1 |
|
|
2 |
+ |
This analysis uses several different control regions in addition to the signal regions. |
3 |
+ |
All of these different regions are defined in this section. |
4 |
+ |
%Figure~\ref{fig:venndiagram} illustrates the relationship between these regions. |
5 |
|
|
6 |
< |
The preselection sample is based on the following criteria |
6 |
> |
\subsection{Single Lepton Selection} |
7 |
> |
|
8 |
> |
[UPDATE SELECTION] |
9 |
> |
|
10 |
> |
The single lepton preselection sample is based on the following criteria, starting from the requirements described |
11 |
> |
on \url{https://twiki.cern.ch/twiki/bin/viewauth/CMS/SUSYstop#SINGLE_LEPTON_CHANNEL} |
12 |
|
\begin{itemize} |
13 |
|
\item satisfy the trigger requirement (see |
14 |
< |
Table.~\ref{tab:DatasetsData}) |
14 |
> |
Table.~\ref{tab:DatasetsData}). |
15 |
> |
Note that the analysis triggers are inclusive single lepton triggers. |
16 |
> |
Dilepton triggers are used only for the dilepton control region. |
17 |
|
\item select events with one high \pt\ electron or muon, requiring |
18 |
|
\begin{itemize} |
19 |
< |
\item $\pt>30~\GeVc$ and $|\eta|<2.5(2.1)$ for \E(\M) |
20 |
< |
\item satisfy the identification and isolation requirements detailed |
21 |
< |
in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign |
22 |
< |
SUSY analysis (SUS-11-011) for muons |
19 |
> |
\item $\pt>30~\GeVc$ and $|\eta|<1.4442 (2.4)$ for electrons (muons) |
20 |
> |
\item muon ID criteria is based on the 2012 POG recommended tight working point |
21 |
> |
\item electron ID critera is based on the 2012 POG recommended medium working point |
22 |
> |
\item PF-based isolation ($\Delta R < 0.3$, $\Delta\beta$ corrected) relative $<$ 0.15 and absolute $<$ 5~GeV |
23 |
> |
\item $|\pt(\rm{PF}_{lep}) - \pt(\rm{RECO}_{lep})| < 10~\GeV$ |
24 |
> |
\item $E/p_{in} < 4$ (electrons only) |
25 |
|
\end{itemize} |
26 |
|
\item require at least 4 PF jets in the event with $\pt>30~\GeV$ |
27 |
< |
within $|\eta|<2.5$, out of which at least 1 is b-tagged based on |
28 |
< |
the SSV medium working point. |
27 |
> |
within $|\eta|<2.5$ out of which at least 1 satisfies the CSV |
28 |
> |
medium working point b-tagging requirement |
29 |
|
\item require moderate $\met>50~\GeV$ |
30 |
|
\end{itemize} |
31 |
|
|
32 |
< |
Currently, we focus on the muon channel because it is cleaner (the QCD contribution is negligible) |
21 |
< |
and the triggers are simpler (we use single muon triggers, as opposed to electron + 3-jet triggers). |
22 |
< |
We will add the electron channel, time permitting. However, since this is a systematics-dominated |
23 |
< |
analysis, increasing the statistics by adding the electrons is not expected to significantly improve |
24 |
< |
the sensitivity, especialy because the electron selection efficiency is smaller and the systematic |
25 |
< |
uncertainty associated with the QCD background is larger. |
32 |
> |
%Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region. |
33 |
|
|
34 |
< |
A benchmark signal region is selected by tightening the \met\ and |
35 |
< |
adding an \mt\ requirement |
36 |
< |
\begin{itemize} |
37 |
< |
\item $\met>100~\GeV$ |
38 |
< |
\item $\mt>150~\GeV$ |
39 |
< |
\end{itemize} |
34 |
> |
%\begin{table}[!h] |
35 |
> |
%\begin{center} |
36 |
> |
%\begin{tabular}{c|c} |
37 |
> |
%\hline |
38 |
> |
%\hline |
39 |
> |
%\end{tabular} |
40 |
> |
%\caption{ Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}} |
41 |
> |
%\end{center} |
42 |
> |
%\end{table} |
43 |
> |
|
44 |
> |
\subsection{Signal Region Selection} |
45 |
> |
|
46 |
> |
[MOTIVATIONAL BLURB ON MET AND MT, \\ |
47 |
> |
CAN ADD SIGNAL VS. TTBAR MC PLOT \\ |
48 |
> |
ADD SIGNAL YIELDS FOR AVAILABLE POINTS, \\ |
49 |
> |
DISCUSS CHOICE SIG REGIONS] |
50 |
> |
|
51 |
> |
The signal regions (SRs) are selected to improve the sensitivity for the |
52 |
> |
single lepton requirements and cover a range of scalar top |
53 |
> |
scenarios. The \mt\ and \met\ variables are used to define the signal |
54 |
> |
regions and the requirements are listed in Table~\ref{tab:srdef}. |
55 |
> |
|
56 |
> |
\begin{table}[!h] |
57 |
> |
\begin{center} |
58 |
> |
\begin{tabular}{l|c|c} |
59 |
> |
\hline |
60 |
> |
Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\ |
61 |
> |
\hline |
62 |
> |
\hline |
63 |
> |
SRA & 150 & 100 \\ |
64 |
> |
SRB & 120 & 150 \\ |
65 |
> |
SRC & 120 & 200 \\ |
66 |
> |
SRD & 120 & 250 \\ |
67 |
> |
SRE & 120 & 300 \\ |
68 |
> |
\hline |
69 |
> |
\end{tabular} |
70 |
> |
\caption{ Signal region definitions based on \mt\ and \met\ |
71 |
> |
requirements. These requirements are applied in addition to the |
72 |
> |
baseline single lepton selection. |
73 |
> |
\label{tab:srdef}} |
74 |
> |
\end{center} |
75 |
> |
\end{table} |
76 |
> |
|
77 |
> |
Table~\ref{tab:srrawmcyields} shows the expected number of SM |
78 |
> |
background yields for the SRs. A few stop signal yields for four |
79 |
> |
values of the parameters are also shown for comparison. The signal |
80 |
> |
regions with looser requirements are sensitive to lower stop masses |
81 |
> |
M(\sctop), while those with tighter requirements are more sensitive to |
82 |
> |
higher M(\sctop). |
83 |
> |
|
84 |
> |
\begin{table}[!h] |
85 |
> |
\begin{center} |
86 |
> |
\begin{tabular}{l||c|c|c|c|c} |
87 |
> |
\hline |
88 |
> |
Sample & SRA & SRB & SRC & SRD & SRE\\ |
89 |
> |
\hline |
90 |
> |
\hline |
91 |
> |
\ttdl\ & $619 \pm 9$& $366 \pm 7$& $127 \pm 4$& $44 \pm 2$& $17 \pm 1$ \\ |
92 |
> |
\ttsl\ \& single top (1\Lep) & $95 \pm 3$& $67 \pm 3$& $15 \pm 1$& $6 \pm 1$& $2 \pm 1$ \\ |
93 |
> |
\wjets\ & $29 \pm 2$& $15 \pm 2$& $6 \pm 1$& $3 \pm 1$& $1 \pm 0$ \\ |
94 |
> |
Rare & $59 \pm 3$& $38 \pm 3$& $16 \pm 2$& $8 \pm 1$& $4 \pm 1$ \\ |
95 |
> |
\hline |
96 |
> |
Total & $802 \pm 10$& $486 \pm 8$& $164 \pm 5$& $62 \pm 3$& $23 \pm 2$ \\ |
97 |
> |
\hline |
98 |
> |
\end{tabular} |
99 |
> |
\caption{ Expected SM background contributions, including both muon |
100 |
> |
and electron channels. This is ``dead reckoning'' MC with no |
101 |
> |
correction. |
102 |
> |
It is meant only as a general guide. The uncertainties are statistical only. ADD |
103 |
> |
SIGNAL POINTS. |
104 |
> |
\label{tab:srrawmcyields}} |
105 |
> |
\end{center} |
106 |
> |
\end{table} |
107 |
|
|
108 |
< |
{\bf We have not looked at the data in the signal region after the first 1 fb$^{-1}$ of data.} |
108 |
> |
\subsection{Control Region Selection} |
109 |
|
|
110 |
< |
\subsection{Corrections to Jets and \met} |
110 |
> |
[1 PARAGRAPH BLURB RELATING BACKGROUNDS (IN TABLE FROM PREVIOUS SECTION) |
111 |
> |
TO INTRODUCE CONTROL REGIONS] |
112 |
> |
|
113 |
> |
Control regions (CRs) are used to validate the background estimation |
114 |
> |
procedure and derive systematic uncertainties for some |
115 |
> |
contributions. The CRs are selected to have similar |
116 |
> |
kinematics to the SRs, but have a different requirement in terms of |
117 |
> |
number of b-tags and number of leptons, thus enhancing them in |
118 |
> |
different SM contributions. The four CRs used in this analysis are |
119 |
> |
summarized in Table~\ref{tab:crdef}. |
120 |
> |
|
121 |
> |
\begin{table} |
122 |
> |
\begin{center} |
123 |
> |
{\small |
124 |
> |
\begin{tabular}{l|c|c|c} |
125 |
> |
\hline |
126 |
> |
Selection & \multirow{2}{*}{exactly 1 lepton} & \multirow{2}{*}{exactly 2 |
127 |
> |
leptons} & \multirow{2}{*}{1 lepton + isolated |
128 |
> |
track}\\ |
129 |
> |
Criteria & & & \\ |
130 |
> |
\hline |
131 |
> |
\hline |
132 |
> |
\multirow{4}{*}{0 b-tags} |
133 |
> |
& CR1) W+Jets dominated: |
134 |
> |
& CR2) apply \Z-mass constraint |
135 |
> |
& CR3) not used \\ |
136 |
> |
& |
137 |
> |
& $\rightarrow$ Z+Jets dominated: Validate |
138 |
> |
& \\ |
139 |
> |
& Validate W+Jets \mt\ tail |
140 |
> |
& \ttsl\ \mt\ tail comparing |
141 |
> |
& \\ |
142 |
> |
& |
143 |
> |
& data vs. MC ``pseudo-\mt '' |
144 |
> |
& \\ |
145 |
> |
\hline |
146 |
> |
\multirow{4}{*}{$\ge$ 1 b-tags} |
147 |
> |
& |
148 |
> |
& CR4) Apply \Z-mass veto |
149 |
> |
& CR5) \ttdl, \ttlt\ and \\ |
150 |
> |
& SIGNAL |
151 |
> |
& $\rightarrow$ \ttdl\ dominated: Validate |
152 |
> |
& \ttlf\ dominated: Validate \\ |
153 |
> |
& REGION |
154 |
> |
& ``physics'' modelling of \ttdl\ |
155 |
> |
& \Tau\ and fake lepton modeling/\\ |
156 |
> |
& |
157 |
> |
& |
158 |
> |
& detector effects in \ttdl\ \\ |
159 |
> |
\hline |
160 |
> |
\end{tabular} |
161 |
> |
} |
162 |
> |
\caption{Summary of signal and control regions. |
163 |
> |
\label{tab:crdef}%\protect |
164 |
> |
} |
165 |
> |
\end{center} |
166 |
> |
\end{table} |
167 |
> |
|
168 |
> |
|
169 |
> |
\subsection{MC Corrections} |
170 |
> |
|
171 |
> |
[UPDATE SECTION] |
172 |
> |
|
173 |
> |
\subsubsection{Corrections to Jets and \met} |
174 |
> |
|
175 |
> |
[UPDATE, ADD FEW MORE DETAILS ON WHAT IS DONE HERE] |
176 |
|
|
177 |
|
The official recommendations from the Jet/MET group are used for |
178 |
|
the data and MC samples. In particular, the jet |
181 |
|
based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for |
182 |
|
data (MC). In addition, these jet energy corrections are propagated to |
183 |
|
the \met\ calculation, following the official prescription for |
184 |
< |
deriving the Type I corrections. It may be noted that events with |
46 |
< |
anomalous ``rho'' pile-up corrections are excluded from the sample since these |
47 |
< |
correspond to events with unphysically large \met\ and \mt\ tail |
48 |
< |
signal region (see Figure~\ref{fig:mtrhocomp}). An additional correction to remove |
49 |
< |
the $\phi$-modulation observed in the \met\ is included, improving |
50 |
< |
the agreement between the data and the MC, as shown in |
51 |
< |
Figure~\ref{fig:metphicomp}. This correction has an effect on this analysis, |
52 |
< |
since the azimuthal angle enters the \mt\ distribution. |
184 |
> |
deriving the Type I corrections. |
185 |
|
|
186 |
< |
\clearpage |
187 |
< |
|
188 |
< |
\begin{figure}[!ht] |
57 |
< |
\begin{center} |
58 |
< |
\includegraphics[width=0.5\linewidth]{plots/mt_rho_comp.png} |
59 |
< |
\caption{ \label{fig:mtrhocomp}%\protect |
60 |
< |
Comparison of the \mt\ distribution for events with |
61 |
< |
unphysical energy corrections ($\rho <0$ or $ \rho > 40$, where $\rho$ is a |
62 |
< |
measure of the average pileup energy density) and the |
63 |
< |
nominal sample. Events with large pileup corrections |
64 |
< |
correspond to noisy events. Since this correction is applied |
65 |
< |
to the jets and propagated to the \met, these events have |
66 |
< |
anomalously large \met\ and populate the \mt\ tail. These |
67 |
< |
pathological events are excluded from the analysis sample.} |
68 |
< |
\end{center} |
69 |
< |
\end{figure} |
70 |
< |
|
71 |
< |
\begin{figure}[!hb] |
72 |
< |
\begin{center} |
73 |
< |
\includegraphics[width=0.5\linewidth]{plots/metphi.pdf}% |
74 |
< |
\includegraphics[width=0.5\linewidth]{plots/metphi_phicorr.pdf} |
75 |
< |
\caption{ \label{fig:metphicomp}%\protect |
76 |
< |
The PF \met\ $\phi$ distribution (left) exhibits a |
77 |
< |
modulation. After applying a dedicated correction, the |
78 |
< |
azimuthal dependence is reduced (right).} |
79 |
< |
\end{center} |
80 |
< |
\end{figure} |
186 |
> |
Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these |
187 |
> |
correspond to events with unphysically large \met\ and \mt\ tail |
188 |
> |
signal region. In addition, the recommended MET filters are applied. |
189 |
|
|
82 |
– |
\clearpage |
190 |
|
|
191 |
< |
\subsection{Branching Fraction Correction} |
191 |
> |
\subsubsection{Branching Fraction Correction} |
192 |
|
|
193 |
|
The leptonic branching fraction used in some of the \ttbar\ MC samples |
194 |
|
differs from the value listed in the PDG $(10.80 \pm 0.09)\%$. |
218 |
|
\end{center} |
219 |
|
\end{table} |
220 |
|
|
221 |
+ |
|
222 |
+ |
\subsubsection{Lepton Selection Efficiency Measurements} |
223 |
+ |
|
224 |
+ |
[TO BE UDPATED WITH T\&P STUDIES ON ID,ISO EFFICIENCIES] |
225 |
+ |
|
226 |
+ |
|
227 |
+ |
\subsubsection{Trigger Efficiency Measurements} |
228 |
+ |
|
229 |
+ |
In this section we measure the efficiencies of the single lepton triggers, HLT\_IsoMu24(\_eta2p1) for muons and HLT\_Ele27\_WP80 for electrons, using a tag-and-probe |
230 |
+ |
approach. The tag is required to pass the full offline analysis selection and have \pt\ $>$ 30 GeV, $|\eta|<2.1$, and be matched to the single |
231 |
+ |
lepton trigger. The probe is also required to pass the full offline analysis selection and have $|\eta|<2.1$, but the \pt\ requirement is relaxed to 20 GeV |
232 |
+ |
in order to measure the \pt\ turn-on curve. The tag-probe pair is required to have opposite-sign and an invariant mass in the range 76--106 GeV. |
233 |
+ |
The measured trigger efficiencies are displayed in Fig.~\ref{fig:trigeff} and summarized in Table~\ref{tab:mutriggeff} (muons) and Table~\ref{tab:eltriggeff} (electrons). |
234 |
+ |
These trigger efficiencies will be applied to the MC when used to predict data yields selected by single lepton triggers. [THESE TRIGGER EFFICIENCIES TO BE APPLIED TO MC] |
235 |
+ |
|
236 |
+ |
|
237 |
+ |
\begin{figure}[!ht] |
238 |
+ |
\begin{center} |
239 |
+ |
\begin{tabular}{cc} |
240 |
+ |
\includegraphics[width=0.4\textwidth]{plots/mutrig_pt_etabins.pdf} & |
241 |
+ |
\includegraphics[width=0.4\textwidth]{plots/eltrig_pt_etabins.pdf} \\ |
242 |
+ |
\end{tabular} |
243 |
+ |
\caption{\label{fig:trigeff} |
244 |
+ |
Efficiency for the single muon trigger HLT\_IsoMu24(\_eta2p1) (left) and single electron trigger HLT\_Ele27\_WP80 (right) as a function of lepton \pt, |
245 |
+ |
for several bins in lepton $|\eta|$. |
246 |
+ |
} |
247 |
+ |
\end{center} |
248 |
+ |
\end{figure} |
249 |
+ |
|
250 |
+ |
\clearpage |
251 |
+ |
|
252 |
+ |
\begin{table}[htb] |
253 |
+ |
\begin{center} |
254 |
+ |
\footnotesize |
255 |
+ |
\caption{\label{tab:mutriggeff} |
256 |
+ |
Summary of the single muon trigger efficiency HLT\_IsoMu24(\_eta2p1). Uncertainties are statistical.} |
257 |
+ |
\begin{tabular}{c|c|c|c} |
258 |
+ |
|
259 |
+ |
\hline |
260 |
+ |
\hline |
261 |
+ |
\pt\ range [GeV] & $|\eta|<0.8$ & $0.8<|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
262 |
+ |
\hline |
263 |
+ |
20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\ |
264 |
+ |
22 - 24 & 0.03 $\pm$ 0.001 & 0.05 $\pm$ 0.001 & 0.11 $\pm$ 0.002 \\ |
265 |
+ |
24 - 26 & 0.87 $\pm$ 0.002 & 0.78 $\pm$ 0.002 & 0.76 $\pm$ 0.003 \\ |
266 |
+ |
26 - 28 & 0.90 $\pm$ 0.001 & 0.81 $\pm$ 0.002 & 0.78 $\pm$ 0.002 \\ |
267 |
+ |
28 - 30 & 0.91 $\pm$ 0.001 & 0.81 $\pm$ 0.002 & 0.79 $\pm$ 0.002 \\ |
268 |
+ |
30 - 32 & 0.91 $\pm$ 0.001 & 0.81 $\pm$ 0.001 & 0.80 $\pm$ 0.002 \\ |
269 |
+ |
32 - 34 & 0.92 $\pm$ 0.001 & 0.82 $\pm$ 0.001 & 0.80 $\pm$ 0.002 \\ |
270 |
+ |
34 - 36 & 0.93 $\pm$ 0.001 & 0.82 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\ |
271 |
+ |
36 - 38 & 0.93 $\pm$ 0.001 & 0.83 $\pm$ 0.001 & 0.81 $\pm$ 0.001 \\ |
272 |
+ |
38 - 40 & 0.93 $\pm$ 0.001 & 0.83 $\pm$ 0.001 & 0.82 $\pm$ 0.001 \\ |
273 |
+ |
40 - 50 & 0.94 $\pm$ 0.000 & 0.84 $\pm$ 0.000 & 0.82 $\pm$ 0.001 \\ |
274 |
+ |
50 - 60 & 0.95 $\pm$ 0.000 & 0.84 $\pm$ 0.001 & 0.83 $\pm$ 0.001 \\ |
275 |
+ |
60 - 80 & 0.95 $\pm$ 0.001 & 0.84 $\pm$ 0.002 & 0.83 $\pm$ 0.002 \\ |
276 |
+ |
80 - 100 & 0.94 $\pm$ 0.002 & 0.84 $\pm$ 0.004 & 0.83 $\pm$ 0.006 \\ |
277 |
+ |
100 - 150 & 0.94 $\pm$ 0.003 & 0.84 $\pm$ 0.005 & 0.83 $\pm$ 0.008 \\ |
278 |
+ |
150 - 200 & 0.93 $\pm$ 0.006 & 0.84 $\pm$ 0.011 & 0.82 $\pm$ 0.018 \\ |
279 |
+ |
$>$200 & 0.92 $\pm$ 0.010 & 0.82 $\pm$ 0.017 & 0.82 $\pm$ 0.031 \\ |
280 |
+ |
\hline |
281 |
+ |
\hline |
282 |
+ |
|
283 |
+ |
\end{tabular} |
284 |
+ |
\end{center} |
285 |
+ |
\end{table} |
286 |
+ |
|
287 |
+ |
\begin{table}[htb] |
288 |
+ |
\begin{center} |
289 |
+ |
\footnotesize |
290 |
+ |
\caption{\label{tab:eltriggeff} |
291 |
+ |
Summary of the single electron trigger efficiency HLT\_Ele27\_WP80. Uncertainties are statistical.} |
292 |
+ |
\begin{tabular}{c|c|c} |
293 |
+ |
|
294 |
+ |
\hline |
295 |
+ |
\hline |
296 |
+ |
\pt\ range [GeV] & $|\eta|<1.5$ & $1.5<|\eta|<2.1$ \\ |
297 |
+ |
\hline |
298 |
+ |
20 - 22 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.000 \\ |
299 |
+ |
22 - 24 & 0.00 $\pm$ 0.000 & 0.00 $\pm$ 0.001 \\ |
300 |
+ |
24 - 26 & 0.00 $\pm$ 0.000 & 0.02 $\pm$ 0.001 \\ |
301 |
+ |
26 - 28 & 0.08 $\pm$ 0.001 & 0.18 $\pm$ 0.003 \\ |
302 |
+ |
28 - 30 & 0.61 $\pm$ 0.002 & 0.50 $\pm$ 0.004 \\ |
303 |
+ |
30 - 32 & 0.86 $\pm$ 0.001 & 0.63 $\pm$ 0.003 \\ |
304 |
+ |
32 - 34 & 0.88 $\pm$ 0.001 & 0.68 $\pm$ 0.003 \\ |
305 |
+ |
34 - 36 & 0.90 $\pm$ 0.001 & 0.70 $\pm$ 0.002 \\ |
306 |
+ |
36 - 38 & 0.91 $\pm$ 0.001 & 0.72 $\pm$ 0.002 \\ |
307 |
+ |
38 - 40 & 0.92 $\pm$ 0.001 & 0.74 $\pm$ 0.002 \\ |
308 |
+ |
40 - 50 & 0.94 $\pm$ 0.000 & 0.76 $\pm$ 0.001 \\ |
309 |
+ |
50 - 60 & 0.95 $\pm$ 0.000 & 0.77 $\pm$ 0.002 \\ |
310 |
+ |
60 - 80 & 0.96 $\pm$ 0.001 & 0.78 $\pm$ 0.003 \\ |
311 |
+ |
80 - 100 & 0.96 $\pm$ 0.002 & 0.80 $\pm$ 0.008 \\ |
312 |
+ |
100 - 150 & 0.96 $\pm$ 0.002 & 0.79 $\pm$ 0.010 \\ |
313 |
+ |
150 - 200 & 0.97 $\pm$ 0.004 & 0.76 $\pm$ 0.026 \\ |
314 |
+ |
$>$200 & 0.97 $\pm$ 0.005 & 0.81 $\pm$ 0.038 \\ |
315 |
+ |
\hline |
316 |
+ |
\hline |
317 |
+ |
|
318 |
+ |
\end{tabular} |
319 |
+ |
\end{center} |
320 |
+ |
\end{table} |
321 |
+ |
|
322 |
+ |
\clearpage |