ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.14
Committed: Wed Oct 10 04:03:33 2012 UTC (12 years, 7 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
Changes since 1.13: +113 -6 lines
Log Message:
added new signal regions

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5     FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6     AND
7     WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8     UNCERTAINTIES
9     CORRECTLY THROUGH. WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10     INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11    
12     In this Section we discuss the systematic uncertainty on the BG
13     prediction. This prediction is assembled from the event
14     counts in the peak region of the transverse mass distribution as
15     well as Monte Carlo
16     with a number of correction factors, as described previously.
17     The
18     final uncertainty on the prediction is built up from the uncertainties in these
19     individual
20     components.
21     The calculation is done for each signal
22     region,
23     for electrons and muons separately.
24    
25     The choice to normalizing to the peak region of $M_T$ has the
26     advantage that some uncertainties, e.g., luminosity, cancel.
27     It does however introduce complications because it couples
28     some of the uncertainties in non-trivial ways. For example,
29     the primary effect of an uncertainty on the rare MC cross-section
30     is to introduce an uncertainty in the rare MC background estimate
31     which comes entirely from MC. But this uncertainty also affects,
32     for example,
33     the $t\bar{t} \to$ dilepton BG estimate because it changes the
34     $t\bar{t}$ normalization to the peak region (because some of the
35     events in the peak region are from rare processes). These effects
36     are carefully accounted for. The contribution to the overall
37     uncertainty from each BG source is tabulated in
38     Section~\ref{sec:bgunc-bottomline}.
39     First, however, we discuss the uncertainties one-by-one and we comment
40     on their impact on the overall result, at least to first order.
41     Second order effects, such as the one described, are also included.
42    
43     \subsection{Statistical uncertainties on the event counts in the $M_T$
44     peak regions}
45     These vary between XX and XX \%, depending on the signal region
46     (different
47     signal regions have different \met\ requirements, thus they also have
48     different $M_T$ regions used as control.
49     Since
50     the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51     fractional uncertainty is pretty much carried through all the way to
52     the end. There is also an uncertainty from the finite MC event counts
53     in the $M_T$ peak regions. This is also included, but it is smaller.
54    
55     \subsection{Uncertainty from the choice of $M_T$ peak region}
56     IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57     LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY. WE NEED TO LOOK
58     INTO THIS AGAIN
59    
60     \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61     These are taken as 50\%, uncorrelated.
62     The primary effect is to introduce a 50\%
63     uncertainty
64     on the $W +$ jets and rare BG
65     background predictions, respectively. However they also
66     have an effect on the other BGs via the $M_T$ peak normalization
67     in a way that tends to reduce the uncertainty. This is easy
68     to understand: if the $W$ cross-section is increased by 50\%, then
69     the $W$ background goes up. But the number of $M_T$ peak events
70     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72     BG goes down.
73    
74     \subsection{Scale factors for the tail-to-peak ratios for lepton +
75     jets top and W events}
76     These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77     They are studied in CR1 and CR2. The studies are described
78     in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79     we also give the uncertainty on the scale factors.
80    
81     \subsection{Uncertainty on extra jet radiation for dilepton
82     background}
83     As discussed in Section~\ref{sec:jetmultiplicity}, the
84     jet distribution in
85     $t\bar{t} \to$
86     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87     it agree with the data. The XX\% uncertainties on $K_3$ and $K_4$
88     comes from data/MC statistics. This
89     result directly in a XX\% uncertainty on the dilepton BG, which is by far
90     the most important one.
91    
92 vimartin 1.5
93 vimartin 1.2 \subsection{Uncertainty on the \ttll\ Acceptance}
94 benhoob 1.1
95 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
96     derived from control samples in data. The uncertainty associated with
97     the theoretical modeling of the \ttbar\ production and decay is
98     estimated by comparing the background predictions obtained using
99     alternative MC samples. It should be noted that the full analysis is
100     performed with the alternative samples under consideration,
101     including the derivation of the various data-to-MC scale factors.
102     The variations considered are
103    
104     \begin{itemize}
105     \item Top mass: The alternative values for the top mass differ
106     from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
107     = 166.5~\GeV$.
108     \item Jet-parton matching scale: This corresponds to variations in the
109     scale at which the Matrix Element partons from Madgraph are matched
110     to Parton Shower partons from Pythia. The nominal value is
111     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
112     $x_q>40~\GeV$.
113     \item Renormalization and factorization scale: The alternative samples
114     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
115     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
116     \sum_{\mathrm{jets}} \pt^2$.
117     \item Alternative generators: Samples produced with different
118     generators include MC@NLO and Powheg (NLO generators) and
119     Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120     hadronisation, while POWHEG uses Pythia6.
121     \item Modeling of taus: The alternative sample does not include
122 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
123     This effect was studied earlier using 7~TeV samples and found to be negligible.
124 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
125     recommendations[CITE]. The events are reweighted using alternative
126     PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
127     alternative eigenvector variations and the ``master equation''. In
128     addition, the NNPDF2.1 set with 100 replicas. The central value is
129     determined from the mean and the uncertainty is derived from the
130     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
131 burkett 1.6 alternative predictions and their uncertainties.
132     This effect was studied earlier using 7~TeV samples and found to be negligible.
133     \end{itemize}
134 benhoob 1.1
135    
136 vimartin 1.14 \begin{table}[!h]
137     \begin{center}
138     {\footnotesize
139     \begin{tabular}{l||c||c|c|c|c|c|c|c}
140     \hline
141     Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
142     Match Up & Match Down \\
143     \hline
144     \hline
145     SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
146     \hline
147     SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
148     \hline
149     SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
150     \hline
151     SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
152     \hline
153     SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
154     \hline
155     \end{tabular}}
156     \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
157     \label{tab:ttdlalt}}
158     \end{center}
159     \end{table}
160    
161    
162     \begin{table}[!h]
163     \begin{center}
164     {\footnotesize
165     \begin{tabular}{l||c|c|c|c|c|c|c}
166     \hline
167     $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
168     Match Up & Match Down \\
169     \hline
170     \hline
171     SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
172     \hline
173     SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
174     \hline
175     SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
176     \hline
177     SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
178     \hline
179     SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
180     \hline
181     \end{tabular}}
182     \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
183     \label{tab:fracdiff}}
184     \end{center}
185     \end{table}
186    
187    
188     \begin{table}[!h]
189     \begin{center}
190     {\footnotesize
191     \begin{tabular}{l||c|c|c|c|c|c|c}
192     \hline
193     $N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
194     Match Up & Match Down \\
195     \hline
196     \hline
197     SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
198     \hline
199     SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
200     \hline
201     SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
202     \hline
203     SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
204     \hline
205     SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
206     \hline
207     \end{tabular}}
208     \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
209     \label{tab:nsig}}
210     \end{center}
211     \end{table}
212    
213    
214     \begin{table}[!h]
215     \begin{center}
216     \begin{tabular}{l||c|c|c|c}
217     \hline
218     Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
219     & $\Delta$ Match \\
220     \hline
221     \hline
222     SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
223     \hline
224     SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
225     \hline
226     SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
227     \hline
228     SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
229     \hline
230     SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
231     \hline
232     \end{tabular}
233     \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
234     \label{tab:devt}}
235     \end{center}
236     \end{table}
237    
238    
239 benhoob 1.1 \begin{figure}[hbt]
240     \begin{center}
241 vimartin 1.14 \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
242     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
243     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
244     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
245     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
246 benhoob 1.1 \caption{
247 vimartin 1.14 \label{fig:ttllsyst}\protect
248 vimartin 1.3 Comparison of the \ttll\ central prediction with those using
249     alternative MC samples. The blue band corresponds to the
250     total statistical error for all data and MC samples. The
251     alternative sample predictions are indicated by the
252     datapoints. The uncertainties on the alternative predictions
253     correspond to the uncorrelated statistical uncertainty from
254 vimartin 1.8 the size of the alternative sample only.
255     [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
256 vimartin 1.2 \end{center}
257     \end{figure}
258    
259 claudioc 1.7 \clearpage
260 vimartin 1.2
261     %
262     %
263     %The methodology for determining the systematics on the background
264     %predictions has not changed with respect to the nominal analysis.
265     %Because the template method has not changed, the same
266     %systematic uncertainty is assessed on this prediction (32\%).
267     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
268     %The systematic uncertainty in the OF background prediction based on
269     %e$\mu$ events has changed, due to the different composition of this
270     %sample after vetoing events containing b-tagged jets.
271     %
272     %As in the nominal analysis, we do not require the e$\mu$ events
273     %to satisfy the dilepton mass requirement and apply a scaling factor K,
274     %extracted from MC, to account for the fraction of e$\mu$ events
275     %which satisfy the dilepton mass requirement. This procedure is used
276     %in order to improve the statistical precision of the OF background estimate.
277     %
278     %For the selection used in the nominal analysis,
279     %the e$\mu$ sample is completely dominated by $t\bar{t}$
280     %events, and we observe that K is statistically consistent with constant with
281     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
282     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
283     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
284     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
285     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
286     %Therefore, the sample composition changes
287     %as the \MET\ requirement is varied, and as a result K depends
288     %on the \MET\ requirement.
289     %
290     %We thus measure K in MC separately for each
291     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
292     %%The systematic uncertainty on K is determined separately for each \MET\
293     %%requirement by comparing the relative difference in K in data vs. MC.
294     %The values of K used are the MC predictions
295     %%and the total systematic uncertainty on the OF prediction
296     %%as shown in
297     %(Table \ref{fig:kvmettable}).
298     %The contribution to the total OF prediction systematic uncertainty
299     %from K is assessed from the ratio of K in data and MC,
300     %shown in Fig.~\ref{fig:kvmet} (right).
301     %The ratio is consistent with unity to roughly 17\%,
302     %so we take this value as the systematic from K.
303     %17\% added in quadrature with 7\% from
304     %the electron to muon efficieny ratio
305     %(as assessed in the inclusive analysis)
306     %yields a total systematic of $\sim$18\%
307     %which we round up to 20\%.
308     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
309     %so we take a systematic based on the statistical uncertainty
310     %of the MC prediction for K.
311     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
312     %%Although we cannot check the value of K in data for \MET\ $>$ 150
313     %%because we find no OF events inside the Z mass window for this \MET\
314     %%cut, the overall OF yields with no dilepton mass requirement
315     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
316     %
317     %
318     %%Below Old
319     %
320     %%In reevaluating the systematics on the OF prediction, however,
321     %%we observed a different behavior of K as a function of \MET\
322     %%as was seen in the inclusive analysis.
323     %
324     %%Recall that K is the ratio of the number of \emu\ events
325     %%inside the Z window to the total number of \emu\ events.
326     %%In the inclusive analysis, it is taken from \ttbar\ MC
327     %%and used to scale the inclusive \emu\ yield in data.
328     %%The yield scaled by K is then corrected for
329     %%the $e$ vs $\mu$ efficiency difference to obtain the
330     %%final OF prediction.
331     %
332     %%Based on the plot in figure \ref{fig:kvmet},
333     %%we choose to use a different
334     %%K for each \MET\ cut and assess a systematic uncertainty
335     %%on the OF prediction based on the difference between
336     %%K in data and MC.
337     %%The variation of K as a function of \MET\ is caused
338     %%by a change in sample composition with increasing \MET.
339     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
340     %%not negligible (as it was in the inclusive analysis)
341     %%because of the b veto. (See appendix \ref{app:kinemu}.)
342     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
343     %
344     %
345     %
346     %
347     %\begin{figure}[hbt]
348     % \begin{center}
349     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
350     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
351     % \caption{
352     % \label{fig:kvmet}\protect
353     % The left plot shows
354     % K as a function of \MET\ in MC (red) and data (black).
355     % The bin low edge corresponds to the \MET\ cut, and the
356     % bins are inclusive.
357     % The MC used is a sum of all SM MC used in the yield table of
358     % section \ref{sec:yields}.
359     % The right plot is the ratio of K in data to MC.
360     % The ratio is fit to a line whose slope is consistent with zero
361     % (the fit parameters are
362     % 0.9 $\pm$ 0.4 for the intercept and
363     % 0.001 $\pm$ 0.005 for the slope).
364     % }
365     % \end{center}
366     %\end{figure}
367     %
368     %
369     %
370     %\begin{table}[htb]
371     %\begin{center}
372     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
373     %The uncertainties shown are the total relative systematic used for the OF prediction,
374     %which is the systematic uncertainty from K added in quadrature with
375     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
376     %inclusive analysis.
377     %}
378     %\begin{tabular}{lcc}
379     %\hline
380     %\MET\ Cut & K & Relative Systematic \\
381     %\hline
382     %%the met zero row is used only for normalization of the money plot.
383     %%0 & 0.1 & \\
384     %30 & 0.12 & 20\% \\
385     %60 & 0.13 & 20\% \\
386     %80 & 0.12 & 20\% \\
387     %100 & 0.12 & 20\% \\
388     %150 & 0.09 & 25\% \\
389     %200 & 0.06 & 60\% \\
390     %\hline
391     %\end{tabular}
392     %\end{center}
393     %\end{table}
394 vimartin 1.4
395 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
396     This is the uncertainty associated with how well the isolated track
397     veto performance is modeled by the Monte Carlo. This uncertainty
398     only applies to the fraction of dilepton BG events that have
399     a second e/$\mu$ or a one prong $\tau \to h$, with
400     $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is 1/3 (THIS WAS THE
401     7 TEV NUMBER, CHECK). The uncertainty for these events
402     is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
403 vimartin 1.4
404 claudioc 1.7 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
405     \label{sec:trkveto}
406 vimartin 1.5
407     [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
408     ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
409 vimartin 1.4
410 vimartin 1.13 \begin{table}[!h]
411     \begin{center}
412     {\footnotesize
413 vimartin 1.14 \begin{tabular}{l||c|c|c|c|c|c|c}
414 vimartin 1.13 \hline
415 vimartin 1.14 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
416 vimartin 1.13 \hline
417     \hline
418 vimartin 1.14 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
419 vimartin 1.13 \hline
420     \hline
421 vimartin 1.14 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
422 vimartin 1.13 \hline
423     \end{tabular}}
424     \caption{ Fraction of \ttdl\ events with a true isolated track.
425     \label{tab:trueisotrk}}
426     \end{center}
427     \end{table}
428    
429    
430 vimartin 1.4 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
431     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
432     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
433     we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
434     addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
435     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
436     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
437     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
438     Furthermore, we test the data and MC
439     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
440     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
441     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
442     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
443     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
444     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
445     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
446     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
447     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
448     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
449     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
450     due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
451    
452     The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
453     All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
454     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
455     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
456     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
457     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
458     \met\ $<$ 30 GeV and 0 b-tagged events.
459     The specific criteria for tags and probes for electrons and muons are:
460    
461     %We study the isolated track veto efficiency in bins of \njets.
462     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
463     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
464    
465    
466     \begin{itemize}
467     \item{Electrons}
468    
469     \begin{itemize}
470     \item{Tag criteria}
471    
472     \begin{itemize}
473     \item Electron passes full analysis ID/iso selection
474 benhoob 1.12 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
475     \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
476 vimartin 1.4 \end{itemize}
477    
478     \item{Probe criteria}
479     \begin{itemize}
480     \item Electron passes full analysis ID selection
481     \item \pt\ $>$ 30 GeV
482     \end{itemize}
483     \end{itemize}
484     \item{Muons}
485     \begin{itemize}
486     \item{Tag criteria}
487     \begin{itemize}
488     \item Muon passes full analysis ID/iso selection
489     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
490 benhoob 1.12 \item Matched to 1 of the 2 single muon triggers
491 vimartin 1.4 \begin{itemize}
492     \item \verb=HLT_IsoMu30_v*=
493     \item \verb=HLT_IsoMu30_eta2p1_v*=
494     \end{itemize}
495     \end{itemize}
496     \item{Probe criteria}
497     \begin{itemize}
498     \item Muon passes full analysis ID selection
499     \item \pt\ $>$ 30 GeV
500     \end{itemize}
501     \end{itemize}
502     \end{itemize}
503    
504     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
505     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
506     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
507     In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
508 benhoob 1.12 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
509 vimartin 1.4 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
510     a data vs. MC discrepancy in the isolated track veto efficiency.
511    
512    
513     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
514     %This requirement is chosen because most of the tracks rejected by the isolated
515     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
516    
517     \begin{figure}[hbt]
518     \begin{center}
519 benhoob 1.12 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
520     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
521     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
522     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
523     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
524     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
525     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
526     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
527     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
528     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
529 vimartin 1.4 \caption{
530     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
531     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
532     }
533     \end{center}
534     \end{figure}
535    
536     \clearpage
537    
538     \begin{table}[!ht]
539     \begin{center}
540     \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
541     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
542     jet multiplicity requirements.}
543 benhoob 1.10 \begin{tabular}{l|c|c|c|c|c}
544 benhoob 1.11
545     %Electrons:
546 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
547     %Total MC yields : 2497277
548     %Total DATA yields : 2649453
549 benhoob 1.11 %Muons:
550 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
551     %Total MC yields : 3749863
552 benhoob 1.11 %Total DATA yields : 4210022
553 benhoob 1.12 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
554     %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
555 benhoob 1.11
556 vimartin 1.4 \hline
557     \hline
558 benhoob 1.11 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
559 vimartin 1.4 \hline
560 benhoob 1.12 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
561     mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
562     data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
563 benhoob 1.11
564 vimartin 1.4 \hline
565     \hline
566 benhoob 1.11 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
567 vimartin 1.4 \hline
568 benhoob 1.9 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
569 benhoob 1.12 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
570     data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
571 benhoob 1.11
572 vimartin 1.4 \hline
573     \hline
574 benhoob 1.11 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
575 vimartin 1.4 \hline
576 benhoob 1.12 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
577     mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
578     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
579 benhoob 1.11
580 vimartin 1.4 \hline
581     \hline
582 benhoob 1.11 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
583 vimartin 1.4 \hline
584 benhoob 1.9 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
585 benhoob 1.12 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
586     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
587 benhoob 1.11
588 vimartin 1.4 \hline
589     \hline
590 benhoob 1.11 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
591 vimartin 1.4 \hline
592 benhoob 1.12 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
593     mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
594     data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
595 benhoob 1.11
596 vimartin 1.4 \hline
597     \hline
598 benhoob 1.11 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
599 vimartin 1.4 \hline
600 benhoob 1.9 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
601 benhoob 1.12 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
602     data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
603 benhoob 1.11
604 vimartin 1.4 \hline
605     \hline
606 benhoob 1.11 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
607 vimartin 1.4 \hline
608 benhoob 1.12 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
609     mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
610     data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
611 benhoob 1.11
612 vimartin 1.4 \hline
613     \hline
614 benhoob 1.11 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
615 vimartin 1.4 \hline
616 benhoob 1.9 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
617 benhoob 1.12 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
618     data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
619 benhoob 1.11
620 vimartin 1.4 \hline
621     \hline
622 benhoob 1.11 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
623 vimartin 1.4 \hline
624 benhoob 1.12 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
625     mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
626     data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
627 benhoob 1.11
628 vimartin 1.4 \hline
629     \hline
630 benhoob 1.11 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
631 vimartin 1.4 \hline
632 benhoob 1.9 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
633 benhoob 1.12 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
634     data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
635    
636 vimartin 1.4 \hline
637 benhoob 1.11 \hline
638 benhoob 1.9
639 vimartin 1.4 \end{tabular}
640     \end{center}
641     \end{table}
642    
643    
644     %Figure.~\ref{fig:reliso} compares the relative track isolation
645     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
646     %muon for $\Z+4$ jet events and various \ttll\ components. The
647     %isolation distributions show significant differences, particularly
648     %between the leptons from a \W\ or \Z\ decay and the tracks arising
649     %from $\tau$ decays. As can also be seen in the figure, the \pt\
650     %distribution for the various categories of tracks is different, where
651     %the decay products from $\tau$s are significantly softer. Since the
652     %\pt\ enters the denominator of the isolation definition and hence
653     %alters the isolation variable...
654    
655     %\begin{figure}[hbt]
656     % \begin{center}
657     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
658     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
659     % \caption{
660     % \label{fig:reliso}%\protect
661     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
662     % Z+Jets and ttbar dilepton have similar isolation distributions
663     % ttbar with leptonic and single prong taus tend to be less
664     % isolated. The difference in the isolation can be attributed
665     % to the different \pt\ distribution of the samples, since
666     % $\tau$ decay products tend to be softer than leptons arising
667     % from \W\ or \Z\ decays.}
668     % \end{center}
669     %\end{figure}
670    
671     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
672    
673    
674     %BEGIN SECTION TO WRITE OUT
675     %In detail, the procedure to correct the dilepton background is:
676    
677     %\begin{itemize}
678     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
679     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
680     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
681     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
682     %the lepton \pt {\bf TODO: verify this in data and MC.}.
683     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
684     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
685     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
686     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
687     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
688     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
689     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
690     %\end{itemize}
691     %END SECTION TO WRITE OUT
692    
693    
694     {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
695     Why not measure $\epsilon_{fake}$ in the b-veto region?}
696    
697 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
698     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
699     %applying an additional scale factor for the single lepton background
700     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
701     %veto and after subtracting the \ttll\ component, corrected for the
702     %isolation efficiency derived previously.
703     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
704     %isolated track in single lepton events is independent of \mt\, so the use of
705     %an overall scale factor is justified to estimate the contribution in
706     %the \mt\ tail.
707     %
708     %\begin{figure}[hbt]
709     % \begin{center}
710     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
711     % \caption{
712     % \label{fig:vetoeffcomp}%\protect
713     % Efficiency for selecting an isolated track comparing
714     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
715     % data as a function of \mt. The
716     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
717     % \mt\, while the data ranges between the two. This behavior
718     % is expected since the low \mt\ region is predominantly \ttlj, while the
719     % high \mt\ region contains mostly \ttll\ events.}
720     % \end{center}
721     %\end{figure}
722 vimartin 1.4
723 claudioc 1.7 \subsection{Summary of uncertainties}
724     \label{sec:bgunc-bottomline}.
725    
726 benhoob 1.9 THIS NEEDS TO BE WRITTEN