  &        0.9556 $\pm$ 0.0003 &   0.9519 $\pm$ 0.0003 &   0.9362 $\pm$ 0.0005 \\
368 +    40 -   50  &        0.9584 $\pm$ 0.0002 &   0.9558 $\pm$ 0.0003 &   0.9355 $\pm$ 0.0004 \\
369 +    50 -   60  &        0.9540 $\pm$ 0.0005 &   0.9487 $\pm$ 0.0006 &   0.9314 $\pm$ 0.0010 \\
370 +    60 -   80  &        0.9536 $\pm$ 0.0010 &   0.9466 $\pm$ 0.0012 &   0.9307 $\pm$ 0.0019 \\
371 +    80 -  100  &        0.9505 $\pm$ 0.0028 &   0.9414 $\pm$ 0.0035 &   0.9289 $\pm$ 0.0053 \\
372 +   100 -  150  &        0.9472 $\pm$ 0.0038 &   0.9454 $\pm$ 0.0045 &   0.9149 $\pm$ 0.0079 \\
373 +   150 -  200  &        0.9628 $\pm$ 0.0073 &   0.9675 $\pm$ 0.0089 &   0.8950 $\pm$ 0.0217 \\
374 +   200 -  300  &        0.9463 $\pm$ 0.0157 &   0.9290 $\pm$ 0.0206 &   0.8889 $\pm$ 0.0468 \\
375 +   300 - 10000  &       0.9412 $\pm$ 0.0404 &   1.0000 $\pm$ 0.0000 &   0.4000 $\pm$ 0.2191 \\
376 + \hline
377 + \hline
378 + DATA ISO  & & & \\
379 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
380 + \hline
381 +    20 -   30  &        0.8939 $\pm$ 0.0007 &   0.9144 $\pm$ 0.0008 &   0.9361 $\pm$ 0.0008 \\
382 +    30 -   40  &        0.9598 $\pm$ 0.0002 &   0.9646 $\pm$ 0.0003 &   0.9744 $\pm$ 0.0003 \\
383 +    40 -   50  &        0.9870 $\pm$ 0.0001 &   0.9901 $\pm$ 0.0001 &   0.9920 $\pm$ 0.0002 \\
384 +    50 -   60  &        0.9912 $\pm$ 0.0002 &   0.9933 $\pm$ 0.0002 &   0.9953 $\pm$ 0.0003 \\
385 +    60 -   80  &        0.9920 $\pm$ 0.0004 &   0.9934 $\pm$ 0.0005 &   0.9956 $\pm$ 0.0005 \\
386 +    80 -  100  &        0.9926 $\pm$ 0.0011 &   0.9933 $\pm$ 0.0013 &   0.9955 $\pm$ 0.0014 \\
387 +   100 -  150  &        0.9913 $\pm$ 0.0016 &   0.9949 $\pm$ 0.0015 &   0.9965 $\pm$ 0.0017 \\
388 +   150 -  200  &        0.9969 $\pm$ 0.0022 &   0.9974 $\pm$ 0.0026 &   0.9944 $\pm$ 0.0055 \\
389 +   200 -  300  &        1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
390 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
391 + \hline
392 + \hline
393 + Scale Factor ID  & & & \\
394 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
395 + \hline
396 +    20 -   30  &        0.9853 $\pm$ 0.0007 &   0.9872 $\pm$ 0.0009 &   0.9893 $\pm$ 0.0012 \\
397 +    30 -   40  &        0.9868 $\pm$ 0.0003 &   0.9857 $\pm$ 0.0005 &   0.9911 $\pm$ 0.0007 \\
398 +    40 -   50  &        0.9877 $\pm$ 0.0003 &   0.9866 $\pm$ 0.0004 &   0.9918 $\pm$ 0.0006 \\
399 +    50 -   60  &        0.9851 $\pm$ 0.0007 &   0.9841 $\pm$ 0.0009 &   0.9894 $\pm$ 0.0014 \\
400 +    60 -   80  &        0.9853 $\pm$ 0.0014 &   0.9820 $\pm$ 0.0017 &   0.9949 $\pm$ 0.0028 \\
401 +    80 -  100  &        0.9790 $\pm$ 0.0036 &   0.9763 $\pm$ 0.0046 &   1.0059 $\pm$ 0.0080 \\
402 +   100 -  150  &        0.9786 $\pm$ 0.0049 &   0.9793 $\pm$ 0.0059 &   0.9879 $\pm$ 0.0113 \\
403 +   150 -  200  &        0.9984 $\pm$ 0.0104 &   1.0112 $\pm$ 0.0131 &   0.9894 $\pm$ 0.0323 \\
404 +   200 -  300  &        0.9810 $\pm$ 0.0201 &   0.9896 $\pm$ 0.0284 &   0.9981 $\pm$ 0.0684 \\
405 +   300 - 10000  &       0.9412 $\pm$ 0.0404 &   1.0000 $\pm$ 0.0000 &   0.4000 $\pm$ 0.2191 \\
406 + \hline
407 + \hline
408 + Scale Factor ISO & & & \\
409 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
410 + \hline
411 +    20 -   30  &        0.9970 $\pm$ 0.0012 &   0.9989 $\pm$ 0.0012 &   1.0068 $\pm$ 0.0013 \\
412 +    30 -   40  &        0.9987 $\pm$ 0.0004 &   1.0014 $\pm$ 0.0004 &   1.0038 $\pm$ 0.0005 \\
413 +    40 -   50  &        0.9994 $\pm$ 0.0002 &   1.0004 $\pm$ 0.0002 &   1.0008 $\pm$ 0.0002 \\
414 +    50 -   60  &        0.9991 $\pm$ 0.0003 &   1.0006 $\pm$ 0.0003 &   1.0013 $\pm$ 0.0004 \\
415 +    60 -   80  &        0.9993 $\pm$ 0.0006 &   0.9997 $\pm$ 0.0006 &   1.0009 $\pm$ 0.0008 \\
416 +    80 -  100  &        1.0006 $\pm$ 0.0016 &   1.0012 $\pm$ 0.0018 &   1.0023 $\pm$ 0.0022 \\
417 +   100 -  150  &        1.0015 $\pm$ 0.0023 &   1.0027 $\pm$ 0.0023 &   1.0032 $\pm$ 0.0028 \\
418 +   150 -  200  &        1.0068 $\pm$ 0.0044 &   1.0053 $\pm$ 0.0047 &   0.9994 $\pm$ 0.0075 \\
419 +   200 -  300  &        1.0081 $\pm$ 0.0058 &   1.0000 $\pm$ 0.0000 &   1.0175 $\pm$ 0.0177 \\
420 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
421 + \hline
422 + \hline
423 +
424 + \end{tabular}
425 + \end{center}
426 + \end{table}
427 +
428 + \begin{figure}[hbt]
429 +  \begin{center}
430 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}%
431 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf}
432 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}%
433 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf}
434 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}%
435 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf}
436 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}%
437 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf}
438 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}%
439 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf}
440 +        \caption{
441 +          \label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }  
442 +      \end{center}
443 + \end{figure}
444  
445 < \subsubsection{Lepton Selection Efficiency Measurements}
445 > \clearpage
446 >
447 > \begin{table}[htb]
448 > \begin{center}
449 > \scriptsize
450 > \caption{\label{tab:eltnpeff}
451 > Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.}
452 > \begin{tabular}{c|c|c}
453 >
454 > %Selection  : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0)
455 > %Ndata      : 3577620
456 > %NMC        : 3240624
457 > %ID cut     : (leptonSelection&8)==8
458 > %iso cut    : (leptonSelection&16)==16
459 >
460 > \hline
461 > \hline
462 > MC ID & & \\
463 > \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
464 > \hline
465 >    20 -   30  &        0.8156 $\pm$ 0.0008 &   0.6565 $\pm$ 0.0019 \\
466 >    30 -   40  &        0.8670 $\pm$ 0.0004 &   0.7450 $\pm$ 0.0010 \\
467 >    40 -   50  &        0.8922 $\pm$ 0.0003 &   0.7847 $\pm$ 0.0008 \\
468 >    50 -   60  &        0.9023 $\pm$ 0.0006 &   0.7956 $\pm$ 0.0018 \\
469 >    60 -   80  &        0.9097 $\pm$ 0.0011 &   0.8166 $\pm$ 0.0034 \\
470 >    80 -  100  &        0.9203 $\pm$ 0.0028 &   0.8196 $\pm$ 0.0090 \\
471 >   100 -  150  &        0.9162 $\pm$ 0.0037 &   0.8378 $\pm$ 0.0117 \\
472 >   150 -  200  &        0.9106 $\pm$ 0.0087 &   0.8111 $\pm$ 0.0292 \\
473 >   200 -  300  &        0.9304 $\pm$ 0.0119 &   0.9153 $\pm$ 0.0363 \\
474 >   300 - 10000  &       0.8684 $\pm$ 0.0388 &   0.8000 $\pm$ 0.1789 \\
475 > \hline
476 > \hline
477 > MC ISO  & & \\
478 >
479 > \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
480 > \hline
481 >    20 -   30  &        0.9245 $\pm$ 0.0006 &   0.9466 $\pm$ 0.0011 \\
482 >    30 -   40  &        0.9682 $\pm$ 0.0002 &   0.9741 $\pm$ 0.0004 \\
483 >    40 -   50  &        0.9876 $\pm$ 0.0001 &   0.9883 $\pm$ 0.0002 \\
484 >    50 -   60  &        0.9909 $\pm$ 0.0002 &   0.9912 $\pm$ 0.0005 \\
485 >    60 -   80  &        0.9916 $\pm$ 0.0004 &   0.9930 $\pm$ 0.0008 \\
486 >    80 -  100  &        0.9915 $\pm$ 0.0010 &   0.9908 $\pm$ 0.0025 \\
487 >   100 -  150  &        0.9929 $\pm$ 0.0012 &   0.9894 $\pm$ 0.0035 \\
488 >   150 -  200  &        0.9919 $\pm$ 0.0029 &   0.9932 $\pm$ 0.0068 \\
489 >   200 -  300  &        0.9953 $\pm$ 0.0033 &   1.0000 $\pm$ 0.0000 \\
490 >   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
491 > \hline
492 > \hline
493 > DATA ID & & \\
494 >
495 > \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
496 > \hline
497 >    20 -   30  &        0.8145 $\pm$ 0.0008 &   0.6528 $\pm$ 0.0018 \\
498 >    30 -   40  &        0.8676 $\pm$ 0.0004 &   0.7462 $\pm$ 0.0010 \\
499 >    40 -   50  &        0.8955 $\pm$ 0.0003 &   0.7922 $\pm$ 0.0008 \\
500 >    50 -   60  &        0.9049 $\pm$ 0.0006 &   0.8072 $\pm$ 0.0018 \\
501 >    60 -   80  &        0.9110 $\pm$ 0.0011 &   0.8212 $\pm$ 0.0035 \\
502 >    80 -  100  &        0.9156 $\pm$ 0.0028 &   0.8358 $\pm$ 0.0091 \\
503 >   100 -  150  &        0.9257 $\pm$ 0.0036 &   0.8507 $\pm$ 0.0116 \\
504 >   150 -  200  &        0.9186 $\pm$ 0.0084 &   0.8929 $\pm$ 0.0292 \\
505 >   200 -  300  &        0.9106 $\pm$ 0.0149 &   0.7576 $\pm$ 0.0746 \\
506 >   300 - 10000  &       0.9400 $\pm$ 0.0336 &   1.0000 $\pm$ 0.0000 \\
507 > \hline
508 > \hline
509 > DATA ISO  & & \\
510 >
511 > \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
512 > \hline
513 >    20 -   30  &        0.9201 $\pm$ 0.0006 &   0.9419 $\pm$ 0.0011 \\
514 >    30 -   40  &        0.9667 $\pm$ 0.0002 &   0.9734 $\pm$ 0.0004 \\
515 >    40 -   50  &        0.9872 $\pm$ 0.0001 &   0.9892 $\pm$ 0.0002 \\
516 >    50 -   60  &        0.9904 $\pm$ 0.0002 &   0.9922 $\pm$ 0.0004 \\
517 >    60 -   80  &        0.9923 $\pm$ 0.0004 &   0.9916 $\pm$ 0.0009 \\
518 >    80 -  100  &        0.9914 $\pm$ 0.0010 &   0.9921 $\pm$ 0.0024 \\
519 >   100 -  150  &        0.9945 $\pm$ 0.0011 &   1.0000 $\pm$ 0.0000 \\
520 >   150 -  200  &        0.9908 $\pm$ 0.0031 &   1.0000 $\pm$ 0.0000 \\
521 >   200 -  300  &        0.9941 $\pm$ 0.0042 &   1.0000 $\pm$ 0.0000 \\
522 >   300 - 10000  &       0.9792 $\pm$ 0.0206 &   1.0000 $\pm$ 0.0000 \\
523 > \hline
524 > \hline
525 > Scale Factor ID  & & \\
526 >
527 > \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
528 > \hline
529 >    20 -   30  &        0.9987 $\pm$ 0.0014 &   0.9944 $\pm$ 0.0040 \\
530 >    30 -   40  &        1.0007 $\pm$ 0.0006 &   1.0015 $\pm$ 0.0019 \\
531 >    40 -   50  &        1.0036 $\pm$ 0.0005 &   1.0096 $\pm$ 0.0015 \\
532 >    50 -   60  &        1.0029 $\pm$ 0.0010 &   1.0146 $\pm$ 0.0031 \\
533 >    60 -   80  &        1.0014 $\pm$ 0.0018 &   1.0057 $\pm$ 0.0060 \\
534 >    80 -  100  &        0.9949 $\pm$ 0.0043 &   1.0197 $\pm$ 0.0158 \\
535 >   100 -  150  &        1.0104 $\pm$ 0.0057 &   1.0154 $\pm$ 0.0198 \\
536 >   150 -  200  &        1.0087 $\pm$ 0.0134 &   1.1008 $\pm$ 0.0535 \\
537 >   200 -  300  &        0.9786 $\pm$ 0.0203 &   0.8277 $\pm$ 0.0879 \\
538 >   300 - 10000  &       1.0824 $\pm$ 0.0619 &   1.2500 $\pm$ 0.2795 \\
539 > \hline
540 > \hline
541 > Scale Factor ISO & & \\
542 > \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
543 > \hline
544 >    20 -   30  &        0.9952 $\pm$ 0.0009 &   0.9950 $\pm$ 0.0016 \\
545 >    30 -   40  &        0.9984 $\pm$ 0.0003 &   0.9992 $\pm$ 0.0006 \\
546 >    40 -   50  &        0.9996 $\pm$ 0.0002 &   1.0009 $\pm$ 0.0003 \\
547 >    50 -   60  &        0.9995 $\pm$ 0.0003 &   1.0009 $\pm$ 0.0006 \\
548 >    60 -   80  &        1.0006 $\pm$ 0.0005 &   0.9985 $\pm$ 0.0012 \\
549 >    80 -  100  &        0.9999 $\pm$ 0.0014 &   1.0013 $\pm$ 0.0035 \\
550 >   100 -  150  &        1.0016 $\pm$ 0.0016 &   1.0108 $\pm$ 0.0036 \\
551 >   150 -  200  &        0.9989 $\pm$ 0.0042 &   1.0068 $\pm$ 0.0069 \\
552 >   200 -  300  &        0.9987 $\pm$ 0.0053 &   1.0000 $\pm$ 0.0000 \\
553 >   300 - 10000  &       0.9792 $\pm$ 0.0206 &   1.0000 $\pm$ 0.0000 \\
554 > \hline
555 > \hline
556 >
557 > \end{tabular}
558 > \end{center}
559 > \end{table}
560  
561 < [TO BE UDPATED WITH T\&P STUDIES ON ID,ISO EFFICIENCIES]
561 > \begin{figure}[hbt]
562 >  \begin{center}
563 >        \includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}%
564 >        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf}
565 >        \includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}%
566 >        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf}
567 >        \includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}%
568 >        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf}
569 >        \includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}%
570 >        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf}
571 >        \includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}%
572 >        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf}
573 >        \caption{
574 >          \label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }  
575 >      \end{center}
576 > \end{figure}
577  
578 + \clearpage
579  
580 < \subsubsection{Trigger Efficiency Measurements}
580 >
581 > \subsection{Trigger Efficiency Measurements}
582 > \label{sec:trg}
583  
584   In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
585   approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
586   lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
587 < in order to measure the \pt\ turn-on curve. The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
587 > in order to measure the \pt\ turn-on curve. The tag-probe pair is
588 > required to have opposite-sign and an invariant mass in the range
589 > 76--106 GeV.
590 >
591   The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
592 < These trigger efficiencies will be applied to the MC when used to predict data yields selected by single lepton triggers. [THESE TRIGGER EFFICIENCIES TO BE APPLIED TO MC]
592 > These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers.
593  
594  
595   \begin{figure}[!ht]
# Line 256 | Line 614 | for several bins in lepton $|\eta|$.
614   Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
615   \begin{tabular}{c|c|c|c}
616  
617 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
618 + % Probe trigger        : HLT_IsoMu24_probe > 0
619 + % Total data yield     : 5161723
620 +
621   \hline
622   \hline
623    \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
# Line 291 | Line 653 | Summary of the single muon trigger effic
653   Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
654   \begin{tabular}{c|c|c}
655  
656 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
657 + % Probe trigger        : HLT_Ele27_WP80_probe > 0
658 + % Total data yield     : 3405966
659 +
660   \hline
661   \hline
662    \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines