ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex (file contents):
Revision 1.3 by benhoob, Fri Jun 29 18:23:24 2012 UTC vs.
Revision 1.29 by linacre, Fri Oct 12 21:56:02 2012 UTC

# Line 1 | Line 1
1 + Here we define the selections of leptons, jets, and \met.
2 + We also describe our measurements of the lepton and trigger efficiency.
3 + The analysis uses several different Control Regions (CRs) in addition
4 + to the Signal
5 + Regions (SRs).
6 + All of these different regions are defined in this section.
7 + This section also includes some information on the basic MC
8 + corrections that we apply.  
9 + %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
10  
11 + \subsection{Single Lepton Selection}
12 + \label{sec:singlelepselection}
13  
14 < The preselection sample is based on the following criteria
14 > The single lepton selection is based on the following criteria, starting from the requirements described
15 > on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} (revision r20)
16   \begin{itemize}
17   \item satisfy the trigger requirement (see
18 <  Table.~\ref{tab:DatasetsData})
18 >  Table~\ref{tab:TrigData}).
19 > Note that the analysis triggers are inclusive single lepton triggers.
20 > Dilepton triggers are used only for the dilepton control region.
21   \item select events with one high \pt\ electron or muon, requiring
22    \begin{itemize}
23 <  \item $\pt>30~\GeVc$ and $|\eta|<2.5(2.1)$ for \E(\M)
24 <  \item satisfy the identification and isolation requirements detailed
25 <    in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign
26 <    SUSY analysis (SUS-11-011) for muons
23 >  \item $\pt>30~\GeVc$  and $|\eta|<1.4442 (2.1)$ for electrons (muons). The restriction to the barrel for electrons
24 > is motivated by an observed excess of events with large \mt\ with endcap electrons in the b-veto control region,
25 > and does not significantly reduce the signal acceptance since the leptons tend to be central.
26 >  \item muon ID criteria is based on the 2012 POG recommended tight working point
27 >  \item electron ID critera is based on the 2012 POG recommended medium working point
28 >  \item PF-based isolation ($\Delta R < 0.3$) relative isolation $<$ 0.15 and absolute isolation $<$ 5~GeV. PU corrections
29 > are performed with the $\Delta\beta$ scheme for muons and effective-area fastjet rho scheme for electrons (as recommended by the relevant POGs).
30 >  \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
31 >  \item $E/p_{\rm{in}} < 4$ (electrons only)
32 >  \item We remove electron events with $\met > 50$ GeV and $M_T > 100$
33 >    GeV with at least one crystal in the supercluster with laser
34 >    correction $>$2.\footnote{This is an ad-hoc removal based on
35 >      run-event numbers, since the
36 >      problem was found very recently and the filter was not available
37 >      when we processed the events.}
38    \end{itemize}
39    \item require at least 4 PF jets in the event with $\pt>30~\GeV$
40 <    within $|\eta|<2.5$, out of which at least 1 is b-tagged based on
41 <    the SSV medium working point.
42 <  \item require moderate $\met>50~\GeV$
40 >    within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
41 >    medium working point b-tagging requirement
42 >  \item require moderate $\met>50~\GeV$  (type1-corrected pfmet with $\phi$ corrections applied as described in Sec.~\ref{sec:JetMet}).
43 > \item Isolated track veto, see Section~\ref{sec:tkveto}
44 >
45   \end{itemize}
46  
47 < Currently, we focus on the muon channel because it is cleaner (the QCD contribution is negligible)
48 < and the triggers are simpler (we use single muon triggers, as opposed to electron + 3-jet triggers).
49 < We will add the electron channel, time permitting. However, since this is a systematics-dominated
50 < analysis, increasing the statistics by adding the electrons is not expected to significantly improve
51 < the sensitivity, especialy because the electron selection efficiency is smaller and the systematic
52 < uncertainty associated with the QCD background is larger.
47 > %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
48 >
49 > %\begin{table}[!h]
50 > %\begin{center}
51 > %\begin{tabular}{c|c}
52 > %\hline
53 > %\hline
54 > %\end{tabular}
55 > %\caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
56 > %\end{center}
57 > %\end{table}
58 >
59 > \subsection{Isolated track veto}
60 > \label{sec:tkveto}
61 >
62 > The isolated track veto is intended to remove top dilepton events.
63 > Looking for an isolated track is an effective way of identifying $W
64 > \to e$, $W \to \mu$, $W \to \tau \to \ell$, and $W \to \tau \to
65 > h^{\pm} + n\pi^{0}$.  The requirements on the track are
66  
27 A benchmark signal region is selected by tightening the \met\ and
28 adding an \mt\ requirement
67   \begin{itemize}
68 < \item $\met>100~\GeV$
69 < \item $\mt>150~\GeV$
68 > \item $P_T > 10$ GeV
69 > \item Relative track isolation $< 10\%$  computed from charged PF
70 >  candidates with dZ $<$ 0.05 cm from the primary vertex.
71   \end{itemize}
72  
34 {\bf We have not looked at the data in the signal region after the first 1 fb$^{-1}$ of data.}
73  
74 < \subsection{Corrections to Jets and \met}
74 > \subsection{Signal Region Selection}
75 > \label{sec:SR}
76  
77 < The official recommendations from the Jet/MET group are used for
78 < the data and MC samples. In particular, the jet
79 < energy corrections (JEC) are updated using the official recipe.
80 < L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
42 < based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for
43 < data (MC). In addition, these jet energy corrections are propagated to
44 < the \met\ calculation, following the official prescription for
45 < deriving the Type I corrections. It may be noted that events with
46 < anomalous ``rho'' pile-up corrections are excluded from the sample since these
47 < correspond to events with unphysically large \met\ and \mt\ tail
48 < signal region (see Figure~\ref{fig:mtrhocomp}). An additional correction to remove
49 < the $\phi$-modulation observed in the \met\ is included, improving
50 < the agreement between the data and the MC, as shown in
51 < Figure~\ref{fig:metphicomp}. This correction has an effect on this analysis,
52 < since the azimuthal angle enters the \mt\ distribution.
77 > The signal regions (SRs) are selected to improve the sensitivity for the
78 > single lepton requirements and cover a range of scalar top
79 > scenarios. The \mt\ and \met\ variables are used to define the signal
80 > regions and the requirements are listed in Table~\ref{tab:srdef}.
81  
82 < \clearpage
82 > \begin{table}[!h]
83 > \begin{center}
84 > \begin{tabular}{l|c|c}
85 > \hline
86 > Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
87 > \hline
88 > \hline
89 > SRA & 150 & 100 \\
90 > SRB & 120 & 150 \\
91 > SRC & 120 & 200 \\
92 > SRD & 120 & 250 \\
93 > SRE & 120 & 300 \\
94 > SRF & 120 & 350 \\
95 > SRG & 120 & 400 \\
96 > \hline
97 > \end{tabular}
98 > \caption{ Signal region definitions based on \mt\ and \met\
99 >  requirements. These requirements are applied in addition to the
100 >  baseline single lepton selection.
101 > \label{tab:srdef}}
102 > \end{center}
103 > \end{table}
104  
105 < \begin{figure}[!ht]
106 <  \begin{center}
107 <        \includegraphics[width=0.5\linewidth]{plots/mt_rho_comp.png}
108 <        \caption{ \label{fig:mtrhocomp}%\protect
109 <          Comparison of the \mt\ distribution for events with
110 <          unphysical energy corrections ($\rho <0$ or $ \rho > 40$, where $\rho$ is a
62 <          measure of the average pileup energy density) and the
63 <          nominal sample. Events with large pileup corrections
64 <          correspond to noisy events. Since this correction is applied
65 <          to the jets and propagated to the \met, these events have
66 <          anomalously large \met\ and populate the \mt\ tail. These
67 <          pathological events are excluded from the analysis sample.}
68 <  \end{center}
69 < \end{figure}
105 > Table~\ref{tab:srrawmcyields} shows the expected number of SM
106 > background yields for the SRs. A few stop signal yields for four
107 > values of the parameters are also shown for comparison. The signal
108 > regions with looser requirements are sensitive to lower stop masses
109 > M(\sctop), while those with tighter requirements are more sensitive to
110 > higher M(\sctop).
111  
112 < \begin{figure}[!hb]
113 <  \begin{center}
114 <        \includegraphics[width=0.5\linewidth]{plots/metphi.pdf}%
115 <        \includegraphics[width=0.5\linewidth]{plots/metphi_phicorr.pdf}
116 <        \caption{ \label{fig:metphicomp}%\protect
117 <          The PF \met\ $\phi$ distribution (left) exhibits a
118 <          modulation. After applying a dedicated correction, the
119 <          azimuthal dependence is reduced (right).}
120 <  \end{center}
121 < \end{figure}
112 > \begin{table}[!h]
113 > \begin{center}
114 > \footnotesize
115 > \begin{tabular}{l||c|c|c|c|c|c|c}
116 > \hline
117 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
118 > \hline
119 > \hline
120 > \ttdl\           & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$& $7 \pm 1$& $4 \pm 1$ \\
121 > \ttsl\ \& single top (1\Lep)             & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$& $1 \pm 1$& $1 \pm 0$ \\
122 > \wjets\                  & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$& $0 \pm 0$& $0 \pm 0$ \\
123 > Rare             & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$& $2 \pm 0$& $1 \pm 0$ \\
124 > \hline
125 > Total            & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$& $10 \pm 1$& $6 \pm 1$ \\
126 > \hline
127 > Yield UL (optimistic)  & 147 (10\%) & 94 (10\%)  & 47 (15\%) & 25 (20\%) & 14 (25\%) & 8.6 (30\%) & 7.5 (50\%)  \\
128 > Yield UL (pessimistic) & 200 (15\%) & 152 (20\%) & 64 (25\%) & 30 (30\%) & 15 (35\%) & 9.7 (50\%) & 8.2 (100\%) \\
129 > \hline
130 > T2tt m(stop) = 250 m($\chi^0$) = 0 & $315 \pm 18$& $193 \pm 14$& $53 \pm 8$& $13 \pm 4$& $2 \pm 2$& $0 \pm 0$& $0 \pm 0$ \\ \hline
131 > T2tt m(stop) = 300 m($\chi^0$) = 50 & $296 \pm 11$& $236 \pm 10$& $88 \pm 6$& $28 \pm 3$& $10 \pm 2$& $2 \pm 1$& $0 \pm 0$ \\ \hline
132 > T2tt m(stop) = 300 m($\chi^0$) = 100 & $128 \pm 7$& $93 \pm 6$& $29 \pm 3$& $10 \pm 2$& $5 \pm 1$& $2 \pm 1$& $1 \pm 1$ \\ \hline
133 > T2tt m(stop) = 350 m($\chi^0$) = 0 & $224 \pm 6$& $206 \pm 6$& $119 \pm 4$& $52 \pm 3$& $20 \pm 2$& $8 \pm 1$& $3 \pm 1$ \\ \hline
134 > T2tt m(stop) = 450 m($\chi^0$) = 0 & $71 \pm 2$& $71 \pm 2$& $53 \pm 1$& $36 \pm 1$& $21 \pm 1$& $11 \pm 1$& $5 \pm 0$ \\
135 > \hline
136 > \end{tabular}
137 > \caption{ Expected SM background contributions and signal yields for a few sample points,
138 > including both muon and electron channels. This is ``dead reckoning'' MC with no
139 > correction. It is meant only as a general guide. The uncertainties are statistical only.
140 > The signal yield expected upper limits are also shown for two values of the total background systematic uncertainty, indicated in parentheses.
141 > %[{\bf VERENA} THESE SIGNAL YIELDS NEED TO BE UPDATED. Do you have a point with larger stop mass to illustrate why we use SRF and SRG? ].
142 > %HOOBERMAN
143 > \label{tab:srrawmcyields}}
144 > \end{center}
145 > \end{table}
146  
147 < \clearpage
147 > \subsection{Control Region Selection}
148 > \label{sec:CRsel}
149  
150 < \subsection{Branching Fraction Correction}
150 > Control regions (CRs) are used to validate the background estimation
151 > procedure and derive systematic uncertainties for some
152 > contributions. The CRs are selected to have similar
153 > kinematics to the SRs, but have a different requirement in terms of
154 > number of b-tags and number of leptons, thus enhancing them in
155 > different SM contributions. The four CRs used in this analysis are
156 > summarized in Table~\ref{tab:crdef}.  
157 >
158 > \begin{table}
159 > \begin{center}
160 > {\small
161 > \begin{tabular}{l|c|c|c}
162 > \hline
163 > Selection       & \multirow{2}{*}{exactly 1 lepton}     & \multirow{2}{*}{exactly 2
164 >        leptons}                & \multirow{2}{*}{1 lepton + isolated
165 >        track}\\
166 >      Criteria & & & \\
167 > \hline
168 > \hline
169 > \multirow{4}{*}{0 b-tags}        
170 > &        CR1) W+Jets dominated:
171 > &        CR2) apply \Z-mass constraint                  
172 > &        CR3) not used \\  
173 > &        
174 > &       $\rightarrow$ Z+Jets dominated: Validate
175 > &      \\
176 > &      Validate W+Jets \mt\ tail
177 > &        \ttsl\ \mt\ tail comparing
178 > &        \\  
179 > &
180 > &        data vs. MC ``pseudo-\mt ''
181 > &        \\  
182 > \hline
183 > \multirow{4}{*}{$\ge$ 1 b-tags}          
184 > &      
185 > &       CR4) Apply \Z-mass veto
186 > &      CR5) \ttdl, \ttlt\ and \\
187 > &     SIGNAL
188 > &      $\rightarrow$ \ttdl\ dominated: Validate
189 > &       \ttlf\ dominated:  Validate \\
190 > &     REGION
191 > &      ``physics'' modelling of \ttdl\    
192 > &      \Tau\  and fake lepton modeling/\\
193 > &
194 > &
195 > &      detector effects in \ttdl\     \\
196 > \hline
197 > \end{tabular}
198 > }
199 > \caption{Summary of signal and control regions.
200 >  \label{tab:crdef}%\protect
201 > }
202 > \end{center}
203 > \end{table}
204 >
205 > \subsection{Definition of $M_T$ peak region}
206 > \label{sec:mtpeakdef}
207 >
208 > This region is defined as $50 < M_T < 80$ GeV.
209 >
210 >
211 > \subsection{Default \ttbar\  MC sample}
212 >
213 > Our default \ttbar\ MC sample is Powheg.
214 >
215 > \subsection{MC Corrections}
216 > \label{sec:MCCorr}
217 >
218 > All MC samples are corrected for trigger efficiency.  In the case of
219 > single lepton selections, we apply the $P_T$ and $\eta$-dependent
220 > scale factors that we measure ourselves, see Section~\ref{sec:trg}.
221 > In the case of dilepton selections that require the dilepton triggers,
222 > we apply overall scale factors of 0.95, 0.88, and 0.92 for $ee$,
223 > $\mu\mu$,
224 > and $e\mu$ respectively~\cite{didar}.
225  
226   The leptonic branching fraction used in some of the \ttbar\ MC samples
227   differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
228 < Table.~\ref{tab:wlepbf} summarizes the branching fractions used in
228 > Table~\ref{tab:wlepbf} summarizes the branching fractions used in
229   the generation of the various \ttbar\ MC samples.
230   For \ttbar\ samples with the incorrect leptonic branching fraction, event
231   weights are applied based on the number of true leptons and the ratio
# Line 98 | Line 238 | of the corrected and incorrect branching
238           \ttbar\ Sample - Event Generator & Leptonic Branching Fraction\\
239   \hline
240   \hline
241 < Madgraph   &       0.111\\
242 < MC@NLO    &       0.111\\
243 < Pythia         &       0.108\\
241 > Madgraph     &       0.111\\
242 > MC@NLO       &       0.111\\
243 > Pythia       &       0.108\\
244   Powheg       &       0.108\\
245   \hline
246   \end{tabular}
247   \caption{Leptonic branching fractions for the various \ttbar\ samples
248 <  used in the analysis. The primary \ttbar\ MC sample produced with
249 <  Madgraph has a branching fraction that is almost $3\%$ higher than
248 >  used in the analysis. The \ttbar\ MC samples produced with
249 >  Madgraph and MC@NLO has a branching fraction that is almost $3\%$ higher than
250    the PDG value. \label{tab:wlepbf}}
251   \end{center}
252   \end{table}
253  
254 + All \ttbar\ dilepton samples are corrected (when needed and
255 + appropriate)
256 + in order to have the correct jet multiplicity distribution.  This
257 + correction procedure is described in Section~\ref{sec:jetmultiplicity}.
258 +
259 +
260 + \subsubsection{Corrections to Jets and \met}
261 + \label{sec:JetMet}
262 +
263 + The official recommendations from the Jet/MET group are used for
264 + the data and MC samples. In particular, the jet
265 + energy corrections (JEC) are updated using the official recipe.
266 + L1FastL2L3Residual (L1FastL2L3) corrections are applied for data (MC),
267 + based on the global tags GR\_R\_52\_V9 (START52\_V9B) for
268 + data (MC). In addition, these jet energy corrections are propagated to
269 + the \met\ calculation, following the official prescription for
270 + deriving the Type I corrections.
271 +
272 + Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
273 + correspond to events with unphysically large \met\ and \mt.
274 + %tail signal region.
275 + In addition, the recommended MET filters are applied.
276 + A correction to remove the $\phi$ modulation in \met\ is also applied
277 + to the data.
278 +
279 +
280 + \subsection{Lepton Selection Efficiency Measurements}
281 + \label{sec:lepEff}
282 +
283 + In this section we measure the identification and isolation efficiencies for muons and electrons in data and MC using tag-and-probe studies.
284 + The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
285 + lepton trigger, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons.
286 + The probe is required to have $|\eta|<2.1$ and \pt\ $>$ 20 GeV. To measure the identification efficiency we require the probe to pass the isolation requirement,
287 + to measure the isolation efficiency we require the probe to pass the
288 + identification requirement.
289 +
290 + The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
291 + In order to suppress lepton pairs from sources other than Z boson
292 + decays, we require the event to have \met\ $<$ 30 GeV and no b-tagged
293 + jets (CSV loose working point).
294 +
295 + The muon efficiencies are summarized in Table~\ref{tab:mutnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:mutnpeff} for
296 + several different jet multiplicity requirements.
297 + We currently observe good agreement for muons with \pt\ up to about 300 GeV.
298 + For high \pt\ muons we observe a source of background in the data with large impact parameters, which we suppress by requiring muon $d_0<0.02$~cm and $d_Z<0.5$~cm.
299 + %For muons with \pt\ $>$ 200 GeV the data efficiency
300 + %begins to drop, and the effect is especially pronounced for muons with \pt\ $>$ 300 GeV.
301 + We are currently investigating the source of this inefficiency.
302 + The electron efficiencies are summarized in Table~\ref{tab:eltnpeff} for inclusive events (i.e. no jet requirements). These efficiencies are displayed in Fig.~\ref{fig:eltnpeff}
303 + for several different jet multiplicity requirements. In general we observe good agreement between the data and MC identification and isolation efficiencies.
304 +
305 + % Pending a better understanding of the very high \pt\ muon efficiency,
306 + We
307 + do not correct the MC for differences in lepton efficiency.  In the
308 + background calculation, we do not take any systematics due to lepton
309 + selection
310 + efficiency uncertainties.  This is because all backgrounds except the
311 + rare MC background are normalized to the $M_T$ peak, thus the lepton
312 + identification uncertainty cancels out.  For the rare MC these
313 + uncertainties
314 + are negligible compared to the assumed cross-section uncertainty
315 + (Section~\ref{sec:bkg_other}).
316 +
317 +
318 +
319 +
320 + \begin{table}[htb]
321 + \begin{center}
322 + \scriptsize
323 + \caption{\label{tab:mutnpeff}
324 + Summary of the data and MC muon identification and isolation efficiencies measured with tag-and-probe studies.}
325 + \begin{tabular}{c|c|c|c}
326 +
327 + %Selection  : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0)
328 + %Ndata      : 4751710
329 + %NMC        : 4127153
330 +
331 + \hline
332 + \hline
333 + MC ID & & & \\
334 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
335 + \hline
336 +    20 -   30  &        0.9672 $\pm$ 0.0005 &   0.9640 $\pm$ 0.0006 &   0.9471 $\pm$ 0.0008 \\
337 +    30 -   40  &        0.9684 $\pm$ 0.0002 &   0.9657 $\pm$ 0.0003 &   0.9446 $\pm$ 0.0004 \\
338 +    40 -   50  &        0.9704 $\pm$ 0.0002 &   0.9687 $\pm$ 0.0002 &   0.9432 $\pm$ 0.0004 \\
339 +    50 -   60  &        0.9684 $\pm$ 0.0005 &   0.9640 $\pm$ 0.0005 &   0.9414 $\pm$ 0.0009 \\
340 +    60 -   80  &        0.9678 $\pm$ 0.0009 &   0.9640 $\pm$ 0.0010 &   0.9354 $\pm$ 0.0018 \\
341 +    80 -  100  &        0.9709 $\pm$ 0.0021 &   0.9642 $\pm$ 0.0027 &   0.9234 $\pm$ 0.0051 \\
342 +   100 -  150  &        0.9679 $\pm$ 0.0029 &   0.9654 $\pm$ 0.0035 &   0.9261 $\pm$ 0.0069 \\
343 +   150 -  200  &        0.9643 $\pm$ 0.0069 &   0.9568 $\pm$ 0.0088 &   0.9045 $\pm$ 0.0198 \\
344 +   200 -  300  &        0.9647 $\pm$ 0.0116 &   0.9388 $\pm$ 0.0171 &   0.8906 $\pm$ 0.0390 \\
345 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
346 + \hline
347 + \hline
348 + MC ISO  & & & \\
349 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
350 + \hline
351 +    20 -   30  &        0.8966 $\pm$ 0.0007 &   0.9153 $\pm$ 0.0008 &   0.9298 $\pm$ 0.0009 \\
352 +    30 -   40  &        0.9610 $\pm$ 0.0002 &   0.9632 $\pm$ 0.0003 &   0.9707 $\pm$ 0.0003 \\
353 +    40 -   50  &        0.9876 $\pm$ 0.0001 &   0.9897 $\pm$ 0.0001 &   0.9912 $\pm$ 0.0002 \\
354 +    50 -   60  &        0.9921 $\pm$ 0.0002 &   0.9927 $\pm$ 0.0003 &   0.9939 $\pm$ 0.0003 \\
355 +    60 -   80  &        0.9927 $\pm$ 0.0004 &   0.9937 $\pm$ 0.0004 &   0.9947 $\pm$ 0.0005 \\
356 +    80 -  100  &        0.9920 $\pm$ 0.0012 &   0.9921 $\pm$ 0.0013 &   0.9932 $\pm$ 0.0016 \\
357 +   100 -  150  &        0.9898 $\pm$ 0.0017 &   0.9923 $\pm$ 0.0017 &   0.9933 $\pm$ 0.0022 \\
358 +   150 -  200  &        0.9901 $\pm$ 0.0037 &   0.9922 $\pm$ 0.0039 &   0.9950 $\pm$ 0.0050 \\
359 +   200 -  300  &        0.9919 $\pm$ 0.0057 &   1.0000 $\pm$ 0.0000 &   0.9828 $\pm$ 0.0171 \\
360 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
361 + \hline
362 + \hline
363 + DATA ID & & & \\
364 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
365 + \hline
366 +    20 -   30  &        0.9530 $\pm$ 0.0005 &   0.9517 $\pm$ 0.0006 &   0.9369 $\pm$ 0.0008 \\
367 +    30 -   40  &        0.9556 $\pm$ 0.0003 &   0.9519 $\pm$ 0.0003 &   0.9362 $\pm$ 0.0005 \\
368 +    40 -   50  &        0.9584 $\pm$ 0.0002 &   0.9558 $\pm$ 0.0003 &   0.9355 $\pm$ 0.0004 \\
369 +    50 -   60  &        0.9540 $\pm$ 0.0005 &   0.9487 $\pm$ 0.0006 &   0.9314 $\pm$ 0.0010 \\
370 +    60 -   80  &        0.9536 $\pm$ 0.0010 &   0.9466 $\pm$ 0.0012 &   0.9307 $\pm$ 0.0019 \\
371 +    80 -  100  &        0.9505 $\pm$ 0.0028 &   0.9414 $\pm$ 0.0035 &   0.9289 $\pm$ 0.0053 \\
372 +   100 -  150  &        0.9472 $\pm$ 0.0038 &   0.9454 $\pm$ 0.0045 &   0.9149 $\pm$ 0.0079 \\
373 +   150 -  200  &        0.9628 $\pm$ 0.0073 &   0.9675 $\pm$ 0.0089 &   0.8950 $\pm$ 0.0217 \\
374 +   200 -  300  &        0.9463 $\pm$ 0.0157 &   0.9290 $\pm$ 0.0206 &   0.8889 $\pm$ 0.0468 \\
375 +   300 - 10000  &       0.9412 $\pm$ 0.0404 &   1.0000 $\pm$ 0.0000 &   0.4000 $\pm$ 0.2191 \\
376 + \hline
377 + \hline
378 + DATA ISO  & & & \\
379 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
380 + \hline
381 +    20 -   30  &        0.8939 $\pm$ 0.0007 &   0.9144 $\pm$ 0.0008 &   0.9361 $\pm$ 0.0008 \\
382 +    30 -   40  &        0.9598 $\pm$ 0.0002 &   0.9646 $\pm$ 0.0003 &   0.9744 $\pm$ 0.0003 \\
383 +    40 -   50  &        0.9870 $\pm$ 0.0001 &   0.9901 $\pm$ 0.0001 &   0.9920 $\pm$ 0.0002 \\
384 +    50 -   60  &        0.9912 $\pm$ 0.0002 &   0.9933 $\pm$ 0.0002 &   0.9953 $\pm$ 0.0003 \\
385 +    60 -   80  &        0.9920 $\pm$ 0.0004 &   0.9934 $\pm$ 0.0005 &   0.9956 $\pm$ 0.0005 \\
386 +    80 -  100  &        0.9926 $\pm$ 0.0011 &   0.9933 $\pm$ 0.0013 &   0.9955 $\pm$ 0.0014 \\
387 +   100 -  150  &        0.9913 $\pm$ 0.0016 &   0.9949 $\pm$ 0.0015 &   0.9965 $\pm$ 0.0017 \\
388 +   150 -  200  &        0.9969 $\pm$ 0.0022 &   0.9974 $\pm$ 0.0026 &   0.9944 $\pm$ 0.0055 \\
389 +   200 -  300  &        1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
390 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
391 + \hline
392 + \hline
393 + Scale Factor ID  & & & \\
394 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
395 + \hline
396 +    20 -   30  &        0.9853 $\pm$ 0.0007 &   0.9872 $\pm$ 0.0009 &   0.9893 $\pm$ 0.0012 \\
397 +    30 -   40  &        0.9868 $\pm$ 0.0003 &   0.9857 $\pm$ 0.0005 &   0.9911 $\pm$ 0.0007 \\
398 +    40 -   50  &        0.9877 $\pm$ 0.0003 &   0.9866 $\pm$ 0.0004 &   0.9918 $\pm$ 0.0006 \\
399 +    50 -   60  &        0.9851 $\pm$ 0.0007 &   0.9841 $\pm$ 0.0009 &   0.9894 $\pm$ 0.0014 \\
400 +    60 -   80  &        0.9853 $\pm$ 0.0014 &   0.9820 $\pm$ 0.0017 &   0.9949 $\pm$ 0.0028 \\
401 +    80 -  100  &        0.9790 $\pm$ 0.0036 &   0.9763 $\pm$ 0.0046 &   1.0059 $\pm$ 0.0080 \\
402 +   100 -  150  &        0.9786 $\pm$ 0.0049 &   0.9793 $\pm$ 0.0059 &   0.9879 $\pm$ 0.0113 \\
403 +   150 -  200  &        0.9984 $\pm$ 0.0104 &   1.0112 $\pm$ 0.0131 &   0.9894 $\pm$ 0.0323 \\
404 +   200 -  300  &        0.9810 $\pm$ 0.0201 &   0.9896 $\pm$ 0.0284 &   0.9981 $\pm$ 0.0684 \\
405 +   300 - 10000  &       0.9412 $\pm$ 0.0404 &   1.0000 $\pm$ 0.0000 &   0.4000 $\pm$ 0.2191 \\
406 + \hline
407 + \hline
408 + Scale Factor ISO & & & \\
409 + \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
410 + \hline
411 +    20 -   30  &        0.9970 $\pm$ 0.0012 &   0.9989 $\pm$ 0.0012 &   1.0068 $\pm$ 0.0013 \\
412 +    30 -   40  &        0.9987 $\pm$ 0.0004 &   1.0014 $\pm$ 0.0004 &   1.0038 $\pm$ 0.0005 \\
413 +    40 -   50  &        0.9994 $\pm$ 0.0002 &   1.0004 $\pm$ 0.0002 &   1.0008 $\pm$ 0.0002 \\
414 +    50 -   60  &        0.9991 $\pm$ 0.0003 &   1.0006 $\pm$ 0.0003 &   1.0013 $\pm$ 0.0004 \\
415 +    60 -   80  &        0.9993 $\pm$ 0.0006 &   0.9997 $\pm$ 0.0006 &   1.0009 $\pm$ 0.0008 \\
416 +    80 -  100  &        1.0006 $\pm$ 0.0016 &   1.0012 $\pm$ 0.0018 &   1.0023 $\pm$ 0.0022 \\
417 +   100 -  150  &        1.0015 $\pm$ 0.0023 &   1.0027 $\pm$ 0.0023 &   1.0032 $\pm$ 0.0028 \\
418 +   150 -  200  &        1.0068 $\pm$ 0.0044 &   1.0053 $\pm$ 0.0047 &   0.9994 $\pm$ 0.0075 \\
419 +   200 -  300  &        1.0081 $\pm$ 0.0058 &   1.0000 $\pm$ 0.0000 &   1.0175 $\pm$ 0.0177 \\
420 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
421 + \hline
422 + \hline
423 +
424 + \end{tabular}
425 + \end{center}
426 + \end{table}
427 +
428 + \begin{figure}[hbt]
429 +  \begin{center}
430 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets0.pdf}%
431 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets0.pdf}
432 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets1.pdf}%
433 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets1.pdf}
434 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets2.pdf}%
435 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets2.pdf}
436 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets3.pdf}%
437 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets3.pdf}
438 +        \includegraphics[width=0.3\linewidth]{plots/mu_id_njets4.pdf}%
439 +        \includegraphics[width=0.3\linewidth]{plots/mu_iso_njets4.pdf}
440 +        \caption{
441 +          \label{fig:mutnpeff} Comparison of the muon identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }  
442 +      \end{center}
443 + \end{figure}
444 +
445 + \clearpage
446 +
447 + \begin{table}[htb]
448 + \begin{center}
449 + \scriptsize
450 + \caption{\label{tab:eltnpeff}
451 + Summary of the data and MC electron identification and isolation efficiencies measured with tag-and-probe studies.}
452 + \begin{tabular}{c|c|c}
453 +
454 + %Selection  : ((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(abs(probe->eta())<2.1))&&(met<30))&&(nbl==0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0)
455 + %Ndata      : 3577620
456 + %NMC        : 3240624
457 + %ID cut     : (leptonSelection&8)==8
458 + %iso cut    : (leptonSelection&16)==16
459 +
460 + \hline
461 + \hline
462 + MC ID & & \\
463 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
464 + \hline
465 +    20 -   30  &        0.8156 $\pm$ 0.0008 &   0.6565 $\pm$ 0.0019 \\
466 +    30 -   40  &        0.8670 $\pm$ 0.0004 &   0.7450 $\pm$ 0.0010 \\
467 +    40 -   50  &        0.8922 $\pm$ 0.0003 &   0.7847 $\pm$ 0.0008 \\
468 +    50 -   60  &        0.9023 $\pm$ 0.0006 &   0.7956 $\pm$ 0.0018 \\
469 +    60 -   80  &        0.9097 $\pm$ 0.0011 &   0.8166 $\pm$ 0.0034 \\
470 +    80 -  100  &        0.9203 $\pm$ 0.0028 &   0.8196 $\pm$ 0.0090 \\
471 +   100 -  150  &        0.9162 $\pm$ 0.0037 &   0.8378 $\pm$ 0.0117 \\
472 +   150 -  200  &        0.9106 $\pm$ 0.0087 &   0.8111 $\pm$ 0.0292 \\
473 +   200 -  300  &        0.9304 $\pm$ 0.0119 &   0.9153 $\pm$ 0.0363 \\
474 +   300 - 10000  &       0.8684 $\pm$ 0.0388 &   0.8000 $\pm$ 0.1789 \\
475 + \hline
476 + \hline
477 + MC ISO  & & \\
478 +
479 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
480 + \hline
481 +    20 -   30  &        0.9245 $\pm$ 0.0006 &   0.9466 $\pm$ 0.0011 \\
482 +    30 -   40  &        0.9682 $\pm$ 0.0002 &   0.9741 $\pm$ 0.0004 \\
483 +    40 -   50  &        0.9876 $\pm$ 0.0001 &   0.9883 $\pm$ 0.0002 \\
484 +    50 -   60  &        0.9909 $\pm$ 0.0002 &   0.9912 $\pm$ 0.0005 \\
485 +    60 -   80  &        0.9916 $\pm$ 0.0004 &   0.9930 $\pm$ 0.0008 \\
486 +    80 -  100  &        0.9915 $\pm$ 0.0010 &   0.9908 $\pm$ 0.0025 \\
487 +   100 -  150  &        0.9929 $\pm$ 0.0012 &   0.9894 $\pm$ 0.0035 \\
488 +   150 -  200  &        0.9919 $\pm$ 0.0029 &   0.9932 $\pm$ 0.0068 \\
489 +   200 -  300  &        0.9953 $\pm$ 0.0033 &   1.0000 $\pm$ 0.0000 \\
490 +   300 - 10000  &       1.0000 $\pm$ 0.0000 &   1.0000 $\pm$ 0.0000 \\
491 + \hline
492 + \hline
493 + DATA ID & & \\
494 +
495 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
496 + \hline
497 +    20 -   30  &        0.8145 $\pm$ 0.0008 &   0.6528 $\pm$ 0.0018 \\
498 +    30 -   40  &        0.8676 $\pm$ 0.0004 &   0.7462 $\pm$ 0.0010 \\
499 +    40 -   50  &        0.8955 $\pm$ 0.0003 &   0.7922 $\pm$ 0.0008 \\
500 +    50 -   60  &        0.9049 $\pm$ 0.0006 &   0.8072 $\pm$ 0.0018 \\
501 +    60 -   80  &        0.9110 $\pm$ 0.0011 &   0.8212 $\pm$ 0.0035 \\
502 +    80 -  100  &        0.9156 $\pm$ 0.0028 &   0.8358 $\pm$ 0.0091 \\
503 +   100 -  150  &        0.9257 $\pm$ 0.0036 &   0.8507 $\pm$ 0.0116 \\
504 +   150 -  200  &        0.9186 $\pm$ 0.0084 &   0.8929 $\pm$ 0.0292 \\
505 +   200 -  300  &        0.9106 $\pm$ 0.0149 &   0.7576 $\pm$ 0.0746 \\
506 +   300 - 10000  &       0.9400 $\pm$ 0.0336 &   1.0000 $\pm$ 0.0000 \\
507 + \hline
508 + \hline
509 + DATA ISO  & & \\
510 +
511 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
512 + \hline
513 +    20 -   30  &        0.9201 $\pm$ 0.0006 &   0.9419 $\pm$ 0.0011 \\
514 +    30 -   40  &        0.9667 $\pm$ 0.0002 &   0.9734 $\pm$ 0.0004 \\
515 +    40 -   50  &        0.9872 $\pm$ 0.0001 &   0.9892 $\pm$ 0.0002 \\
516 +    50 -   60  &        0.9904 $\pm$ 0.0002 &   0.9922 $\pm$ 0.0004 \\
517 +    60 -   80  &        0.9923 $\pm$ 0.0004 &   0.9916 $\pm$ 0.0009 \\
518 +    80 -  100  &        0.9914 $\pm$ 0.0010 &   0.9921 $\pm$ 0.0024 \\
519 +   100 -  150  &        0.9945 $\pm$ 0.0011 &   1.0000 $\pm$ 0.0000 \\
520 +   150 -  200  &        0.9908 $\pm$ 0.0031 &   1.0000 $\pm$ 0.0000 \\
521 +   200 -  300  &        0.9941 $\pm$ 0.0042 &   1.0000 $\pm$ 0.0000 \\
522 +   300 - 10000  &       0.9792 $\pm$ 0.0206 &   1.0000 $\pm$ 0.0000 \\
523 + \hline
524 + \hline
525 + Scale Factor ID  & & \\
526 +
527 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
528 + \hline
529 +    20 -   30  &        0.9987 $\pm$ 0.0014 &   0.9944 $\pm$ 0.0040 \\
530 +    30 -   40  &        1.0007 $\pm$ 0.0006 &   1.0015 $\pm$ 0.0019 \\
531 +    40 -   50  &        1.0036 $\pm$ 0.0005 &   1.0096 $\pm$ 0.0015 \\
532 +    50 -   60  &        1.0029 $\pm$ 0.0010 &   1.0146 $\pm$ 0.0031 \\
533 +    60 -   80  &        1.0014 $\pm$ 0.0018 &   1.0057 $\pm$ 0.0060 \\
534 +    80 -  100  &        0.9949 $\pm$ 0.0043 &   1.0197 $\pm$ 0.0158 \\
535 +   100 -  150  &        1.0104 $\pm$ 0.0057 &   1.0154 $\pm$ 0.0198 \\
536 +   150 -  200  &        1.0087 $\pm$ 0.0134 &   1.1008 $\pm$ 0.0535 \\
537 +   200 -  300  &        0.9786 $\pm$ 0.0203 &   0.8277 $\pm$ 0.0879 \\
538 +   300 - 10000  &       1.0824 $\pm$ 0.0619 &   1.2500 $\pm$ 0.2795 \\
539 + \hline
540 + \hline
541 + Scale Factor ISO & & \\
542 + \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
543 + \hline
544 +    20 -   30  &        0.9952 $\pm$ 0.0009 &   0.9950 $\pm$ 0.0016 \\
545 +    30 -   40  &        0.9984 $\pm$ 0.0003 &   0.9992 $\pm$ 0.0006 \\
546 +    40 -   50  &        0.9996 $\pm$ 0.0002 &   1.0009 $\pm$ 0.0003 \\
547 +    50 -   60  &        0.9995 $\pm$ 0.0003 &   1.0009 $\pm$ 0.0006 \\
548 +    60 -   80  &        1.0006 $\pm$ 0.0005 &   0.9985 $\pm$ 0.0012 \\
549 +    80 -  100  &        0.9999 $\pm$ 0.0014 &   1.0013 $\pm$ 0.0035 \\
550 +   100 -  150  &        1.0016 $\pm$ 0.0016 &   1.0108 $\pm$ 0.0036 \\
551 +   150 -  200  &        0.9989 $\pm$ 0.0042 &   1.0068 $\pm$ 0.0069 \\
552 +   200 -  300  &        0.9987 $\pm$ 0.0053 &   1.0000 $\pm$ 0.0000 \\
553 +   300 - 10000  &       0.9792 $\pm$ 0.0206 &   1.0000 $\pm$ 0.0000 \\
554 + \hline
555 + \hline
556 +
557 + \end{tabular}
558 + \end{center}
559 + \end{table}
560 +
561 + \begin{figure}[hbt]
562 +  \begin{center}
563 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets0.pdf}%
564 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets0.pdf}
565 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets1.pdf}%
566 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets1.pdf}
567 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets2.pdf}%
568 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets2.pdf}
569 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets3.pdf}%
570 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets3.pdf}
571 +        \includegraphics[width=0.3\linewidth]{plots/el_id_njets4.pdf}%
572 +        \includegraphics[width=0.3\linewidth]{plots/el_iso_njets4.pdf}
573 +        \caption{
574 +          \label{fig:eltnpeff} Comparison of the electron identification and isolation efficiencies in data and MC for various jet multiplicity requirements. }  
575 +      \end{center}
576 + \end{figure}
577 +
578 + \clearpage
579 +
580 +
581 + \subsection{Trigger Efficiency Measurements}
582 + \label{sec:trg}
583 +
584 + In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
585 + approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
586 + lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
587 + in order to measure the \pt\ turn-on curve. The tag-probe pair is
588 + required to have opposite-sign and an invariant mass in the range
589 + 76--106 GeV.
590 +
591 + The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
592 + These trigger efficiencies are applied to the MC when used to predict data yields selected by single lepton triggers.
593 +
594 +
595 + \begin{figure}[!ht]
596 + \begin{center}
597 + \begin{tabular}{cc}
598 + \includegraphics[width=0.4\textwidth]{plots/mutrig_pt_etabins.pdf} &
599 + \includegraphics[width=0.4\textwidth]{plots/eltrig_pt_etabins.pdf} \\
600 + \end{tabular}
601 + \caption{\label{fig:trigeff}
602 + Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
603 + for several bins in lepton $|\eta|$.
604 + }
605 + \end{center}
606 + \end{figure}
607 +
608 + \clearpage
609 +
610 + \begin{table}[htb]
611 + \begin{center}
612 + \footnotesize
613 + \caption{\label{tab:mutriggeff}
614 + Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
615 + \begin{tabular}{c|c|c|c}
616 +
617 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(HLT_IsoMu24_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&65536)==65536))&&((leptonSelection&131072)==131072)
618 + % Probe trigger        : HLT_IsoMu24_probe > 0
619 + % Total data yield     : 5161723
620 +
621 + \hline
622 + \hline
623 +  \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
624 + \hline
625 +  20 -  22  &   0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
626 +  22 -  24  &   0.03 $\pm$ 0.001 &      0.05 $\pm$ 0.001 &      0.11 $\pm$ 0.002 \\
627 +  24 -  26  &   0.87 $\pm$ 0.002 &      0.78 $\pm$ 0.002 &      0.76 $\pm$ 0.003 \\
628 +  26 -  28  &   0.90 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.78 $\pm$ 0.002 \\
629 +  28 -  30  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.79 $\pm$ 0.002 \\
630 +  30 -  32  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
631 +  32 -  34  &   0.92 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
632 +  34 -  36  &   0.93 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
633 +  36 -  38  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
634 +  38 -  40  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.82 $\pm$ 0.001 \\
635 +  40 -  50  &   0.94 $\pm$ 0.000 &      0.84 $\pm$ 0.000 &      0.82 $\pm$ 0.001 \\
636 +  50 -  60  &   0.95 $\pm$ 0.000 &      0.84 $\pm$ 0.001 &      0.83 $\pm$ 0.001 \\
637 +  60 -  80  &   0.95 $\pm$ 0.001 &      0.84 $\pm$ 0.002 &      0.83 $\pm$ 0.002 \\
638 +  80 - 100  &   0.94 $\pm$ 0.002 &      0.84 $\pm$ 0.004 &      0.83 $\pm$ 0.006 \\
639 + 100 - 150  &   0.94 $\pm$ 0.003 &      0.84 $\pm$ 0.005 &      0.83 $\pm$ 0.008 \\
640 + 150 - 200  &   0.93 $\pm$ 0.006 &      0.84 $\pm$ 0.011 &      0.82 $\pm$ 0.018 \\
641 + $>$200     &   0.92 $\pm$ 0.010 &      0.82 $\pm$ 0.017 &      0.82 $\pm$ 0.031 \\
642 + \hline
643 + \hline
644 +
645 + \end{tabular}
646 + \end{center}
647 + \end{table}
648 +
649 + \begin{table}[htb]
650 + \begin{center}
651 + \footnotesize
652 + \caption{\label{tab:eltriggeff}
653 + Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
654 + \begin{tabular}{c|c|c}
655 +
656 + % Selection            : (((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(HLT_Ele27_WP80_tag > 0))&&(tag->pt()>30.0))&&(abs(tag->eta())<2.1))&&(probe->pt()>20))&&(abs(probe->eta())<2.1))&&((leptonSelection&8)==8))&&((leptonSelection&16)==16)
657 + % Probe trigger        : HLT_Ele27_WP80_probe > 0
658 + % Total data yield     : 3405966
659 +
660 + \hline
661 + \hline
662 +  \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
663 + \hline
664 +  20 -  22   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
665 +  22 -  24   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.001 \\
666 +  24 -  26   &  0.00 $\pm$ 0.000 &      0.02 $\pm$ 0.001 \\
667 +  26 -  28   &  0.08 $\pm$ 0.001 &      0.18 $\pm$ 0.003 \\
668 +  28 -  30   &  0.61 $\pm$ 0.002 &      0.50 $\pm$ 0.004 \\
669 +  30 -  32   &  0.86 $\pm$ 0.001 &      0.63 $\pm$ 0.003 \\
670 +  32 -  34   &  0.88 $\pm$ 0.001 &      0.68 $\pm$ 0.003 \\
671 +  34 -  36   &  0.90 $\pm$ 0.001 &      0.70 $\pm$ 0.002 \\
672 +  36 -  38   &  0.91 $\pm$ 0.001 &      0.72 $\pm$ 0.002 \\
673 +  38 -  40   &  0.92 $\pm$ 0.001 &      0.74 $\pm$ 0.002 \\
674 +  40 -  50   &  0.94 $\pm$ 0.000 &      0.76 $\pm$ 0.001 \\
675 +  50 -  60   &  0.95 $\pm$ 0.000 &      0.77 $\pm$ 0.002 \\
676 +  60 -  80   &  0.96 $\pm$ 0.001 &      0.78 $\pm$ 0.003 \\
677 +  80 - 100   &  0.96 $\pm$ 0.002 &      0.80 $\pm$ 0.008 \\
678 +  100 - 150  &  0.96 $\pm$ 0.002 &      0.79 $\pm$ 0.010 \\
679 +  150 - 200  &  0.97 $\pm$ 0.004 &      0.76 $\pm$ 0.026 \\
680 + $>$200       &  0.97 $\pm$ 0.005 &      0.81 $\pm$ 0.038 \\
681 + \hline
682 + \hline
683 +
684 + \end{tabular}
685 + \end{center}
686 + \end{table}
687 +
688 + \clearpage

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines