ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/eventsel.tex (file contents):
Revision 1.4 by fkw, Mon Jul 2 05:49:42 2012 UTC vs.
Revision 1.9 by claudioc, Thu Oct 4 07:24:29 2012 UTC

# Line 1 | Line 1
1  
2 + This analysis uses several different control regions in addition to the signal regions.
3 + All of these different regions are defined in this section.
4 + %Figure~\ref{fig:venndiagram} illustrates the relationship between these regions.
5  
6 < The preselection sample is based on the following criteria
6 > \subsection{Single Lepton Selection}
7 >
8 > [UPDATE SELECTION]
9 >
10 > The single lepton preselection sample is based on the following criteria
11   \begin{itemize}
12   \item satisfy the trigger requirement (see
13 <  Table.~\ref{tab:DatasetsData}). Dilepton triggers are used only for the dilepton control region.
13 >  Table.~\ref{tab:DatasetsData}).
14 > Note that the analysis triggers are inclusive single lepton triggers.
15 > Dilepton triggers are used only for the dilepton control region.
16   \item select events with one high \pt\ electron or muon, requiring
17    \begin{itemize}
18 <  \item $\pt>30~\GeVc$ and $|\eta|<2.5(2.1)$ for \E(\M)
18 >  \item $\pt>30~\GeVc$ and $|\eta|<2.1$
19    \item satisfy the identification and isolation requirements detailed
20      in the same-sign SUSY analysis (SUS-11-010) for electrons and the opposite-sign
21      SUSY analysis (SUS-11-011) for muons
22    \end{itemize}
23    \item require at least 4 PF jets in the event with $\pt>30~\GeV$
24 <    within $|\eta|<2.5$, out of which at least 1 is b-tagged based on
25 <    the SSV medium working point.
24 >    within $|\eta|<2.5$ out of which at least 1 satisfies the CSV
25 >    medium working point b-tagging requirement
26    \item require moderate $\met>50~\GeV$
27   \end{itemize}
28  
29 < Currently, we focus on the muon channel because it is cleaner (the QCD contribution is negligible)
21 < and the triggers are simpler (we use single muon triggers, as opposed to electron + 3-jet triggers).
22 < We will add the electron channel, time permitting. However, since this is a systematics-dominated
23 < analysis, increasing the statistics by adding the electrons is not expected to significantly improve
24 < the sensitivity, especialy because the electron selection efficiency is smaller and the systematic
25 < uncertainty associated with the QCD background is larger.
29 > Table~\ref{tab:preselectionyield} shows the yields in data and MC without any corrections for this preselection region.
30  
31 < A benchmark signal region is selected by tightening the \met\ and
32 < adding an \mt\  as well as isolated track veto requirement
33 < \begin{itemize}
34 < \item $\met>100~\GeV$
35 < \item $\mt>150~\GeV$
36 < \item isolated track veto as discussed below
37 < \end{itemize}
31 > \begin{table}[!h]
32 > \begin{center}
33 > \begin{tabular}{c|c}
34 > \hline
35 > \hline
36 > \end{tabular}
37 > \caption{  Raw Data and MC predictions without any corrections are shown after preselection. \label{tab:preselectionyield}}
38 > \end{center}
39 > \end{table}
40 >
41 > \subsection{Signal Region Selection}
42 >
43 > [MOTIVATIONAL BLURB ON MET AND MT, \\
44 > CAN ADD SIGNAL VS. TTBAR MC PLOT \\
45 > ADD SIGNAL YIELDS FOR AVAILABLE POINTS, \\
46 > DISCUSS CHOICE SIG REGIONS]
47 >
48 > The signal regions (SRs) are selected to improve the sensitivity for the
49 > single lepton requirements and cover a range of scalar top
50 > scenarios. The \mt\ and \met\ variables are used to define the signal
51 > regions and the requirements are listed in Table~\ref{tab:srdef}.
52 >
53 > \begin{table}[!h]
54 > \begin{center}
55 > \begin{tabular}{l|c|c}
56 > \hline
57 > Signal Region & Minimum \mt\ [GeV] & Minimum \met\ [GeV] \\
58 > \hline
59 > \hline
60 > SRA & 150 & 100 \\
61 > SRB & 120 & 150 \\
62 > SRC & 120 & 200 \\
63 > SRD & 120 & 250 \\
64 > SRE & 120 & 300 \\
65 > \hline
66 > \end{tabular}
67 > \caption{ Signal region definitions based on \mt\ and \met\
68 >  requirements. These requirements are applied in addition to the
69 >  baseline single lepton selection.
70 > \label{tab:srdef}}
71 > \end{center}
72 > \end{table}
73 >
74 > Table~\ref{tab:srrawmcyields} shows the expected number of SM
75 > background yields for the SRs. A few stop signal yields for four
76 > values of the parameters are also shown for comparison. The signal
77 > regions with looser requirements are sensitive to lower stop masses
78 > M(\sctop), while those with tighter requirements are more sensitive to
79 > higher M(\sctop).
80 >
81 > \begin{table}[!h]
82 > \begin{center}
83 > \begin{tabular}{l||c|c|c|c}
84 > \hline
85 > Sample              & SRA & SRB & SRC & SRD \\
86 > \hline
87 > \hline
88 > \ttdl\           & $700 \pm 15$& $408 \pm 12$& $134 \pm 7$& $43 \pm 4$ \\
89 > \ttsl\ \& single top (1\Lep)             & $111 \pm 6$& $71 \pm 5$& $15 \pm 2$& $4 \pm 1$ \\
90 > \wjets\                  & $58 \pm 35$& $57 \pm 35$& $29 \pm 26$& $26 \pm 26$ \\
91 > Rare             & $63 \pm 3$& $40 \pm 3$& $17 \pm 2$& $7 \pm 1$ \\
92 > \hline
93 > Total            & $932 \pm 39$& $576 \pm 38$& $195 \pm 27$& $80 \pm 26$ \\
94 > \hline
95 > \end{tabular}
96 > \caption{ Expected SM background contributions, including both muon
97 >  and electron channels. This is ``dead reckoning'' MC with no
98 >  correction.
99 > It is meant only as a general guide. The uncertainties are statistical only. ADD
100 >  SIGNAL POINTS.
101 > \label{tab:srrawmcyields}}
102 > \end{center}
103 > \end{table}
104 >
105 > \subsection{Control Region Selection}
106 >
107 > [1 PARAGRAPH BLURB RELATING BACKGROUNDS (IN TABLE FROM PREVIOUS SECTION)
108 > TO INTRODUCE CONTROL REGIONS]
109 >
110 > Control regions (CRs) are used to validate the background estimation
111 > procedure and derive systematic uncertainties for some
112 > contributions. The CRs are selected to have similar
113 > kinematics to the SRs, but have a different requirement in terms of
114 > number of b-tags and number of leptons, thus enhancing them in
115 > different SM contributions. The four CRs used in this analysis are
116 > summarized in Table~\ref{tab:crdef}.
117 >
118 > \begin{table}
119 > \begin{center}
120 > {\small
121 > \begin{tabular}{l|c|c|c}
122 > \hline
123 > Selection       & \multirow{2}{*}{exactly 1 lepton}     & \multirow{2}{*}{exactly 2
124 >        leptons}                & \multirow{2}{*}{1 lepton + isolated
125 >        track}\\
126 >      Criteria & & & \\
127 > \hline
128 > \hline
129 > \multirow{4}{*}{0 b-tags}        
130 > &        CR1) W+Jets dominated:
131 > &        CR2) apply \Z-mass constraint                  
132 > &        CR3) not used \\  
133 > &        
134 > &       $\rightarrow$ Z+Jets dominated: Validate
135 > &      \\
136 > &      Validate W+Jets \mt\ tail
137 > &        \ttsl\ \mt\ tail comparing
138 > &        \\  
139 > &
140 > &        data vs. MC ``pseudo-\mt ''
141 > &        \\  
142 > \hline
143 > \multirow{4}{*}{$\ge$ 1 b-tags}          
144 > &      
145 > &       CR4) Apply \Z-mass veto
146 > &      CR5) \ttdl, \ttlt\ and \\
147 > &     SIGNAL
148 > &      $\rightarrow$ \ttdl\ dominated: Validate
149 > &       \ttlf\ dominated:  Validate \\
150 > &     REGION
151 > &      ``physics'' modelling of \ttdl\    
152 > &      \Tau\  and fake lepton modeling/\\
153 > &
154 > &
155 > &      detector effects in \ttdl\     \\
156 > \hline
157 > \end{tabular}
158 > }
159 > \caption{Summary of signal and control regions.
160 >  \label{tab:crdef}%\protect
161 > }
162 > \end{center}
163 > \end{table}
164  
35 {\bf We have not looked at the data in the signal region after the first 1 fb$^{-1}$ of data.}
165  
166 < \subsection{Corrections to Jets and \met}
166 > \subsection{MC Corrections}
167 >
168 > [UPDATE SECTION]
169 >
170 > \subsubsection{Corrections to Jets and \met}
171 >
172 > [UPDATE, ADD FEW MORE DETAILS ON WHAT IS DONE HERE]
173  
174   The official recommendations from the Jet/MET group are used for
175   the data and MC samples. In particular, the jet
# Line 43 | Line 178 | L1FastL2L3Residual (L1FastL2L3) correcti
178   based on the global tags GR\_R\_42\_V23 (DESIGN42\_V17) for
179   data (MC). In addition, these jet energy corrections are propagated to
180   the \met\ calculation, following the official prescription for
181 < deriving the Type I corrections. It may be noted that events with
182 < anomalous ``rho'' pile-up corrections are excluded from the sample since these
181 > deriving the Type I corrections.
182 >
183 > Events with anomalous ``rho'' pile-up corrections are excluded from the sample since these
184   correspond to events with unphysically large \met\ and \mt\ tail
185 < signal region (see Figure~\ref{fig:mtrhocomp}). An additional correction to remove
50 < the $\phi$-modulation observed in the \met\ is included, improving
51 < the agreement between the data and the MC, as shown in
52 < Figure~\ref{fig:metphicomp}. This correction has an effect on this analysis,
53 < since the azimuthal angle enters the \mt\ distribution.
54 <
55 < \clearpage
56 <
57 < \begin{figure}[!ht]
58 <  \begin{center}
59 <        \includegraphics[width=0.5\linewidth]{plots/mt_rho_comp.png}
60 <        \caption{ \label{fig:mtrhocomp}%\protect
61 <          Comparison of the \mt\ distribution for events with
62 <          unphysical energy corrections ($\rho <0$ or $ \rho > 40$, where $\rho$ is a
63 <          measure of the average pileup energy density) and the
64 <          nominal sample. Events with large pileup corrections
65 <          correspond to noisy events. Since this correction is applied
66 <          to the jets and propagated to the \met, these events have
67 <          anomalously large \met\ and populate the \mt\ tail. These
68 <          pathological events are excluded from the analysis sample.}
69 <  \end{center}
70 < \end{figure}
71 <
72 < \begin{figure}[!hb]
73 <  \begin{center}
74 <        \includegraphics[width=0.5\linewidth]{plots/metphi.pdf}%
75 <        \includegraphics[width=0.5\linewidth]{plots/metphi_phicorr.pdf}
76 <        \caption{ \label{fig:metphicomp}%\protect
77 <          The PF \met\ $\phi$ distribution (left) exhibits a
78 <          modulation. After applying a dedicated correction, the
79 <          azimuthal dependence is reduced (right).}
80 <  \end{center}
81 < \end{figure}
185 > signal region. In addition, the recommended MET filters are applied.
186  
83 \clearpage
187  
188 < \subsection{Branching Fraction Correction}
188 > \subsubsection{Branching Fraction Correction}
189  
190   The leptonic branching fraction used in some of the \ttbar\ MC samples
191   differs from the value listed in the PDG $(10.80 \pm 0.09)\%$.
# Line 112 | Line 215 | Powheg       &       0.108\\
215   \end{center}
216   \end{table}
217  
218 +
219 + \subsubsection{Efficiency Corrections}
220 +
221 + [TO BE UDPATED WITH T\&P STUDIES ON ID, TRIGGER ETC]
222 +

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines