1 |
< |
|
2 |
< |
This analysis uses several different control regions in addition to the signal regions. |
3 |
< |
All of these different regions are defined in this section. |
1 |
> |
Here we define the selections of leptons, jets, and \met. |
2 |
> |
We also describe our measurements of the lepton and trigger efficiency. |
3 |
> |
The analysis uses several different Control Regions (CRs) in addition |
4 |
> |
to the Signal |
5 |
> |
Regions (SRs). |
6 |
> |
All of these different regions are defined in this section. |
7 |
> |
This section also includes some information on the basic MC |
8 |
> |
corrections that we apply. |
9 |
|
%Figure~\ref{fig:venndiagram} illustrates the relationship between these regions. |
10 |
|
|
11 |
|
\subsection{Single Lepton Selection} |
12 |
+ |
\label{sec:singlelepselection} |
13 |
|
|
14 |
< |
[UPDATE SELECTION] |
15 |
< |
|
10 |
< |
The single lepton preselection sample is based on the following criteria, starting from the requirements described |
11 |
< |
on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} |
14 |
> |
The single lepton selection is based on the following criteria, starting from the requirements described |
15 |
> |
on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20) |
16 |
|
\begin{itemize} |
17 |
|
\item satisfy the trigger requirement (see |
18 |
< |
Table.~\ref{tab:DatasetsData}). |
18 |
> |
Table~\ref{tab:TrigData}). |
19 |
|
Note that the analysis triggers are inclusive single lepton triggers. |
20 |
|
Dilepton triggers are used only for the dilepton control region. |
21 |
|
\item select events with one high \pt\ electron or muon, requiring |
22 |
|
\begin{itemize} |
23 |
< |
\item $\pt>30~\GeVc$ and $|\eta|<1.4442 (2.4)$ for electrons (muons) |
23 |
> |
\item $\pt>30~\GeVc$ and $|\eta|<1.4442 (2.1)$ for electrons (muons). The restriction to the barrel for electrons |
24 |
> |
is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region, |
25 |
> |
and does not significantly reduce the signal acceptance since the leptons tend to be central. |
26 |
|
\item muon ID criteria is based on the 2012 POG recommended tight working point |
27 |
|
\item electron ID critera is based on the 2012 POG recommended medium working point |
28 |
< |
\item PF-based isolation ($\Delta R < 0.3$, $\Delta\beta$ corrected) relative $<$ 0.15 and absolute $<$ 5~GeV |
28 |
> |
\item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections |
29 |
> |
are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs). |
30 |
|
\item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$ |
31 |
< |
\item $E/p_{in} < 4$ (electrons only) |
31 |
> |
\item $E/p_{\rm{in}} < 4$ (electrons only) |
32 |
> |
\item We remove electron events with $\met > 50$ GeV and $M_T > 100$ |
33 |
> |
GeV with at least one crystal in the supercluster with laser |
34 |
> |
correction $>$2.\footnote{This is an ad-hoc removal based on |
35 |
> |
run-event numbers, since the |
36 |
> |
problem was found very recently and the filter was not available |
37 |
> |
when we processed the events.} |
38 |
|
\end{itemize} |
39 |
|
\item require at least 4 PF jets in the event with $\pt>30~\GeV$ |
40 |
|
within $|\eta|<2.5$ out of which at least 1 satisfies the CSV |
41 |
|
medium working point b-tagging requirement |
42 |
< |
\item require moderate $\met>50~\GeV$ |
42 |
> |
\item require moderate $\met>50~\GeV$ (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}). |
43 |
> |
\item Isolated track veto, see Section~\ref{sec:tkveto} |
44 |
> |
|
45 |
|
\end{itemize} |
46 |
|
|
47 |
|
%Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region. |
56 |
|
%\end{center} |
57 |
|
%\end{table} |
58 |
|
|
59 |
< |
\subsection{Signal Region Selection} |
59 |
> |
\subsection{Isolated track veto} |
60 |
> |
\label{sec:tkveto} |
61 |
> |
|
62 |
> |
The isolated track veto is intended to remove top dilepton events. |
63 |
> |
Looking for an isolated track is an effective way of identifying $W |
64 |
> |
\to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to |
65 |
> |
h^{\pm} + n\pi^{0}$. The requirements on the track are |
66 |
|
|
67 |
< |
[MOTIVATIONAL BLURB ON MET AND MT, \\ |
68 |
< |
CAN ADD SIGNAL VS. TTBAR MC PLOT \\ |
69 |
< |
ADD SIGNAL YIELDS FOR AVAILABLE POINTS, \\ |
70 |
< |
DISCUSS CHOICE SIG REGIONS] |
67 |
> |
\begin{itemize} |
68 |
> |
\item $P_T > 10$ GeV |
69 |
> |
\item Relative track isolation $< 10\%$ computed from charged PF |
70 |
> |
candidates with dZ $<$ 0.05 cm from the primary vertex. |
71 |
> |
\end{itemize} |
72 |
> |
|
73 |
> |
|
74 |
> |
\subsection{Signal Region Selection} |
75 |
> |
\label{sec:SR} |
76 |
|
|
77 |
|
The signal regions (SRs) are selected to improve the sensitivity for the |
78 |
|
single lepton requirements and cover a range of scalar top |
91 |
|
SRC & 120 & 200 \\ |
92 |
|
SRD & 120 & 250 \\ |
93 |
|
SRE & 120 & 300 \\ |
94 |
+ |
SRF & 120 & 350 \\ |
95 |
+ |
SRG & 120 & 400 \\ |
96 |
|
\hline |
97 |
|
\end{tabular} |
98 |
|
\caption{ Signal region definitions based on \mt\ and \met\ |
111 |
|
|
112 |
|
\begin{table}[!h] |
113 |
|
\begin{center} |
114 |
< |
\begin{tabular}{l||c|c|c|c|c} |
114 |
> |
\footnotesize |
115 |
> |
\begin{tabular}{l||c|c|c|c|c|c|c} |
116 |
> |
\hline |
117 |
> |
Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\ |
118 |
> |
\hline |
119 |
|
\hline |
120 |
< |
Sample & SRA & SRB & SRC & SRD & SRE\\ |
120 |
> |
\ttdl\ & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\ |
121 |
> |
\ttsl\ \& single top (1\Lep) & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\ |
122 |
> |
\wjets\ & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\ |
123 |
> |
Rare & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\ |
124 |
|
\hline |
125 |
+ |
Total & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\ |
126 |
|
\hline |
127 |
< |
\ttdl\ & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$ \\ |
128 |
< |
\ttsl\ \& single top (1\Lep) & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$ \\ |
93 |
< |
\wjets\ & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$ \\ |
94 |
< |
Rare & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$ \\ |
127 |
> |
Yield UL (optimistic) & 147 (10\%) & 94 (10\%) & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%) \\ |
128 |
> |
Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\ |
129 |
|
\hline |
130 |
< |
Total & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$ \\ |
130 |
> |
T2tt m(stop) = 250 m($\chi^0$) = 0 & $315 \pm 18$& $193 \pm 14$& $53 \pm 8$& $13 \pm 4$& $2 \pm 2$& $0 \pm 0$& $0 \pm 0$ \\ \hline |
131 |
> |
T2tt m(stop) = 300 m($\chi^0$) = 50 & $296 \pm 11$& $236 \pm 10$& $88 \pm 6$& $28 \pm 3$& $10 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\ \hline |
132 |
> |
T2tt m(stop) = 300 m($\chi^0$) = 100 & $128 \pm 7$& $93 \pm 6$& $29 \pm 3$& $10 \pm 2$& $5 \pm 1$& $2 \pm 1$& $1 \pm 1$ \\ \hline |
133 |
> |
T2tt m(stop) = 350 m($\chi^0$) = 0 & $224 \pm 6$& $206 \pm 6$& $119 \pm 4$& $52 \pm 3$& $20 \pm 2$& $8 \pm 1$& $3 \pm 1$ \\ \hline |
134 |
> |
T2tt m(stop) = 450 m($\chi^0$) = 0 & $71 \pm 2$& $71 \pm 2$& $53 \pm 1$& $36 \pm 1$& $21 \pm 1$& $11 \pm 1$& $5 \pm 0$ \\ |
135 |
|
\hline |
136 |
|
\end{tabular} |
137 |
< |
\caption{ Expected SM background contributions, including both muon |
138 |
< |
and electron channels. This is ``dead reckoning'' MC with no |
139 |
< |
correction. |
140 |
< |
It is meant only as a general guide. The uncertainties are statistical only. ADD |
141 |
< |
SIGNAL POINTS. |
137 |
> |
\caption{ Expected SM background contributions and signal yields for a few sample points, |
138 |
> |
including both muon and electron channels. This is ``dead reckoning'' MC with no |
139 |
> |
correction. It is meant only as a general guide. The uncertainties are statistical only. |
140 |
> |
The signal yield expected upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses. |
141 |
> |
%[{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ]. |
142 |
> |
%HOOBERMAN |
143 |
|
\label{tab:srrawmcyields}} |
144 |
|
\end{center} |
145 |
|
\end{table} |
146 |
|
|
147 |
|
\subsection{Control Region Selection} |
148 |
< |
|
110 |
< |
[1 PARAGRAPH BLURB RELATING BACKGROUNDS (IN TABLE FROM PREVIOUS SECTION) |
111 |
< |
TO INTRODUCE CONTROL REGIONS] |
148 |
> |
\label{sec:CRsel} |
149 |
|
|
150 |
|
Control regions (CRs) are used to validate the background estimation |
151 |
|
procedure and derive systematic uncertainties for some |
153 |
|
kinematics to the SRs, but have a different requirement in terms of |
154 |
|
number of b-tags and number of leptons, thus enhancing them in |
155 |
|
different SM contributions. The four CRs used in this analysis are |
156 |
< |
summarized in Table~\ref{tab:crdef}. |
156 |
> |
summarized in Table~\ref{tab:crdef}. |
157 |
|
|
158 |
|
\begin{table} |
159 |
|
\begin{center} |
202 |
|
\end{center} |
203 |
|
\end{table} |
204 |
|
|
205 |
+ |
\subsection{Definition of $M_T$ peak region} |
206 |
+ |
\label{sec:mtpeakdef} |
207 |
|
|
208 |
< |
\subsection{MC Corrections} |
208 |
> |
This region is defined as $50 < M_T < 80$ GeV. |
209 |
|
|
171 |
– |
[UPDATE SECTION] |
210 |
|
|
211 |
< |
\subsubsection{Corrections to Jets and \met} |
211 |
> |
\subsection{Default \ttbar\ MC sample} |
212 |
|
|
213 |
< |
[UPDATE, ADD FEW MORE DETAILS ON WHAT IS DONE HERE] |
176 |
< |
|
177 |
< |
The official recommendations from the Jet/MET group are used for |
178 |
< |
the data and MC samples. In particular, the jet |
179 |
< |
energy corrections (JEC) are updated using the official recipe. |
180 |
< |
L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC), |
181 |
< |
based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for |
182 |
< |
data (MC). In addition, these jet energy corrections are propagated to |
183 |
< |
the \met\ calculation, following the official prescription for |
184 |
< |
deriving the Type I corrections. |
185 |
< |
|
186 |
< |
Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these |
187 |
< |
correspond to events with unphysically large \met\ and \mt\ tail |
188 |
< |
signal region. In addition, the recommended MET filters are applied. |
213 |
> |
Our default \ttbar\ MC sample is Powheg. |
214 |
|
|
215 |
+ |
\subsection{MC Corrections} |
216 |
+ |
\label{sec:MCCorr} |
217 |
|
|
218 |
< |
\subsubsection{Branching Fraction Correction} |
218 |
> |
All MC samples are corrected for trigger efficiency. In the case of |
219 |
> |
single lepton selections, we apply the $P_T$ and $\eta$-dependent |
220 |
> |
scale factors that we measure ourselves, see Section~\ref{sec:trg}. |
221 |
> |
In the case of dilepton selections that require the dilepton triggers, |
222 |
> |
we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$, |
223 |
> |
$\mu\mu$, |
224 |
> |
and $e\mu$ respectively~\cite{didar}. |
225 |
|
|
226 |
|
The leptonic branching fraction used in some of the \ttbar\ MC samples |
227 |
|
differs from the value listed in the PDG $(10.80 \pm 0.09)\%$. |
228 |
< |
Table.~\ref{tab:wlepbf} summarizes the branching fractions used in |
228 |
> |
Table~\ref{tab:wlepbf} summarizes the branching fractions used in |
229 |
|
the generation of the various \ttbar\ MC samples. |
230 |
|
For \ttbar\ samples with the incorrect leptonic branching fraction, event |
231 |
|
weights are applied based on the number of true leptons and the ratio |
238 |
|
\ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\ |
239 |
|
\hline |
240 |
|
\hline |
241 |
< |
Madgraph & 0.111\\ |
242 |
< |
MC@NLO & 0.111\\ |
243 |
< |
Pythia & 0.108\\ |
241 |
> |
Madgraph & 0.111\\ |
242 |
> |
MC@NLO & 0.111\\ |
243 |
> |
Pythia & 0.108\\ |
244 |
|
Powheg & 0.108\\ |
245 |
|
\hline |
246 |
|
\end{tabular} |
247 |
|
\caption{Leptonic branching fractions for the various \ttbar\ samples |
248 |
< |
used in the analysis. The primary \ttbar\ MC sample produced with |
249 |
< |
Madgraph has a branching fraction that is almost $3\%$ higher than |
248 |
> |
used in the analysis. The \ttbar\ MC samples produced with |
249 |
> |
Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than |
250 |
|
the PDG value. \label{tab:wlepbf}} |
251 |
|
\end{center} |
252 |
|
\end{table} |
253 |
|
|
254 |
+ |
All \ttbar\ dilepton samples are corrected (when needed and |
255 |
+ |
appropriate) |
256 |
+ |
in order to have the correct jet multiplicity distribution. This |
257 |
+ |
correction procedure is described in Section~\ref{sec:jetmultiplicity}. |
258 |
+ |
|
259 |
+ |
|
260 |
+ |
\subsubsection{Corrections to Jets and \met} |
261 |
+ |
\label{sec:JetMet} |
262 |
+ |
|
263 |
+ |
The official recommendations from the Jet/MET group are used for |
264 |
+ |
the data and MC samples. In particular, the jet |
265 |
+ |
energy corrections (JEC) are updated using the official recipe. |
266 |
+ |
L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC), |
267 |
+ |
based on the global tags GR\_R\_52\_V9 (START52\_V9B) for |
268 |
+ |
data (MC). In addition, these jet energy corrections are propagated to |
269 |
+ |
the \met\ calculation, following the official prescription for |
270 |
+ |
deriving the Type I corrections. |
271 |
+ |
|
272 |
+ |
Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these |
273 |
+ |
correspond to events with unphysically large \met\ and \mt. |
274 |
+ |
%tail signal region. |
275 |
+ |
In addition, the recommended MET filters are applied. |
276 |
+ |
A correction to remove the $\phi$ modulation in \met\ is also applied |
277 |
+ |
to the data. |
278 |
+ |
|
279 |
+ |
|
280 |
+ |
\subsection{Lepton Selection Efficiency Measurements} |
281 |
+ |
\label{sec:lepEff} |
282 |
+ |
|
283 |
+ |
In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies. |
284 |
+ |
The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single |
285 |
+ |
lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons. |
286 |
+ |
The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement, |
287 |
+ |
to measure the isolation efficiency we require the probe to pass the |
288 |
+ |
identification requirement. |
289 |
+ |
|
290 |
+ |
The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV. |
291 |
+ |
In order to suppress lepton pairs from sources other than Z boson |
292 |
+ |
decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged |
293 |
+ |
jets (CSV loose working point). |
294 |
+ |
|
295 |
+ |
The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for |
296 |
+ |
several different jet multiplicity requirements. |
297 |
+ |
We currently observe good agreement for muons with \pt\ up to about 300 GeV. |
298 |
+ |
For high \pt\ muons we observe a source of background in the data with large impact parameters, which we suppress by requiring muon $d_0<0.02$~cm and $d_Z<0.5$~cm. |
299 |
+ |
%For muons with \pt\ $>$ 200 GeV the data efficiency |
300 |
+ |
%begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV. |
301 |
+ |
We are currently investigating the source of this inefficiency. |
302 |
+ |
The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff} |
303 |
+ |
for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies. |
304 |
+ |
|
305 |
+ |
% Pending a better understanding of the very high \pt\ muon efficiency, |
306 |
+ |
We |
307 |
+ |
do not correct the MC for differences in lepton efficiency. In the |
308 |
+ |
background calculation, we do not take any systematics due to lepton |
309 |
+ |
selection |
310 |
+ |
efficiency uncertainties. This is because all backgrounds except the |
311 |
+ |
rare MC background are normalized to the $M_T$ peak, thus the lepton |
312 |
+ |
identification uncertainty cancels out. For the rare MC these |
313 |
+ |
uncertainties |
314 |
+ |
are negligible compared to the assumed cross-section uncertainty |
315 |
+ |
(Section~\ref{sec:bkg_other}). |
316 |
+ |
|
317 |
+ |
|
318 |
+ |
|
319 |
+ |
|
320 |
+ |
\begin{table}[htb] |
321 |
+ |
\begin{center} |
322 |
+ |
\scriptsize |
323 |
+ |
\caption{\label{tab:mutnpeff} |
324 |
+ |
Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.} |
325 |
+ |
\begin{tabular}{c|c|c|c} |
326 |
+ |
|
327 |
+ |
%Selection : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0) |
328 |
+ |
%Ndata : 4751710 |
329 |
+ |
%NMC : 4127153 |
330 |
+ |
|
331 |
+ |
\hline |
332 |
+ |
\hline |
333 |
+ |
MC ID & & & \\ |
334 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
335 |
+ |
\hline |
336 |
+ |
20 - 30 & 0.9672 $\pm$ 0.0005 & 0.9640 $\pm$ 0.0006 & 0.9471 $\pm$ 0.0008 \\ |
337 |
+ |
30 - 40 & 0.9684 $\pm$ 0.0002 & 0.9657 $\pm$ 0.0003 & 0.9446 $\pm$ 0.0004 \\ |
338 |
+ |
40 - 50 & 0.9704 $\pm$ 0.0002 & 0.9687 $\pm$ 0.0002 & 0.9432 $\pm$ 0.0004 \\ |
339 |
+ |
50 - 60 & 0.9684 $\pm$ 0.0005 & 0.9640 $\pm$ 0.0005 & 0.9414 $\pm$ 0.0009 \\ |
340 |
+ |
60 - 80 & 0.9678 $\pm$ 0.0009 & 0.9640 $\pm$ 0.0010 & 0.9354 $\pm$ 0.0018 \\ |
341 |
+ |
80 - 100 & 0.9709 $\pm$ 0.0021 & 0.9642 $\pm$ 0.0027 & 0.9234 $\pm$ 0.0051 \\ |
342 |
+ |
100 - 150 & 0.9679 $\pm$ 0.0029 & 0.9654 $\pm$ 0.0035 & 0.9261 $\pm$ 0.0069 \\ |
343 |
+ |
150 - 200 & 0.9643 $\pm$ 0.0069 & 0.9568 $\pm$ 0.0088 & 0.9045 $\pm$ 0.0198 \\ |
344 |
+ |
200 - 300 & 0.9647 $\pm$ 0.0116 & 0.9388 $\pm$ 0.0171 & 0.8906 $\pm$ 0.0390 \\ |
345 |
+ |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
346 |
+ |
\hline |
347 |
+ |
\hline |
348 |
+ |
MC ISO & & & \\ |
349 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
350 |
+ |
\hline |
351 |
+ |
20 - 30 & 0.8966 $\pm$ 0.0007 & 0.9153 $\pm$ 0.0008 & 0.9298 $\pm$ 0.0009 \\ |
352 |
+ |
30 - 40 & 0.9610 $\pm$ 0.0002 & 0.9632 $\pm$ 0.0003 & 0.9707 $\pm$ 0.0003 \\ |
353 |
+ |
40 - 50 & 0.9876 $\pm$ 0.0001 & 0.9897 $\pm$ 0.0001 & 0.9912 $\pm$ 0.0002 \\ |
354 |
+ |
50 - 60 & 0.9921 $\pm$ 0.0002 & 0.9927 $\pm$ 0.0003 & 0.9939 $\pm$ 0.0003 \\ |
355 |
+ |
60 - 80 & 0.9927 $\pm$ 0.0004 & 0.9937 $\pm$ 0.0004 & 0.9947 $\pm$ 0.0005 \\ |
356 |
+ |
80 - 100 & 0.9920 $\pm$ 0.0012 & 0.9921 $\pm$ 0.0013 & 0.9932 $\pm$ 0.0016 \\ |
357 |
+ |
100 - 150 & 0.9898 $\pm$ 0.0017 & 0.9923 $\pm$ 0.0017 & 0.9933 $\pm$ 0.0022 \\ |
358 |
+ |
150 - 200 & 0.9901 $\pm$ 0.0037 & 0.9922 $\pm$ 0.0039 & 0.9950 $\pm$ 0.0050 \\ |
359 |
+ |
200 - 300 & 0.9919 $\pm$ 0.0057 & 1.0000 $\pm$ 0.0000 & 0.9828 $\pm$ 0.0171 \\ |
360 |
+ |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
361 |
+ |
\hline |
362 |
+ |
\hline |
363 |
+ |
DATA ID & & & \\ |
364 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
365 |
+ |
\hline |
366 |
+ |
20 - 30 & 0.9530 $\pm$ 0.0005 & 0.9517 $\pm$ 0.0006 & 0.9369 $\pm$ 0.0008 \\ |
367 |
+ |
30 - 40 & 0.9556 $\pm$ 0.0003 & 0.9519 $\pm$ 0.0003 & 0.9362 $\pm$ 0.0005 \\ |
368 |
+ |
40 - 50 & 0.9584 $\pm$ 0.0002 & 0.9558 $\pm$ 0.0003 & 0.9355 $\pm$ 0.0004 \\ |
369 |
+ |
50 - 60 & 0.9540 $\pm$ 0.0005 & 0.9487 $\pm$ 0.0006 & 0.9314 $\pm$ 0.0010 \\ |
370 |
+ |
60 - 80 & 0.9536 $\pm$ 0.0010 & 0.9466 $\pm$ 0.0012 & 0.9307 $\pm$ 0.0019 \\ |
371 |
+ |
80 - 100 & 0.9505 $\pm$ 0.0028 & 0.9414 $\pm$ 0.0035 & 0.9289 $\pm$ 0.0053 \\ |
372 |
+ |
100 - 150 & 0.9472 $\pm$ 0.0038 & 0.9454 $\pm$ 0.0045 & 0.9149 $\pm$ 0.0079 \\ |
373 |
+ |
150 - 200 & 0.9628 $\pm$ 0.0073 & 0.9675 $\pm$ 0.0089 & 0.8950 $\pm$ 0.0217 \\ |
374 |
+ |
200 - 300 & 0.9463 $\pm$ 0.0157 & 0.9290 $\pm$ 0.0206 & 0.8889 $\pm$ 0.0468 \\ |
375 |
+ |
300 - 10000 & 0.9412 $\pm$ 0.0404 & 1.0000 $\pm$ 0.0000 & 0.4000 $\pm$ 0.2191 \\ |
376 |
+ |
\hline |
377 |
+ |
\hline |
378 |
+ |
DATA ISO & & & \\ |
379 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
380 |
+ |
\hline |
381 |
+ |
20 - 30 & 0.8939 $\pm$ 0.0007 & 0.9144 $\pm$ 0.0008 & 0.9361 $\pm$ 0.0008 \\ |
382 |
+ |
30 - 40 & 0.9598 $\pm$ 0.0002 & 0.9646 $\pm$ 0.0003 & 0.9744 $\pm$ 0.0003 \\ |
383 |
+ |
40 - 50 & 0.9870 $\pm$ 0.0001 & 0.9901 $\pm$ 0.0001 & 0.9920 $\pm$ 0.0002 \\ |
384 |
+ |
50 - 60 & 0.9912 $\pm$ 0.0002 & 0.9933 $\pm$ 0.0002 & 0.9953 $\pm$ 0.0003 \\ |
385 |
+ |
60 - 80 & 0.9920 $\pm$ 0.0004 & 0.9934 $\pm$ 0.0005 & 0.9956 $\pm$ 0.0005 \\ |
386 |
+ |
80 - 100 & 0.9926 $\pm$ 0.0011 & 0.9933 $\pm$ 0.0013 & 0.9955 $\pm$ 0.0014 \\ |
387 |
+ |
100 - 150 & 0.9913 $\pm$ 0.0016 & 0.9949 $\pm$ 0.0015 & 0.9965 $\pm$ 0.0017 \\ |
388 |
+ |
150 - 200 & 0.9969 $\pm$ 0.0022 & 0.9974 $\pm$ 0.0026 & 0.9944 $\pm$ 0.0055 \\ |
389 |
+ |
200 - 300 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
390 |
+ |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
391 |
+ |
\hline |
392 |
+ |
\hline |
393 |
+ |
Scale Factor ID & & & \\ |
394 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
395 |
+ |
\hline |
396 |
+ |
20 - 30 & 0.9853 $\pm$ 0.0007 & 0.9872 $\pm$ 0.0009 & 0.9893 $\pm$ 0.0012 \\ |
397 |
+ |
30 - 40 & 0.9868 $\pm$ 0.0003 & 0.9857 $\pm$ 0.0005 & 0.9911 $\pm$ 0.0007 \\ |
398 |
+ |
40 - 50 & 0.9877 $\pm$ 0.0003 & 0.9866 $\pm$ 0.0004 & 0.9918 $\pm$ 0.0006 \\ |
399 |
+ |
50 - 60 & 0.9851 $\pm$ 0.0007 & 0.9841 $\pm$ 0.0009 & 0.9894 $\pm$ 0.0014 \\ |
400 |
+ |
60 - 80 & 0.9853 $\pm$ 0.0014 & 0.9820 $\pm$ 0.0017 & 0.9949 $\pm$ 0.0028 \\ |
401 |
+ |
80 - 100 & 0.9790 $\pm$ 0.0036 & 0.9763 $\pm$ 0.0046 & 1.0059 $\pm$ 0.0080 \\ |
402 |
+ |
100 - 150 & 0.9786 $\pm$ 0.0049 & 0.9793 $\pm$ 0.0059 & 0.9879 $\pm$ 0.0113 \\ |
403 |
+ |
150 - 200 & 0.9984 $\pm$ 0.0104 & 1.0112 $\pm$ 0.0131 & 0.9894 $\pm$ 0.0323 \\ |
404 |
+ |
200 - 300 & 0.9810 $\pm$ 0.0201 & 0.9896 $\pm$ 0.0284 & 0.9981 $\pm$ 0.0684 \\ |
405 |
+ |
300 - 10000 & 0.9412 $\pm$ 0.0404 & 1.0000 $\pm$ 0.0000 & 0.4000 $\pm$ 0.2191 \\ |
406 |
+ |
\hline |
407 |
+ |
\hline |
408 |
+ |
Scale Factor ISO & & & \\ |
409 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
410 |
+ |
\hline |
411 |
+ |
20 - 30 & 0.9970 $\pm$ 0.0012 & 0.9989 $\pm$ 0.0012 & 1.0068 $\pm$ 0.0013 \\ |
412 |
+ |
30 - 40 & 0.9987 $\pm$ 0.0004 & 1.0014 $\pm$ 0.0004 & 1.0038 $\pm$ 0.0005 \\ |
413 |
+ |
40 - 50 & 0.9994 $\pm$ 0.0002 & 1.0004 $\pm$ 0.0002 & 1.0008 $\pm$ 0.0002 \\ |
414 |
+ |
50 - 60 & 0.9991 $\pm$ 0.0003 & 1.0006 $\pm$ 0.0003 & 1.0013 $\pm$ 0.0004 \\ |
415 |
+ |
60 - 80 & 0.9993 $\pm$ 0.0006 & 0.9997 $\pm$ 0.0006 & 1.0009 $\pm$ 0.0008 \\ |
416 |
+ |
80 - 100 & 1.0006 $\pm$ 0.0016 & 1.0012 $\pm$ 0.0018 & 1.0023 $\pm$ 0.0022 \\ |
417 |
+ |
100 - 150 & 1.0015 $\pm$ 0.0023 & 1.0027 $\pm$ 0.0023 & 1.0032 $\pm$ 0.0028 \\ |
418 |
+ |
150 - 200 & 1.0068 $\pm$ 0.0044 & 1.0053 $\pm$ 0.0047 & 0.9994 $\pm$ 0.0075 \\ |
419 |
+ |
200 - 300 & 1.0081 $\pm$ 0.0058 & 1.0000 $\pm$ 0.0000 & 1.0175 $\pm$ 0.0177 \\ |
420 |
+ |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
421 |
+ |
\hline |
422 |
+ |
\hline |
423 |
+ |
|
424 |
+ |
\end{tabular} |
425 |
+ |
\end{center} |
426 |
+ |
\end{table} |
427 |
+ |
|
428 |
+ |
\begin{figure}[hbt] |
429 |
+ |
\begin{center} |
430 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}% |
431 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf} |
432 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}% |
433 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf} |
434 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}% |
435 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf} |
436 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}% |
437 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf} |
438 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}% |
439 |
+ |
\includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf} |
440 |
+ |
\caption{ |
441 |
+ |
\label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. } |
442 |
+ |
\end{center} |
443 |
+ |
\end{figure} |
444 |
|
|
445 |
< |
\subsubsection{Lepton Selection Efficiency Measurements} |
445 |
> |
\clearpage |
446 |
> |
|
447 |
> |
\begin{table}[htb] |
448 |
> |
\begin{center} |
449 |
> |
\scriptsize |
450 |
> |
\caption{\label{tab:eltnpeff} |
451 |
> |
Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.} |
452 |
> |
\begin{tabular}{c|c|c} |
453 |
> |
|
454 |
> |
%Selection : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0) |
455 |
> |
%Ndata : 3577620 |
456 |
> |
%NMC : 3240624 |
457 |
> |
%ID cut : (leptonSelection&8)==8 |
458 |
> |
%iso cut : (leptonSelection&16)==16 |
459 |
> |
|
460 |
> |
\hline |
461 |
> |
\hline |
462 |
> |
MC ID & & \\ |
463 |
> |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
464 |
> |
\hline |
465 |
> |
20 - 30 & 0.8156 $\pm$ 0.0008 & 0.6565 $\pm$ 0.0019 \\ |
466 |
> |
30 - 40 & 0.8670 $\pm$ 0.0004 & 0.7450 $\pm$ 0.0010 \\ |
467 |
> |
40 - 50 & 0.8922 $\pm$ 0.0003 & 0.7847 $\pm$ 0.0008 \\ |
468 |
> |
50 - 60 & 0.9023 $\pm$ 0.0006 & 0.7956 $\pm$ 0.0018 \\ |
469 |
> |
60 - 80 & 0.9097 $\pm$ 0.0011 & 0.8166 $\pm$ 0.0034 \\ |
470 |
> |
80 - 100 & 0.9203 $\pm$ 0.0028 & 0.8196 $\pm$ 0.0090 \\ |
471 |
> |
100 - 150 & 0.9162 $\pm$ 0.0037 & 0.8378 $\pm$ 0.0117 \\ |
472 |
> |
150 - 200 & 0.9106 $\pm$ 0.0087 & 0.8111 $\pm$ 0.0292 \\ |
473 |
> |
200 - 300 & 0.9304 $\pm$ 0.0119 & 0.9153 $\pm$ 0.0363 \\ |
474 |
> |
300 - 10000 & 0.8684 $\pm$ 0.0388 & 0.8000 $\pm$ 0.1789 \\ |
475 |
> |
\hline |
476 |
> |
\hline |
477 |
> |
MC ISO & & \\ |
478 |
> |
|
479 |
> |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
480 |
> |
\hline |
481 |
> |
20 - 30 & 0.9245 $\pm$ 0.0006 & 0.9466 $\pm$ 0.0011 \\ |
482 |
> |
30 - 40 & 0.9682 $\pm$ 0.0002 & 0.9741 $\pm$ 0.0004 \\ |
483 |
> |
40 - 50 & 0.9876 $\pm$ 0.0001 & 0.9883 $\pm$ 0.0002 \\ |
484 |
> |
50 - 60 & 0.9909 $\pm$ 0.0002 & 0.9912 $\pm$ 0.0005 \\ |
485 |
> |
60 - 80 & 0.9916 $\pm$ 0.0004 & 0.9930 $\pm$ 0.0008 \\ |
486 |
> |
80 - 100 & 0.9915 $\pm$ 0.0010 & 0.9908 $\pm$ 0.0025 \\ |
487 |
> |
100 - 150 & 0.9929 $\pm$ 0.0012 & 0.9894 $\pm$ 0.0035 \\ |
488 |
> |
150 - 200 & 0.9919 $\pm$ 0.0029 & 0.9932 $\pm$ 0.0068 \\ |
489 |
> |
200 - 300 & 0.9953 $\pm$ 0.0033 & 1.0000 $\pm$ 0.0000 \\ |
490 |
> |
300 - 10000 & 1.0000 $\pm$ 0.0000 & 1.0000 $\pm$ 0.0000 \\ |
491 |
> |
\hline |
492 |
> |
\hline |
493 |
> |
DATA ID & & \\ |
494 |
> |
|
495 |
> |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
496 |
> |
\hline |
497 |
> |
20 - 30 & 0.8145 $\pm$ 0.0008 & 0.6528 $\pm$ 0.0018 \\ |
498 |
> |
30 - 40 & 0.8676 $\pm$ 0.0004 & 0.7462 $\pm$ 0.0010 \\ |
499 |
> |
40 - 50 & 0.8955 $\pm$ 0.0003 & 0.7922 $\pm$ 0.0008 \\ |
500 |
> |
50 - 60 & 0.9049 $\pm$ 0.0006 & 0.8072 $\pm$ 0.0018 \\ |
501 |
> |
60 - 80 & 0.9110 $\pm$ 0.0011 & 0.8212 $\pm$ 0.0035 \\ |
502 |
> |
80 - 100 & 0.9156 $\pm$ 0.0028 & 0.8358 $\pm$ 0.0091 \\ |
503 |
> |
100 - 150 & 0.9257 $\pm$ 0.0036 & 0.8507 $\pm$ 0.0116 \\ |
504 |
> |
150 - 200 & 0.9186 $\pm$ 0.0084 & 0.8929 $\pm$ 0.0292 \\ |
505 |
> |
200 - 300 & 0.9106 $\pm$ 0.0149 & 0.7576 $\pm$ 0.0746 \\ |
506 |
> |
300 - 10000 & 0.9400 $\pm$ 0.0336 & 1.0000 $\pm$ 0.0000 \\ |
507 |
> |
\hline |
508 |
> |
\hline |
509 |
> |
DATA ISO & & \\ |
510 |
> |
|
511 |
> |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
512 |
> |
\hline |
513 |
> |
20 - 30 & 0.9201 $\pm$ 0.0006 & 0.9419 $\pm$ 0.0011 \\ |
514 |
> |
30 - 40 & 0.9667 $\pm$ 0.0002 & 0.9734 $\pm$ 0.0004 \\ |
515 |
> |
40 - 50 & 0.9872 $\pm$ 0.0001 & 0.9892 $\pm$ 0.0002 \\ |
516 |
> |
50 - 60 & 0.9904 $\pm$ 0.0002 & 0.9922 $\pm$ 0.0004 \\ |
517 |
> |
60 - 80 & 0.9923 $\pm$ 0.0004 & 0.9916 $\pm$ 0.0009 \\ |
518 |
> |
80 - 100 & 0.9914 $\pm$ 0.0010 & 0.9921 $\pm$ 0.0024 \\ |
519 |
> |
100 - 150 & 0.9945 $\pm$ 0.0011 & 1.0000 $\pm$ 0.0000 \\ |
520 |
> |
150 - 200 & 0.9908 $\pm$ 0.0031 & 1.0000 $\pm$ 0.0000 \\ |
521 |
> |
200 - 300 & 0.9941 $\pm$ 0.0042 & 1.0000 $\pm$ 0.0000 \\ |
522 |
> |
300 - 10000 & 0.9792 $\pm$ 0.0206 & 1.0000 $\pm$ 0.0000 \\ |
523 |
> |
\hline |
524 |
> |
\hline |
525 |
> |
Scale Factor ID & & \\ |
526 |
> |
|
527 |
> |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
528 |
> |
\hline |
529 |
> |
20 - 30 & 0.9987 $\pm$ 0.0014 & 0.9944 $\pm$ 0.0040 \\ |
530 |
> |
30 - 40 & 1.0007 $\pm$ 0.0006 & 1.0015 $\pm$ 0.0019 \\ |
531 |
> |
40 - 50 & 1.0036 $\pm$ 0.0005 & 1.0096 $\pm$ 0.0015 \\ |
532 |
> |
50 - 60 & 1.0029 $\pm$ 0.0010 & 1.0146 $\pm$ 0.0031 \\ |
533 |
> |
60 - 80 & 1.0014 $\pm$ 0.0018 & 1.0057 $\pm$ 0.0060 \\ |
534 |
> |
80 - 100 & 0.9949 $\pm$ 0.0043 & 1.0197 $\pm$ 0.0158 \\ |
535 |
> |
100 - 150 & 1.0104 $\pm$ 0.0057 & 1.0154 $\pm$ 0.0198 \\ |
536 |
> |
150 - 200 & 1.0087 $\pm$ 0.0134 & 1.1008 $\pm$ 0.0535 \\ |
537 |
> |
200 - 300 & 0.9786 $\pm$ 0.0203 & 0.8277 $\pm$ 0.0879 \\ |
538 |
> |
300 - 10000 & 1.0824 $\pm$ 0.0619 & 1.2500 $\pm$ 0.2795 \\ |
539 |
> |
\hline |
540 |
> |
\hline |
541 |
> |
Scale Factor ISO & & \\ |
542 |
> |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
543 |
> |
\hline |
544 |
> |
20 - 30 & 0.9952 $\pm$ 0.0009 & 0.9950 $\pm$ 0.0016 \\ |
545 |
> |
30 - 40 & 0.9984 $\pm$ 0.0003 & 0.9992 $\pm$ 0.0006 \\ |
546 |
> |
40 - 50 & 0.9996 $\pm$ 0.0002 & 1.0009 $\pm$ 0.0003 \\ |
547 |
> |
50 - 60 & 0.9995 $\pm$ 0.0003 & 1.0009 $\pm$ 0.0006 \\ |
548 |
> |
60 - 80 & 1.0006 $\pm$ 0.0005 & 0.9985 $\pm$ 0.0012 \\ |
549 |
> |
80 - 100 & 0.9999 $\pm$ 0.0014 & 1.0013 $\pm$ 0.0035 \\ |
550 |
> |
100 - 150 & 1.0016 $\pm$ 0.0016 & 1.0108 $\pm$ 0.0036 \\ |
551 |
> |
150 - 200 & 0.9989 $\pm$ 0.0042 & 1.0068 $\pm$ 0.0069 \\ |
552 |
> |
200 - 300 & 0.9987 $\pm$ 0.0053 & 1.0000 $\pm$ 0.0000 \\ |
553 |
> |
300 - 10000 & 0.9792 $\pm$ 0.0206 & 1.0000 $\pm$ 0.0000 \\ |
554 |
> |
\hline |
555 |
> |
\hline |
556 |
> |
|
557 |
> |
\end{tabular} |
558 |
> |
\end{center} |
559 |
> |
\end{table} |
560 |
|
|
561 |
< |
[TO BE UDPATED WITH T\&P STUDIES ON ID,ISO EFFICIENCIES] |
561 |
> |
\begin{figure}[hbt] |
562 |
> |
\begin{center} |
563 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}% |
564 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf} |
565 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}% |
566 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf} |
567 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}% |
568 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf} |
569 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}% |
570 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf} |
571 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}% |
572 |
> |
\includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf} |
573 |
> |
\caption{ |
574 |
> |
\label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. } |
575 |
> |
\end{center} |
576 |
> |
\end{figure} |
577 |
|
|
578 |
+ |
\clearpage |
579 |
|
|
580 |
< |
\subsubsection{Trigger Efficiency Measurements} |
580 |
> |
|
581 |
> |
\subsection{Trigger Efficiency Measurements} |
582 |
> |
\label{sec:trg} |
583 |
|
|
584 |
|
In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe |
585 |
|
approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single |
586 |
|
lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV |
587 |
< |
in order to measure the \pt\ turn-on curve. The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV. |
587 |
> |
in order to measure the \pt\ turn-on curve. The tag-probe pair is |
588 |
> |
required to have opposite-sign and an invariant mass in the range |
589 |
> |
76--106 GeV. |
590 |
> |
|
591 |
|
The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons). |
592 |
< |
These trigger efficiencies will be applied to the MC when used to predict data yields selected by single lepton triggers. [THESE TRIGGER EFFICIENCIES TO BE APPLIED TO MC] |
592 |
> |
These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers. |
593 |
|
|
594 |
|
|
595 |
|
\begin{figure}[!ht] |
614 |
|
Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.} |
615 |
|
\begin{tabular}{c|c|c|c} |
616 |
|
|
617 |
+ |
% Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072) |
618 |
+ |
% Probe trigger : HLT_IsoMu24_probe > 0 |
619 |
+ |
% Total data yield : 5161723 |
620 |
+ |
|
621 |
|
\hline |
622 |
|
\hline |
623 |
|
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
653 |
|
Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.} |
654 |
|
\begin{tabular}{c|c|c} |
655 |
|
|
656 |
+ |
% Selection : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16) |
657 |
+ |
% Probe trigger : HLT_Ele27_WP80_probe > 0 |
658 |
+ |
% Total data yield : 3405966 |
659 |
+ |
|
660 |
|
\hline |
661 |
|
\hline |
662 |
|
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |