ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.13
Committed: Tue Oct 9 14:00:42 2012 UTC (12 years, 7 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
Changes since 1.12: +20 -0 lines
Log Message:
updated peak region defn

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5     FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6     AND
7     WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8     UNCERTAINTIES
9     CORRECTLY THROUGH. WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10     INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11    
12     In this Section we discuss the systematic uncertainty on the BG
13     prediction. This prediction is assembled from the event
14     counts in the peak region of the transverse mass distribution as
15     well as Monte Carlo
16     with a number of correction factors, as described previously.
17     The
18     final uncertainty on the prediction is built up from the uncertainties in these
19     individual
20     components.
21     The calculation is done for each signal
22     region,
23     for electrons and muons separately.
24    
25     The choice to normalizing to the peak region of $M_T$ has the
26     advantage that some uncertainties, e.g., luminosity, cancel.
27     It does however introduce complications because it couples
28     some of the uncertainties in non-trivial ways. For example,
29     the primary effect of an uncertainty on the rare MC cross-section
30     is to introduce an uncertainty in the rare MC background estimate
31     which comes entirely from MC. But this uncertainty also affects,
32     for example,
33     the $t\bar{t} \to$ dilepton BG estimate because it changes the
34     $t\bar{t}$ normalization to the peak region (because some of the
35     events in the peak region are from rare processes). These effects
36     are carefully accounted for. The contribution to the overall
37     uncertainty from each BG source is tabulated in
38     Section~\ref{sec:bgunc-bottomline}.
39     First, however, we discuss the uncertainties one-by-one and we comment
40     on their impact on the overall result, at least to first order.
41     Second order effects, such as the one described, are also included.
42    
43     \subsection{Statistical uncertainties on the event counts in the $M_T$
44     peak regions}
45     These vary between XX and XX \%, depending on the signal region
46     (different
47     signal regions have different \met\ requirements, thus they also have
48     different $M_T$ regions used as control.
49     Since
50     the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51     fractional uncertainty is pretty much carried through all the way to
52     the end. There is also an uncertainty from the finite MC event counts
53     in the $M_T$ peak regions. This is also included, but it is smaller.
54    
55     \subsection{Uncertainty from the choice of $M_T$ peak region}
56     IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57     LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY. WE NEED TO LOOK
58     INTO THIS AGAIN
59    
60     \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61     These are taken as 50\%, uncorrelated.
62     The primary effect is to introduce a 50\%
63     uncertainty
64     on the $W +$ jets and rare BG
65     background predictions, respectively. However they also
66     have an effect on the other BGs via the $M_T$ peak normalization
67     in a way that tends to reduce the uncertainty. This is easy
68     to understand: if the $W$ cross-section is increased by 50\%, then
69     the $W$ background goes up. But the number of $M_T$ peak events
70     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72     BG goes down.
73    
74     \subsection{Scale factors for the tail-to-peak ratios for lepton +
75     jets top and W events}
76     These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77     They are studied in CR1 and CR2. The studies are described
78     in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79     we also give the uncertainty on the scale factors.
80    
81     \subsection{Uncertainty on extra jet radiation for dilepton
82     background}
83     As discussed in Section~\ref{sec:jetmultiplicity}, the
84     jet distribution in
85     $t\bar{t} \to$
86     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87     it agree with the data. The XX\% uncertainties on $K_3$ and $K_4$
88     comes from data/MC statistics. This
89     result directly in a XX\% uncertainty on the dilepton BG, which is by far
90     the most important one.
91    
92 vimartin 1.5
93 vimartin 1.2 \subsection{Uncertainty on the \ttll\ Acceptance}
94 benhoob 1.1
95 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
96     derived from control samples in data. The uncertainty associated with
97     the theoretical modeling of the \ttbar\ production and decay is
98     estimated by comparing the background predictions obtained using
99     alternative MC samples. It should be noted that the full analysis is
100     performed with the alternative samples under consideration,
101     including the derivation of the various data-to-MC scale factors.
102     The variations considered are
103    
104     \begin{itemize}
105     \item Top mass: The alternative values for the top mass differ
106     from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
107     = 166.5~\GeV$.
108     \item Jet-parton matching scale: This corresponds to variations in the
109     scale at which the Matrix Element partons from Madgraph are matched
110     to Parton Shower partons from Pythia. The nominal value is
111     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
112     $x_q>40~\GeV$.
113     \item Renormalization and factorization scale: The alternative samples
114     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
115     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
116     \sum_{\mathrm{jets}} \pt^2$.
117     \item Alternative generators: Samples produced with different
118     generators include MC@NLO and Powheg (NLO generators) and
119     Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120     hadronisation, while POWHEG uses Pythia6.
121     \item Modeling of taus: The alternative sample does not include
122 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
123     This effect was studied earlier using 7~TeV samples and found to be negligible.
124 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
125     recommendations[CITE]. The events are reweighted using alternative
126     PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
127     alternative eigenvector variations and the ``master equation''. In
128     addition, the NNPDF2.1 set with 100 replicas. The central value is
129     determined from the mean and the uncertainty is derived from the
130     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
131 burkett 1.6 alternative predictions and their uncertainties.
132     This effect was studied earlier using 7~TeV samples and found to be negligible.
133     \end{itemize}
134 benhoob 1.1
135    
136     \begin{figure}[hbt]
137     \begin{center}
138 vimartin 1.2 \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
139 benhoob 1.1 \caption{
140 vimartin 1.2 \label{fig:ttllsyst}%\protect
141 vimartin 1.3 Comparison of the \ttll\ central prediction with those using
142     alternative MC samples. The blue band corresponds to the
143     total statistical error for all data and MC samples. The
144     alternative sample predictions are indicated by the
145     datapoints. The uncertainties on the alternative predictions
146     correspond to the uncorrelated statistical uncertainty from
147 vimartin 1.8 the size of the alternative sample only.
148     [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
149 vimartin 1.2 \end{center}
150     \end{figure}
151    
152 claudioc 1.7 \clearpage
153 vimartin 1.2
154     %
155     %
156     %The methodology for determining the systematics on the background
157     %predictions has not changed with respect to the nominal analysis.
158     %Because the template method has not changed, the same
159     %systematic uncertainty is assessed on this prediction (32\%).
160     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
161     %The systematic uncertainty in the OF background prediction based on
162     %e$\mu$ events has changed, due to the different composition of this
163     %sample after vetoing events containing b-tagged jets.
164     %
165     %As in the nominal analysis, we do not require the e$\mu$ events
166     %to satisfy the dilepton mass requirement and apply a scaling factor K,
167     %extracted from MC, to account for the fraction of e$\mu$ events
168     %which satisfy the dilepton mass requirement. This procedure is used
169     %in order to improve the statistical precision of the OF background estimate.
170     %
171     %For the selection used in the nominal analysis,
172     %the e$\mu$ sample is completely dominated by $t\bar{t}$
173     %events, and we observe that K is statistically consistent with constant with
174     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
175     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
176     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
177     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
178     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
179     %Therefore, the sample composition changes
180     %as the \MET\ requirement is varied, and as a result K depends
181     %on the \MET\ requirement.
182     %
183     %We thus measure K in MC separately for each
184     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
185     %%The systematic uncertainty on K is determined separately for each \MET\
186     %%requirement by comparing the relative difference in K in data vs. MC.
187     %The values of K used are the MC predictions
188     %%and the total systematic uncertainty on the OF prediction
189     %%as shown in
190     %(Table \ref{fig:kvmettable}).
191     %The contribution to the total OF prediction systematic uncertainty
192     %from K is assessed from the ratio of K in data and MC,
193     %shown in Fig.~\ref{fig:kvmet} (right).
194     %The ratio is consistent with unity to roughly 17\%,
195     %so we take this value as the systematic from K.
196     %17\% added in quadrature with 7\% from
197     %the electron to muon efficieny ratio
198     %(as assessed in the inclusive analysis)
199     %yields a total systematic of $\sim$18\%
200     %which we round up to 20\%.
201     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
202     %so we take a systematic based on the statistical uncertainty
203     %of the MC prediction for K.
204     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
205     %%Although we cannot check the value of K in data for \MET\ $>$ 150
206     %%because we find no OF events inside the Z mass window for this \MET\
207     %%cut, the overall OF yields with no dilepton mass requirement
208     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
209     %
210     %
211     %%Below Old
212     %
213     %%In reevaluating the systematics on the OF prediction, however,
214     %%we observed a different behavior of K as a function of \MET\
215     %%as was seen in the inclusive analysis.
216     %
217     %%Recall that K is the ratio of the number of \emu\ events
218     %%inside the Z window to the total number of \emu\ events.
219     %%In the inclusive analysis, it is taken from \ttbar\ MC
220     %%and used to scale the inclusive \emu\ yield in data.
221     %%The yield scaled by K is then corrected for
222     %%the $e$ vs $\mu$ efficiency difference to obtain the
223     %%final OF prediction.
224     %
225     %%Based on the plot in figure \ref{fig:kvmet},
226     %%we choose to use a different
227     %%K for each \MET\ cut and assess a systematic uncertainty
228     %%on the OF prediction based on the difference between
229     %%K in data and MC.
230     %%The variation of K as a function of \MET\ is caused
231     %%by a change in sample composition with increasing \MET.
232     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
233     %%not negligible (as it was in the inclusive analysis)
234     %%because of the b veto. (See appendix \ref{app:kinemu}.)
235     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
236     %
237     %
238     %
239     %
240     %\begin{figure}[hbt]
241     % \begin{center}
242     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
243     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
244     % \caption{
245     % \label{fig:kvmet}\protect
246     % The left plot shows
247     % K as a function of \MET\ in MC (red) and data (black).
248     % The bin low edge corresponds to the \MET\ cut, and the
249     % bins are inclusive.
250     % The MC used is a sum of all SM MC used in the yield table of
251     % section \ref{sec:yields}.
252     % The right plot is the ratio of K in data to MC.
253     % The ratio is fit to a line whose slope is consistent with zero
254     % (the fit parameters are
255     % 0.9 $\pm$ 0.4 for the intercept and
256     % 0.001 $\pm$ 0.005 for the slope).
257     % }
258     % \end{center}
259     %\end{figure}
260     %
261     %
262     %
263     %\begin{table}[htb]
264     %\begin{center}
265     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
266     %The uncertainties shown are the total relative systematic used for the OF prediction,
267     %which is the systematic uncertainty from K added in quadrature with
268     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
269     %inclusive analysis.
270     %}
271     %\begin{tabular}{lcc}
272     %\hline
273     %\MET\ Cut & K & Relative Systematic \\
274     %\hline
275     %%the met zero row is used only for normalization of the money plot.
276     %%0 & 0.1 & \\
277     %30 & 0.12 & 20\% \\
278     %60 & 0.13 & 20\% \\
279     %80 & 0.12 & 20\% \\
280     %100 & 0.12 & 20\% \\
281     %150 & 0.09 & 25\% \\
282     %200 & 0.06 & 60\% \\
283     %\hline
284     %\end{tabular}
285     %\end{center}
286     %\end{table}
287 vimartin 1.4
288 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
289     This is the uncertainty associated with how well the isolated track
290     veto performance is modeled by the Monte Carlo. This uncertainty
291     only applies to the fraction of dilepton BG events that have
292     a second e/$\mu$ or a one prong $\tau \to h$, with
293     $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is 1/3 (THIS WAS THE
294     7 TEV NUMBER, CHECK). The uncertainty for these events
295     is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
296 vimartin 1.4
297 claudioc 1.7 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
298     \label{sec:trkveto}
299 vimartin 1.5
300     [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
301     ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
302 vimartin 1.4
303 vimartin 1.13 \begin{table}[!h]
304     \begin{center}
305     {\footnotesize
306     \begin{tabular}{l||c|c|c|c|c}
307     \hline
308     Sample & SRA & SRB & SRC & SRD & SRE\\
309     \hline
310     \hline
311     Muon Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ \\
312     \hline
313     \hline
314     Electron Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ \\
315     \hline
316     \end{tabular}}
317     \caption{ Fraction of \ttdl\ events with a true isolated track.
318     \label{tab:trueisotrk}}
319     \end{center}
320     \end{table}
321    
322    
323 vimartin 1.4 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
324     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
325     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
326     we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
327     addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
328     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
329     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
330     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
331     Furthermore, we test the data and MC
332     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
333     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
334     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
335     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
336     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
337     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
338     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
339     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
340     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
341     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
342     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
343     due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
344    
345     The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
346     All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
347     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
348     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
349     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
350     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
351     \met\ $<$ 30 GeV and 0 b-tagged events.
352     The specific criteria for tags and probes for electrons and muons are:
353    
354     %We study the isolated track veto efficiency in bins of \njets.
355     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
356     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
357    
358    
359     \begin{itemize}
360     \item{Electrons}
361    
362     \begin{itemize}
363     \item{Tag criteria}
364    
365     \begin{itemize}
366     \item Electron passes full analysis ID/iso selection
367 benhoob 1.12 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
368     \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
369 vimartin 1.4 \end{itemize}
370    
371     \item{Probe criteria}
372     \begin{itemize}
373     \item Electron passes full analysis ID selection
374     \item \pt\ $>$ 30 GeV
375     \end{itemize}
376     \end{itemize}
377     \item{Muons}
378     \begin{itemize}
379     \item{Tag criteria}
380     \begin{itemize}
381     \item Muon passes full analysis ID/iso selection
382     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
383 benhoob 1.12 \item Matched to 1 of the 2 single muon triggers
384 vimartin 1.4 \begin{itemize}
385     \item \verb=HLT_IsoMu30_v*=
386     \item \verb=HLT_IsoMu30_eta2p1_v*=
387     \end{itemize}
388     \end{itemize}
389     \item{Probe criteria}
390     \begin{itemize}
391     \item Muon passes full analysis ID selection
392     \item \pt\ $>$ 30 GeV
393     \end{itemize}
394     \end{itemize}
395     \end{itemize}
396    
397     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
398     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
399     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
400     In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
401 benhoob 1.12 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
402 vimartin 1.4 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
403     a data vs. MC discrepancy in the isolated track veto efficiency.
404    
405    
406     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
407     %This requirement is chosen because most of the tracks rejected by the isolated
408     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
409    
410     \begin{figure}[hbt]
411     \begin{center}
412 benhoob 1.12 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
413     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
414     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
415     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
416     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
417     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
418     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
419     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
420     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
421     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
422 vimartin 1.4 \caption{
423     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
424     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
425     }
426     \end{center}
427     \end{figure}
428    
429     \clearpage
430    
431     \begin{table}[!ht]
432     \begin{center}
433     \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
434     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
435     jet multiplicity requirements.}
436 benhoob 1.10 \begin{tabular}{l|c|c|c|c|c}
437 benhoob 1.11
438     %Electrons:
439 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
440     %Total MC yields : 2497277
441     %Total DATA yields : 2649453
442 benhoob 1.11 %Muons:
443 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
444     %Total MC yields : 3749863
445 benhoob 1.11 %Total DATA yields : 4210022
446 benhoob 1.12 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
447     %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
448 benhoob 1.11
449 vimartin 1.4 \hline
450     \hline
451 benhoob 1.11 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
452 vimartin 1.4 \hline
453 benhoob 1.12 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
454     mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
455     data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
456 benhoob 1.11
457 vimartin 1.4 \hline
458     \hline
459 benhoob 1.11 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
460 vimartin 1.4 \hline
461 benhoob 1.9 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
462 benhoob 1.12 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
463     data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
464 benhoob 1.11
465 vimartin 1.4 \hline
466     \hline
467 benhoob 1.11 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
468 vimartin 1.4 \hline
469 benhoob 1.12 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
470     mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
471     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
472 benhoob 1.11
473 vimartin 1.4 \hline
474     \hline
475 benhoob 1.11 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
476 vimartin 1.4 \hline
477 benhoob 1.9 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
478 benhoob 1.12 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
479     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
480 benhoob 1.11
481 vimartin 1.4 \hline
482     \hline
483 benhoob 1.11 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
484 vimartin 1.4 \hline
485 benhoob 1.12 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
486     mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
487     data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
488 benhoob 1.11
489 vimartin 1.4 \hline
490     \hline
491 benhoob 1.11 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
492 vimartin 1.4 \hline
493 benhoob 1.9 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
494 benhoob 1.12 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
495     data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
496 benhoob 1.11
497 vimartin 1.4 \hline
498     \hline
499 benhoob 1.11 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
500 vimartin 1.4 \hline
501 benhoob 1.12 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
502     mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
503     data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
504 benhoob 1.11
505 vimartin 1.4 \hline
506     \hline
507 benhoob 1.11 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
508 vimartin 1.4 \hline
509 benhoob 1.9 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
510 benhoob 1.12 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
511     data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
512 benhoob 1.11
513 vimartin 1.4 \hline
514     \hline
515 benhoob 1.11 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
516 vimartin 1.4 \hline
517 benhoob 1.12 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
518     mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
519     data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
520 benhoob 1.11
521 vimartin 1.4 \hline
522     \hline
523 benhoob 1.11 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
524 vimartin 1.4 \hline
525 benhoob 1.9 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
526 benhoob 1.12 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
527     data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
528    
529 vimartin 1.4 \hline
530 benhoob 1.11 \hline
531 benhoob 1.9
532 vimartin 1.4 \end{tabular}
533     \end{center}
534     \end{table}
535    
536    
537     %Figure.~\ref{fig:reliso} compares the relative track isolation
538     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
539     %muon for $\Z+4$ jet events and various \ttll\ components. The
540     %isolation distributions show significant differences, particularly
541     %between the leptons from a \W\ or \Z\ decay and the tracks arising
542     %from $\tau$ decays. As can also be seen in the figure, the \pt\
543     %distribution for the various categories of tracks is different, where
544     %the decay products from $\tau$s are significantly softer. Since the
545     %\pt\ enters the denominator of the isolation definition and hence
546     %alters the isolation variable...
547    
548     %\begin{figure}[hbt]
549     % \begin{center}
550     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
551     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
552     % \caption{
553     % \label{fig:reliso}%\protect
554     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
555     % Z+Jets and ttbar dilepton have similar isolation distributions
556     % ttbar with leptonic and single prong taus tend to be less
557     % isolated. The difference in the isolation can be attributed
558     % to the different \pt\ distribution of the samples, since
559     % $\tau$ decay products tend to be softer than leptons arising
560     % from \W\ or \Z\ decays.}
561     % \end{center}
562     %\end{figure}
563    
564     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
565    
566    
567     %BEGIN SECTION TO WRITE OUT
568     %In detail, the procedure to correct the dilepton background is:
569    
570     %\begin{itemize}
571     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
572     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
573     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
574     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
575     %the lepton \pt {\bf TODO: verify this in data and MC.}.
576     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
577     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
578     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
579     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
580     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
581     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
582     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
583     %\end{itemize}
584     %END SECTION TO WRITE OUT
585    
586    
587     {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
588     Why not measure $\epsilon_{fake}$ in the b-veto region?}
589    
590 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
591     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
592     %applying an additional scale factor for the single lepton background
593     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
594     %veto and after subtracting the \ttll\ component, corrected for the
595     %isolation efficiency derived previously.
596     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
597     %isolated track in single lepton events is independent of \mt\, so the use of
598     %an overall scale factor is justified to estimate the contribution in
599     %the \mt\ tail.
600     %
601     %\begin{figure}[hbt]
602     % \begin{center}
603     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
604     % \caption{
605     % \label{fig:vetoeffcomp}%\protect
606     % Efficiency for selecting an isolated track comparing
607     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
608     % data as a function of \mt. The
609     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
610     % \mt\, while the data ranges between the two. This behavior
611     % is expected since the low \mt\ region is predominantly \ttlj, while the
612     % high \mt\ region contains mostly \ttll\ events.}
613     % \end{center}
614     %\end{figure}
615 vimartin 1.4
616 claudioc 1.7 \subsection{Summary of uncertainties}
617     \label{sec:bgunc-bottomline}.
618    
619 benhoob 1.9 THIS NEEDS TO BE WRITTEN