ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex (file contents):
Revision 1.3 by benhoob, Fri Jun 29 18:23:24 2012 UTC vs.
Revision 1.13 by vimartin, Fri Oct 5 20:11:57 2012 UTC

# Line 1 | Line 1
1  
2 + This analysis uses several different control regions in addition to the signal regions.
3 + All of these different regions are defined in this section.
4 + %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
5  
6 < The preselection sample is based on the following criteria
6 > \subsection{Single Lepton Selection}
7 >
8 > [UPDATE SELECTION]
9 >
10 > The single lepton preselection sample is based on the following criteria, starting from the requirements described
11 > on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL}
12   \begin{itemize}
13   \item satisfy the trigger requirement (see
14 <  Table.~\ref{tab:DatasetsData})
14 >  Table.~\ref{tab:DatasetsData}).
15 > Note that the analysis triggers are inclusive single lepton triggers.
16 > Dilepton triggers are used only for the dilepton control region.
17   \item select events with one high \pt\ electron or muon, requiring
18    \begin{itemize}
19 <  \item $\pt>30~\GeVc$ and $|\eta|<2.5(2.1)$ for \E(\M)
20 <  \item satisfy the identification and isolation requirements detailed
21 <    in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign
22 <    SUSY analysis (SUS-11-011) for muons
19 >  \item $\pt>30~\GeVc$  and $|\eta|<1.4442 (2.4)$ for electrons (muons)
20 >  \item muon ID criteria is based on the 2012 POG recommended tight working point
21 >  \item electron ID critera is based on the 2012 POG recommended medium working point
22 >  \item PF-based isolation ($\Delta R < 0.3$, $\Delta\beta$ corrected) relative  $<$ 0.15 and absolute $<$ 5~GeV
23 >  \item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$
24 >  \item $E/p_{in} < 4$ (electrons only)
25    \end{itemize}
26    \item require at least 4 PF jets in the event with $\pt>30~\GeV$
27 <    within $|\eta|<2.5$, out of which at least 1 is b-tagged based on
28 <    the SSV medium working point.
27 >    within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
28 >    medium working point b-tagging requirement
29    \item require moderate $\met>50~\GeV$
30   \end{itemize}
31  
32 < Currently, we focus on the muon channel because it is cleaner (the QCD contribution is negligible)
21 < and the triggers are simpler (we use single muon triggers, as opposed to electron + 3-jet triggers).
22 < We will add the electron channel, time permitting. However, since this is a systematics-dominated
23 < analysis, increasing the statistics by adding the electrons is not expected to significantly improve
24 < the sensitivity, especialy because the electron selection efficiency is smaller and the systematic
25 < uncertainty associated with the QCD background is larger.
32 > %Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
33  
34 < A benchmark signal region is selected by tightening the \met\ and
35 < adding an \mt\ requirement
36 < \begin{itemize}
37 < \item $\met>100~\GeV$
38 < \item $\mt>150~\GeV$
39 < \end{itemize}
34 > %\begin{table}[!h]
35 > %\begin{center}
36 > %\begin{tabular}{c|c}
37 > %\hline
38 > %\hline
39 > %\end{tabular}
40 > %\caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
41 > %\end{center}
42 > %\end{table}
43 >
44 > \subsection{Signal Region Selection}
45 >
46 > [MOTIVATIONAL BLURB ON MET AND MT, \\
47 > CAN ADD SIGNAL VS. TTBAR MC PLOT \\
48 > ADD SIGNAL YIELDS FOR AVAILABLE POINTS, \\
49 > DISCUSS CHOICE SIG REGIONS]
50 >
51 > The signal regions (SRs) are selected to improve the sensitivity for the
52 > single lepton requirements and cover a range of scalar top
53 > scenarios. The \mt\ and \met\ variables are used to define the signal
54 > regions and the requirements are listed in Table~\ref{tab:srdef}.
55 >
56 > \begin{table}[!h]
57 > \begin{center}
58 > \begin{tabular}{l|c|c}
59 > \hline
60 > Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
61 > \hline
62 > \hline
63 > SRA & 150 & 100 \\
64 > SRB & 120 & 150 \\
65 > SRC & 120 & 200 \\
66 > SRD & 120 & 250 \\
67 > SRE & 120 & 300 \\
68 > \hline
69 > \end{tabular}
70 > \caption{ Signal region definitions based on \mt\ and \met\
71 >  requirements. These requirements are applied in addition to the
72 >  baseline single lepton selection.
73 > \label{tab:srdef}}
74 > \end{center}
75 > \end{table}
76 >
77 > Table~\ref{tab:srrawmcyields} shows the expected number of SM
78 > background yields for the SRs. A few stop signal yields for four
79 > values of the parameters are also shown for comparison. The signal
80 > regions with looser requirements are sensitive to lower stop masses
81 > M(\sctop), while those with tighter requirements are more sensitive to
82 > higher M(\sctop).
83 >
84 > \begin{table}[!h]
85 > \begin{center}
86 > \begin{tabular}{l||c|c|c|c|c}
87 > \hline
88 > Sample              & SRA & SRB & SRC & SRD & SRE\\
89 > \hline
90 > \hline
91 > \ttdl\           & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$ \\
92 > \ttsl\ \& single top (1\Lep)             & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$ \\
93 > \wjets\                  & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$ \\
94 > Rare             & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$ \\
95 > \hline
96 > Total            & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$ \\
97 > \hline
98 > \end{tabular}
99 > \caption{ Expected SM background contributions, including both muon
100 >  and electron channels. This is ``dead reckoning'' MC with no
101 >  correction.
102 > It is meant only as a general guide. The uncertainties are statistical only. ADD
103 >  SIGNAL POINTS.
104 > \label{tab:srrawmcyields}}
105 > \end{center}
106 > \end{table}
107  
108 < {\bf We have not looked at the data in the signal region after the first 1 fb$^{-1}$ of data.}
108 > \subsection{Control Region Selection}
109  
110 < \subsection{Corrections to Jets and \met}
110 > [1 PARAGRAPH BLURB RELATING BACKGROUNDS (IN TABLE FROM PREVIOUS SECTION)
111 > TO INTRODUCE CONTROL REGIONS]
112 >
113 > Control regions (CRs) are used to validate the background estimation
114 > procedure and derive systematic uncertainties for some
115 > contributions. The CRs are selected to have similar
116 > kinematics to the SRs, but have a different requirement in terms of
117 > number of b-tags and number of leptons, thus enhancing them in
118 > different SM contributions. The four CRs used in this analysis are
119 > summarized in Table~\ref{tab:crdef}.
120 >
121 > \begin{table}
122 > \begin{center}
123 > {\small
124 > \begin{tabular}{l|c|c|c}
125 > \hline
126 > Selection       & \multirow{2}{*}{exactly 1 lepton}     & \multirow{2}{*}{exactly 2
127 >        leptons}                & \multirow{2}{*}{1 lepton + isolated
128 >        track}\\
129 >      Criteria & & & \\
130 > \hline
131 > \hline
132 > \multirow{4}{*}{0 b-tags}        
133 > &        CR1) W+Jets dominated:
134 > &        CR2) apply \Z-mass constraint                  
135 > &        CR3) not used \\  
136 > &        
137 > &       $\rightarrow$ Z+Jets dominated: Validate
138 > &      \\
139 > &      Validate W+Jets \mt\ tail
140 > &        \ttsl\ \mt\ tail comparing
141 > &        \\  
142 > &
143 > &        data vs. MC ``pseudo-\mt ''
144 > &        \\  
145 > \hline
146 > \multirow{4}{*}{$\ge$ 1 b-tags}          
147 > &      
148 > &       CR4) Apply \Z-mass veto
149 > &      CR5) \ttdl, \ttlt\ and \\
150 > &     SIGNAL
151 > &      $\rightarrow$ \ttdl\ dominated: Validate
152 > &       \ttlf\ dominated:  Validate \\
153 > &     REGION
154 > &      ``physics'' modelling of \ttdl\    
155 > &      \Tau\  and fake lepton modeling/\\
156 > &
157 > &
158 > &      detector effects in \ttdl\     \\
159 > \hline
160 > \end{tabular}
161 > }
162 > \caption{Summary of signal and control regions.
163 >  \label{tab:crdef}%\protect
164 > }
165 > \end{center}
166 > \end{table}
167 >
168 >
169 > \subsection{MC Corrections}
170 >
171 > [UPDATE SECTION]
172 >
173 > \subsubsection{Corrections to Jets and \met}
174 >
175 > [UPDATE, ADD FEW MORE DETAILS ON WHAT IS DONE HERE]
176  
177   The official recommendations from the Jet/MET group are used for
178   the data and MC samples. In particular, the jet
# Line 42 | Line 181 | L1FastL2L3Residual (L1FastL2L3) correcti
181   based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for
182   data (MC). In addition, these jet energy corrections are propagated to
183   the \met\ calculation, following the official prescription for
184 < deriving the Type I corrections. It may be noted that events with
46 < anomalous ``rho'' pile-up corrections are excluded from the sample since these
47 < correspond to events with unphysically large \met\ and \mt\ tail
48 < signal region (see Figure~\ref{fig:mtrhocomp}). An additional correction to remove
49 < the $\phi$-modulation observed in the \met\ is included, improving
50 < the agreement between the data and the MC, as shown in
51 < Figure~\ref{fig:metphicomp}. This correction has an effect on this analysis,
52 < since the azimuthal angle enters the \mt\ distribution.
184 > deriving the Type I corrections.
185  
186 < \clearpage
187 <
188 < \begin{figure}[!ht]
57 <  \begin{center}
58 <        \includegraphics[width=0.5\linewidth]{plots/mt_rho_comp.png}
59 <        \caption{ \label{fig:mtrhocomp}%\protect
60 <          Comparison of the \mt\ distribution for events with
61 <          unphysical energy corrections ($\rho <0$ or $ \rho > 40$, where $\rho$ is a
62 <          measure of the average pileup energy density) and the
63 <          nominal sample. Events with large pileup corrections
64 <          correspond to noisy events. Since this correction is applied
65 <          to the jets and propagated to the \met, these events have
66 <          anomalously large \met\ and populate the \mt\ tail. These
67 <          pathological events are excluded from the analysis sample.}
68 <  \end{center}
69 < \end{figure}
70 <
71 < \begin{figure}[!hb]
72 <  \begin{center}
73 <        \includegraphics[width=0.5\linewidth]{plots/metphi.pdf}%
74 <        \includegraphics[width=0.5\linewidth]{plots/metphi_phicorr.pdf}
75 <        \caption{ \label{fig:metphicomp}%\protect
76 <          The PF \met\ $\phi$ distribution (left) exhibits a
77 <          modulation. After applying a dedicated correction, the
78 <          azimuthal dependence is reduced (right).}
79 <  \end{center}
80 < \end{figure}
186 > Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
187 > correspond to events with unphysically large \met\ and \mt\ tail
188 > signal region. In addition, the recommended MET filters are applied.
189  
82 \clearpage
190  
191 < \subsection{Branching Fraction Correction}
191 > \subsubsection{Branching Fraction Correction}
192  
193   The leptonic branching fraction used in some of the \ttbar\ MC samples
194   differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
# Line 111 | Line 218 | Powheg       &       0.108\\
218   \end{center}
219   \end{table}
220  
221 +
222 + \subsubsection{Lepton Selection Efficiency Measurements}
223 +
224 + [TO BE UDPATED WITH T\&P STUDIES ON ID,ISO EFFICIENCIES]
225 +
226 +
227 + \subsubsection{Trigger Efficiency Measurements}
228 +
229 + In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe
230 + approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single
231 + lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV
232 + in order to measure the \pt\ turn-on curve. The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV.
233 + The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons).
234 + These trigger efficiencies will be applied to the MC when used to predict data yields selected by single lepton triggers. [THESE TRIGGER EFFICIENCIES TO BE APPLIED TO MC]
235 +
236 +
237 + \begin{figure}[!ht]
238 + \begin{center}
239 + \begin{tabular}{cc}
240 + \includegraphics[width=0.4\textwidth]{plots/mutrig_pt_etabins.pdf} &
241 + \includegraphics[width=0.4\textwidth]{plots/eltrig_pt_etabins.pdf} \\
242 + \end{tabular}
243 + \caption{\label{fig:trigeff}
244 + Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt,
245 + for several bins in lepton $|\eta|$.
246 + }
247 + \end{center}
248 + \end{figure}
249 +
250 + \clearpage
251 +
252 + \begin{table}[htb]
253 + \begin{center}
254 + \footnotesize
255 + \caption{\label{tab:mutriggeff}
256 + Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.}
257 + \begin{tabular}{c|c|c|c}
258 +
259 + \hline
260 + \hline
261 +  \pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
262 + \hline
263 +  20 -  22  &   0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
264 +  22 -  24  &   0.03 $\pm$ 0.001 &      0.05 $\pm$ 0.001 &      0.11 $\pm$ 0.002 \\
265 +  24 -  26  &   0.87 $\pm$ 0.002 &      0.78 $\pm$ 0.002 &      0.76 $\pm$ 0.003 \\
266 +  26 -  28  &   0.90 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.78 $\pm$ 0.002 \\
267 +  28 -  30  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.002 &      0.79 $\pm$ 0.002 \\
268 +  30 -  32  &   0.91 $\pm$ 0.001 &      0.81 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
269 +  32 -  34  &   0.92 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.80 $\pm$ 0.002 \\
270 +  34 -  36  &   0.93 $\pm$ 0.001 &      0.82 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
271 +  36 -  38  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.81 $\pm$ 0.001 \\
272 +  38 -  40  &   0.93 $\pm$ 0.001 &      0.83 $\pm$ 0.001 &      0.82 $\pm$ 0.001 \\
273 +  40 -  50  &   0.94 $\pm$ 0.000 &      0.84 $\pm$ 0.000 &      0.82 $\pm$ 0.001 \\
274 +  50 -  60  &   0.95 $\pm$ 0.000 &      0.84 $\pm$ 0.001 &      0.83 $\pm$ 0.001 \\
275 +  60 -  80  &   0.95 $\pm$ 0.001 &      0.84 $\pm$ 0.002 &      0.83 $\pm$ 0.002 \\
276 +  80 - 100  &   0.94 $\pm$ 0.002 &      0.84 $\pm$ 0.004 &      0.83 $\pm$ 0.006 \\
277 + 100 - 150  &   0.94 $\pm$ 0.003 &      0.84 $\pm$ 0.005 &      0.83 $\pm$ 0.008 \\
278 + 150 - 200  &   0.93 $\pm$ 0.006 &      0.84 $\pm$ 0.011 &      0.82 $\pm$ 0.018 \\
279 + $>$200     &   0.92 $\pm$ 0.010 &      0.82 $\pm$ 0.017 &      0.82 $\pm$ 0.031 \\
280 + \hline
281 + \hline
282 +
283 + \end{tabular}
284 + \end{center}
285 + \end{table}
286 +
287 + \begin{table}[htb]
288 + \begin{center}
289 + \footnotesize
290 + \caption{\label{tab:eltriggeff}
291 + Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.}
292 + \begin{tabular}{c|c|c}
293 +
294 + \hline
295 + \hline
296 +  \pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\
297 + \hline
298 +  20 -  22   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.000 \\
299 +  22 -  24   &  0.00 $\pm$ 0.000 &      0.00 $\pm$ 0.001 \\
300 +  24 -  26   &  0.00 $\pm$ 0.000 &      0.02 $\pm$ 0.001 \\
301 +  26 -  28   &  0.08 $\pm$ 0.001 &      0.18 $\pm$ 0.003 \\
302 +  28 -  30   &  0.61 $\pm$ 0.002 &      0.50 $\pm$ 0.004 \\
303 +  30 -  32   &  0.86 $\pm$ 0.001 &      0.63 $\pm$ 0.003 \\
304 +  32 -  34   &  0.88 $\pm$ 0.001 &      0.68 $\pm$ 0.003 \\
305 +  34 -  36   &  0.90 $\pm$ 0.001 &      0.70 $\pm$ 0.002 \\
306 +  36 -  38   &  0.91 $\pm$ 0.001 &      0.72 $\pm$ 0.002 \\
307 +  38 -  40   &  0.92 $\pm$ 0.001 &      0.74 $\pm$ 0.002 \\
308 +  40 -  50   &  0.94 $\pm$ 0.000 &      0.76 $\pm$ 0.001 \\
309 +  50 -  60   &  0.95 $\pm$ 0.000 &      0.77 $\pm$ 0.002 \\
310 +  60 -  80   &  0.96 $\pm$ 0.001 &      0.78 $\pm$ 0.003 \\
311 +  80 - 100   &  0.96 $\pm$ 0.002 &      0.80 $\pm$ 0.008 \\
312 +  100 - 150  &  0.96 $\pm$ 0.002 &      0.79 $\pm$ 0.010 \\
313 +  150 - 200  &  0.97 $\pm$ 0.004 &      0.76 $\pm$ 0.026 \\
314 + $>$200       &  0.97 $\pm$ 0.005 &      0.81 $\pm$ 0.038 \\
315 + \hline
316 + \hline
317 +
318 + \end{tabular}
319 + \end{center}
320 + \end{table}
321 +
322 + \clearpage

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines