ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.17
Committed: Fri Oct 12 02:41:46 2012 UTC (12 years, 7 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.16: +3 -3 lines
Log Message:
triv

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 In this Section we discuss the systematic uncertainty on the BG
5     prediction. This prediction is assembled from the event
6     counts in the peak region of the transverse mass distribution as
7     well as Monte Carlo
8     with a number of correction factors, as described previously.
9     The
10     final uncertainty on the prediction is built up from the uncertainties in these
11     individual
12     components.
13     The calculation is done for each signal
14     region,
15     for electrons and muons separately.
16    
17     The choice to normalizing to the peak region of $M_T$ has the
18     advantage that some uncertainties, e.g., luminosity, cancel.
19     It does however introduce complications because it couples
20     some of the uncertainties in non-trivial ways. For example,
21     the primary effect of an uncertainty on the rare MC cross-section
22     is to introduce an uncertainty in the rare MC background estimate
23     which comes entirely from MC. But this uncertainty also affects,
24     for example,
25     the $t\bar{t} \to$ dilepton BG estimate because it changes the
26     $t\bar{t}$ normalization to the peak region (because some of the
27     events in the peak region are from rare processes). These effects
28     are carefully accounted for. The contribution to the overall
29     uncertainty from each BG source is tabulated in
30     Section~\ref{sec:bgunc-bottomline}.
31     First, however, we discuss the uncertainties one-by-one and we comment
32     on their impact on the overall result, at least to first order.
33     Second order effects, such as the one described, are also included.
34    
35     \subsection{Statistical uncertainties on the event counts in the $M_T$
36     peak regions}
37 claudioc 1.15 These vary between 2\% and 20\%, depending on the signal region
38 claudioc 1.7 (different
39     signal regions have different \met\ requirements, thus they also have
40     different $M_T$ regions used as control.
41     Since
42     the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
43     fractional uncertainty is pretty much carried through all the way to
44     the end. There is also an uncertainty from the finite MC event counts
45     in the $M_T$ peak regions. This is also included, but it is smaller.
46    
47 claudioc 1.15 Normalizing to the $M_T$ peak has the distinct advantages that
48     uncertainties on luminosity, cross-sections, trigger efficiency,
49     lepton ID, cancel out.
50     For the low statistics regions with high \met requirements, the
51     price to pay in terms of event count statistical uncertainties starts
52     to become significant. In the future we may consider a different
53     normalization startegy in the low statistics regions.
54    
55 claudioc 1.7 \subsection{Uncertainty from the choice of $M_T$ peak region}
56 claudioc 1.15
57     This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58     If the $M_T$ peak region is not well modelled, this would introduce an
59     uncertainty.
60    
61     We have tested this possibility by recalculating the post veto scale factors for a different
62     choice
63     of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64     $50 < M_T < 80$ GeV. This is shown in Table~\ref{tab:mtpeaksf2}.
65     The two results for the scale factors are very compatible.
66     We do not take any systematic uncertainty for this possible effect.
67    
68     \begin{table}[!h]
69     \begin{center}
70     {\footnotesize
71     \begin{tabular}{l||c|c|c|c|c|c|c}
72     \hline
73     Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74     \hline
75     \hline
76     \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77     \hline
78     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79     $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80     \hline
81     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82     \hline
83     \hline
84     e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85     e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86     \hline
87     e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88     \hline
89     \hline
90     \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91     \hline
92     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93     $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94     \hline
95     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96     \hline
97     \hline
98     e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99     e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100     \hline
101     e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102     \hline
103     \end{tabular}}
104     \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105     \ttdl\ sample, while the post-veto SFs are applied to the single
106     lepton samples. The veto SF is shown for comparison across channels.
107     The raw MC is used for backgrounds from rare processes.
108     The uncertainties are statistical only.
109     \label{tab:mtpeaksf2}}
110     \end{center}
111     \end{table}
112    
113 claudioc 1.7
114     \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
115     These are taken as 50\%, uncorrelated.
116     The primary effect is to introduce a 50\%
117     uncertainty
118     on the $W +$ jets and rare BG
119     background predictions, respectively. However they also
120     have an effect on the other BGs via the $M_T$ peak normalization
121     in a way that tends to reduce the uncertainty. This is easy
122     to understand: if the $W$ cross-section is increased by 50\%, then
123     the $W$ background goes up. But the number of $M_T$ peak events
124     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126     BG goes down.
127    
128     \subsection{Scale factors for the tail-to-peak ratios for lepton +
129     jets top and W events}
130     These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131     They are studied in CR1 and CR2. The studies are described
132     in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 claudioc 1.15 we also give the uncertainty on the scale factors. See
134     Tables~\ref{tab:cr1yields}
135     and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
136 claudioc 1.7
137     \subsection{Uncertainty on extra jet radiation for dilepton
138     background}
139     As discussed in Section~\ref{sec:jetmultiplicity}, the
140     jet distribution in
141     $t\bar{t} \to$
142     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
143 claudioc 1.15 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
144 claudioc 1.7 comes from data/MC statistics. This
145 claudioc 1.15 result directly in a 3\% uncertainty on the dilepton BG, which is by far
146 claudioc 1.7 the most important one.
147    
148 vimartin 1.5
149 vimartin 1.2 \subsection{Uncertainty on the \ttll\ Acceptance}
150 benhoob 1.1
151 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
152     derived from control samples in data. The uncertainty associated with
153     the theoretical modeling of the \ttbar\ production and decay is
154     estimated by comparing the background predictions obtained using
155     alternative MC samples. It should be noted that the full analysis is
156     performed with the alternative samples under consideration,
157     including the derivation of the various data-to-MC scale factors.
158     The variations considered are
159    
160     \begin{itemize}
161     \item Top mass: The alternative values for the top mass differ
162     from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
163     = 166.5~\GeV$.
164     \item Jet-parton matching scale: This corresponds to variations in the
165     scale at which the Matrix Element partons from Madgraph are matched
166     to Parton Shower partons from Pythia. The nominal value is
167     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
168     $x_q>40~\GeV$.
169     \item Renormalization and factorization scale: The alternative samples
170     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
171     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
172     \sum_{\mathrm{jets}} \pt^2$.
173     \item Alternative generators: Samples produced with different
174 claudioc 1.15 generators, Powheg (our default) and Madgraph.
175 vimartin 1.2 \item Modeling of taus: The alternative sample does not include
176 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
177     This effect was studied earlier using 7~TeV samples and found to be negligible.
178 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
179     recommendations[CITE]. The events are reweighted using alternative
180     PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
181     alternative eigenvector variations and the ``master equation''. In
182     addition, the NNPDF2.1 set with 100 replicas. The central value is
183     determined from the mean and the uncertainty is derived from the
184     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
185 burkett 1.6 alternative predictions and their uncertainties.
186     This effect was studied earlier using 7~TeV samples and found to be negligible.
187     \end{itemize}
188 benhoob 1.1
189 claudioc 1.16 \begin{figure}[hbt]
190     \begin{center}
191     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
192     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
193     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
194     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
195     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
196     \caption{
197     \label{fig:ttllsyst}\protect
198     Comparison of the \ttll\ central prediction with those using
199     alternative MC samples. The blue band corresponds to the
200     total statistical error for all data and MC samples. The
201     alternative sample predictions are indicated by the
202     datapoints. The uncertainties on the alternative predictions
203     correspond to the uncorrelated statistical uncertainty from
204     the size of the alternative sample only. Note the
205     suppressed vertical scales.}
206     \end{center}
207     \end{figure}
208 vimartin 1.14
209    
210     \begin{table}[!h]
211     \begin{center}
212     {\footnotesize
213     \begin{tabular}{l||c|c|c|c|c|c|c}
214     \hline
215     $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
216     Match Up & Match Down \\
217     \hline
218     \hline
219     SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
220     \hline
221     SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
222     \hline
223 claudioc 1.16 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
224     % \hline
225     % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
226     % \hline
227     % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
228 vimartin 1.14 \hline
229     \end{tabular}}
230 claudioc 1.16 \caption{ Relative difference in \ttdl\ predictions for alternative MC
231     samples in
232     the higher statistics regions SRA and SRB. These differences
233     are based on the central values of the predictions. For a fuller
234     picture
235     of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
236 vimartin 1.14 \label{tab:fracdiff}}
237     \end{center}
238     \end{table}
239    
240    
241 claudioc 1.16 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
242     for regions A through E. We can make the following observations based
243     on this Figure.
244 vimartin 1.14
245 claudioc 1.16 \begin{itemize}
246     \item In the tighter signal regions we are running out of
247     statistics.
248     \item Within the limited statistics, there is no evidence that the
249     situation changes as we go from signal region A to signal region E.
250     Therefore, we assess a systematic based on the relatively high
251     statistics
252     test in signal region A, and apply the same systematic uncertainty
253     to all other regions.
254     \item In order to fully (as opposed as 1$\sigma$) cover the
255     alternative MC variations in region A we would have to take a
256     systematic
257     uncertainty of $\approx 10\%$. This would be driven by the
258     scale up/scale down variations, see Table~\ref{tab:fracdiff}.
259     \end{itemize}
260 vimartin 1.14
261 claudioc 1.16 \begin{table}[!ht]
262 vimartin 1.14 \begin{center}
263 claudioc 1.16 \begin{tabular}{l|c|c}
264 vimartin 1.14 \hline
265 claudioc 1.16 Sample
266     & K3 & K4\\
267 vimartin 1.14 \hline
268     \hline
269 claudioc 1.16 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
270     Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
271     Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
272     Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
273     Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
274     Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
275     Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
276     Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
277 vimartin 1.14 \hline
278     \end{tabular}
279 claudioc 1.16 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
280     fraction of events with additional hard jets from radiation in
281     \ttll\ events. \label{tab:njetskfactors_met100}}
282 vimartin 1.14 \end{center}
283     \end{table}
284    
285    
286 claudioc 1.16 However, we have two pieces of information indicating that the
287     scale up/scale down variations are inconsistent with the data.
288     These are described below.
289    
290     The first piece of information is that the jet multiplicity in the scale
291     up/scale down sample is the most inconsistent with the data. This can be shown
292     in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
293     $K_3$ and $K_4$ factors of Section~\ref{tab:njetskfactors_met100} for
294     different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
295     distribution
296     for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
297     and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
298     equivalent $N_{jets}$ plots for the default Powheg MC, see
299     Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
300    
301     \begin{figure}[hbt]
302     \begin{center}
303     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
304     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
305     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
306     \caption{
307     \label{fig:dileptonnjets_scaleup}%\protect
308     SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
309     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
310     \end{center}
311     \end{figure}
312    
313 benhoob 1.1 \begin{figure}[hbt]
314     \begin{center}
315 claudioc 1.16 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
316     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
317     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
318     \caption{
319     \label{fig:dileptonnjets_scaledw}%\protect
320     SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
321     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
322 vimartin 1.2 \end{center}
323 claudioc 1.16 \end{figure}
324    
325    
326     \clearpage
327    
328     The second piece of information is that we have performed closure
329     tests in CR5 using the alternative MC samples. These are exactly
330     the same tests as the one performed in Section~\ref{sec:CR5} on the
331     Powheg sample. As we argued previously, this is a very powerful
332     test of the background calculation.
333     The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
334     Concentrating on the relatively high statistics CR5A region, we see
335     for all \ttbar\ MC samples except scale up/scale down we obtain
336     closure within 1$\sigma$. The scale up/scale down tests closes
337     worse, only within 2$\sigma$. This again is evidence that the
338     scale up/scale down variations are in disagreement with the data.
339    
340     \input{hugeCR5Table.tex}
341    
342     Based on the two observations above, we argue that the MC
343     scale up/scale down variations are too extreme. We feel that
344     a reasonable choice would be to take one-half of the scale up/scale
345     down variations in our MC. This factor of 1/2 would then bring
346     the discrepancy in the closure test of
347     Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
348     from about 2$\sigma$ to about 1$\sigma$.
349    
350     Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
351     up/scale
352     down variations by a factor 2, we can see that a systematic
353     uncertainty
354     of 6\% would fully cover all of the variations from different MC
355     samples in SRA and SRB.
356     {\bf Thus, we take a 6\% systematic uncertainty, constant as a
357     function of signal region, as the systematic due to alternative MC
358     models.}.
359     Note that this 6\% is also consistent with the level at which we are
360     able
361     to test the closure of the method in CR5 for the high statistics
362     regions
363     (Table~\ref{tab:hugecr5yields}).
364    
365    
366    
367    
368    
369    
370     %\begin{table}[!h]
371     %\begin{center}
372     %{\footnotesize
373     %\begin{tabular}{l||c||c|c|c|c|c|c|c}
374     %\hline
375     %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
376     %Up & Scale Down &
377     %Match Up & Match Down \\
378     %\hline
379     %\hline
380     %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
381     %\hline
382     %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
383     %\hline
384     %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
385     %\hline
386     %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
387     %\hline
388     %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
389     %\hline
390     %\end{tabular}}
391     %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
392     %\label{tab:ttdlalt}}
393     %\end{center}
394     %\end{table}
395    
396    
397    
398    
399     %\begin{table}[!h]
400     %\begin{center}
401     %{\footnotesize
402     %\begin{tabular}{l||c|c|c|c|c|c|c}
403     %\hline
404     %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
405     %Match Up & Match Down \\
406     %\hline
407     %\hline
408     %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
409     %\hline
410     %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
411     %\hline
412     %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
413     %\hline
414     %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
415     %\hline
416     %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
417     %\hline
418     %\end{tabular}}
419     %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
420     %\label{tab:nsig}}
421     %\end{center}
422     %\end{table}
423    
424    
425     %\begin{table}[!h]
426     %\begin{center}
427     %\begin{tabular}{l||c|c|c|c}
428     %\hline
429     %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
430     %& $\Delta$ Match \\
431     %\hline
432     %\hline
433     %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
434     %\hline
435     %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
436     %\hline
437     %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
438     %\hline
439     %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
440     %\hline
441     %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
442     %\hline
443     %\end{tabular}
444     %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
445     %\label{tab:devt}}
446     %\end{center}
447     %\end{table}
448    
449    
450 vimartin 1.2
451 claudioc 1.7 \clearpage
452 vimartin 1.2
453     %
454     %
455     %The methodology for determining the systematics on the background
456     %predictions has not changed with respect to the nominal analysis.
457     %Because the template method has not changed, the same
458     %systematic uncertainty is assessed on this prediction (32\%).
459     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
460     %The systematic uncertainty in the OF background prediction based on
461     %e$\mu$ events has changed, due to the different composition of this
462     %sample after vetoing events containing b-tagged jets.
463     %
464     %As in the nominal analysis, we do not require the e$\mu$ events
465     %to satisfy the dilepton mass requirement and apply a scaling factor K,
466     %extracted from MC, to account for the fraction of e$\mu$ events
467     %which satisfy the dilepton mass requirement. This procedure is used
468     %in order to improve the statistical precision of the OF background estimate.
469     %
470     %For the selection used in the nominal analysis,
471     %the e$\mu$ sample is completely dominated by $t\bar{t}$
472     %events, and we observe that K is statistically consistent with constant with
473     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
474     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
475     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
476     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
477     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
478     %Therefore, the sample composition changes
479     %as the \MET\ requirement is varied, and as a result K depends
480     %on the \MET\ requirement.
481     %
482     %We thus measure K in MC separately for each
483     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
484     %%The systematic uncertainty on K is determined separately for each \MET\
485     %%requirement by comparing the relative difference in K in data vs. MC.
486     %The values of K used are the MC predictions
487     %%and the total systematic uncertainty on the OF prediction
488     %%as shown in
489     %(Table \ref{fig:kvmettable}).
490     %The contribution to the total OF prediction systematic uncertainty
491     %from K is assessed from the ratio of K in data and MC,
492     %shown in Fig.~\ref{fig:kvmet} (right).
493     %The ratio is consistent with unity to roughly 17\%,
494     %so we take this value as the systematic from K.
495     %17\% added in quadrature with 7\% from
496     %the electron to muon efficieny ratio
497     %(as assessed in the inclusive analysis)
498     %yields a total systematic of $\sim$18\%
499     %which we round up to 20\%.
500     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
501     %so we take a systematic based on the statistical uncertainty
502     %of the MC prediction for K.
503     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
504     %%Although we cannot check the value of K in data for \MET\ $>$ 150
505     %%because we find no OF events inside the Z mass window for this \MET\
506     %%cut, the overall OF yields with no dilepton mass requirement
507     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
508     %
509     %
510     %%Below Old
511     %
512     %%In reevaluating the systematics on the OF prediction, however,
513     %%we observed a different behavior of K as a function of \MET\
514     %%as was seen in the inclusive analysis.
515     %
516     %%Recall that K is the ratio of the number of \emu\ events
517     %%inside the Z window to the total number of \emu\ events.
518     %%In the inclusive analysis, it is taken from \ttbar\ MC
519     %%and used to scale the inclusive \emu\ yield in data.
520     %%The yield scaled by K is then corrected for
521     %%the $e$ vs $\mu$ efficiency difference to obtain the
522     %%final OF prediction.
523     %
524     %%Based on the plot in figure \ref{fig:kvmet},
525     %%we choose to use a different
526     %%K for each \MET\ cut and assess a systematic uncertainty
527     %%on the OF prediction based on the difference between
528     %%K in data and MC.
529     %%The variation of K as a function of \MET\ is caused
530     %%by a change in sample composition with increasing \MET.
531     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
532     %%not negligible (as it was in the inclusive analysis)
533     %%because of the b veto. (See appendix \ref{app:kinemu}.)
534     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
535     %
536     %
537     %
538     %
539     %\begin{figure}[hbt]
540     % \begin{center}
541     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
542     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
543     % \caption{
544     % \label{fig:kvmet}\protect
545     % The left plot shows
546     % K as a function of \MET\ in MC (red) and data (black).
547     % The bin low edge corresponds to the \MET\ cut, and the
548     % bins are inclusive.
549     % The MC used is a sum of all SM MC used in the yield table of
550     % section \ref{sec:yields}.
551     % The right plot is the ratio of K in data to MC.
552     % The ratio is fit to a line whose slope is consistent with zero
553     % (the fit parameters are
554     % 0.9 $\pm$ 0.4 for the intercept and
555     % 0.001 $\pm$ 0.005 for the slope).
556     % }
557     % \end{center}
558     %\end{figure}
559     %
560     %
561     %
562     %\begin{table}[htb]
563     %\begin{center}
564     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
565     %The uncertainties shown are the total relative systematic used for the OF prediction,
566     %which is the systematic uncertainty from K added in quadrature with
567     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
568     %inclusive analysis.
569     %}
570     %\begin{tabular}{lcc}
571     %\hline
572     %\MET\ Cut & K & Relative Systematic \\
573     %\hline
574     %%the met zero row is used only for normalization of the money plot.
575     %%0 & 0.1 & \\
576     %30 & 0.12 & 20\% \\
577     %60 & 0.13 & 20\% \\
578     %80 & 0.12 & 20\% \\
579     %100 & 0.12 & 20\% \\
580     %150 & 0.09 & 25\% \\
581     %200 & 0.06 & 60\% \\
582     %\hline
583     %\end{tabular}
584     %\end{center}
585     %\end{table}
586 vimartin 1.4
587 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
588     This is the uncertainty associated with how well the isolated track
589     veto performance is modeled by the Monte Carlo. This uncertainty
590     only applies to the fraction of dilepton BG events that have
591     a second e/$\mu$ or a one prong $\tau \to h$, with
592 claudioc 1.15 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
593     Table~\ref{tab:trueisotrk}.
594     The uncertainty for these events
595     is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
596 vimartin 1.4
597 vimartin 1.13 \begin{table}[!h]
598     \begin{center}
599     {\footnotesize
600 vimartin 1.14 \begin{tabular}{l||c|c|c|c|c|c|c}
601 vimartin 1.13 \hline
602 vimartin 1.14 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
603 vimartin 1.13 \hline
604     \hline
605 vimartin 1.14 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
606 vimartin 1.13 \hline
607     \hline
608 vimartin 1.14 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
609 vimartin 1.13 \hline
610     \end{tabular}}
611     \caption{ Fraction of \ttdl\ events with a true isolated track.
612     \label{tab:trueisotrk}}
613     \end{center}
614     \end{table}
615    
616 claudioc 1.15 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
617     \label{sec:trkveto}
618    
619 vimartin 1.13
620 vimartin 1.4 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
621     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
622     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
623 claudioc 1.15 we would need to apply a data-to-MC scale factor in order to correctly
624     predict the \ttll\ background.
625    
626     This study
627 vimartin 1.4 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
628     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
629     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
630     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
631 claudioc 1.15
632 vimartin 1.4 Furthermore, we test the data and MC
633     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
634     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
635     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
636     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
637     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
638     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
639     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
640     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
641     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
642     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
643     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
644     due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
645    
646 claudioc 1.15 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
647 vimartin 1.4 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
648     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
649     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
650     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
651     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
652     \met\ $<$ 30 GeV and 0 b-tagged events.
653     The specific criteria for tags and probes for electrons and muons are:
654    
655     %We study the isolated track veto efficiency in bins of \njets.
656     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
657     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
658    
659    
660     \begin{itemize}
661     \item{Electrons}
662    
663     \begin{itemize}
664     \item{Tag criteria}
665    
666     \begin{itemize}
667     \item Electron passes full analysis ID/iso selection
668 benhoob 1.12 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
669     \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
670 vimartin 1.4 \end{itemize}
671    
672     \item{Probe criteria}
673     \begin{itemize}
674     \item Electron passes full analysis ID selection
675     \item \pt\ $>$ 30 GeV
676     \end{itemize}
677     \end{itemize}
678     \item{Muons}
679     \begin{itemize}
680     \item{Tag criteria}
681     \begin{itemize}
682     \item Muon passes full analysis ID/iso selection
683     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
684 benhoob 1.12 \item Matched to 1 of the 2 single muon triggers
685 vimartin 1.4 \begin{itemize}
686     \item \verb=HLT_IsoMu30_v*=
687     \item \verb=HLT_IsoMu30_eta2p1_v*=
688     \end{itemize}
689     \end{itemize}
690     \item{Probe criteria}
691     \begin{itemize}
692     \item Muon passes full analysis ID selection
693     \item \pt\ $>$ 30 GeV
694     \end{itemize}
695     \end{itemize}
696     \end{itemize}
697    
698     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
699     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
700     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
701     In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
702 benhoob 1.12 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
703 vimartin 1.4 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
704     a data vs. MC discrepancy in the isolated track veto efficiency.
705    
706    
707     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
708     %This requirement is chosen because most of the tracks rejected by the isolated
709     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
710    
711     \begin{figure}[hbt]
712     \begin{center}
713 benhoob 1.12 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
714     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
715     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
716     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
717     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
718     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
719     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
720     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
721     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
722     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
723 vimartin 1.4 \caption{
724     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
725     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
726     }
727     \end{center}
728     \end{figure}
729    
730     \clearpage
731    
732     \begin{table}[!ht]
733     \begin{center}
734     \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
735     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
736     jet multiplicity requirements.}
737 benhoob 1.10 \begin{tabular}{l|c|c|c|c|c}
738 benhoob 1.11
739     %Electrons:
740 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
741     %Total MC yields : 2497277
742     %Total DATA yields : 2649453
743 benhoob 1.11 %Muons:
744 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
745     %Total MC yields : 3749863
746 benhoob 1.11 %Total DATA yields : 4210022
747 benhoob 1.12 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
748     %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
749 benhoob 1.11
750 vimartin 1.4 \hline
751     \hline
752 benhoob 1.11 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
753 vimartin 1.4 \hline
754 benhoob 1.12 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
755     mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
756     data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
757 benhoob 1.11
758 vimartin 1.4 \hline
759     \hline
760 benhoob 1.11 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
761 vimartin 1.4 \hline
762 benhoob 1.9 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
763 benhoob 1.12 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
764     data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
765 benhoob 1.11
766 vimartin 1.4 \hline
767     \hline
768 benhoob 1.11 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
769 vimartin 1.4 \hline
770 benhoob 1.12 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
771     mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
772     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
773 benhoob 1.11
774 vimartin 1.4 \hline
775     \hline
776 benhoob 1.11 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
777 vimartin 1.4 \hline
778 benhoob 1.9 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
779 benhoob 1.12 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
780     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
781 benhoob 1.11
782 vimartin 1.4 \hline
783     \hline
784 benhoob 1.11 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
785 vimartin 1.4 \hline
786 benhoob 1.12 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
787     mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
788     data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
789 benhoob 1.11
790 vimartin 1.4 \hline
791     \hline
792 benhoob 1.11 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
793 vimartin 1.4 \hline
794 benhoob 1.9 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
795 benhoob 1.12 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
796     data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
797 benhoob 1.11
798 vimartin 1.4 \hline
799     \hline
800 benhoob 1.11 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
801 vimartin 1.4 \hline
802 benhoob 1.12 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
803     mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
804     data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
805 benhoob 1.11
806 vimartin 1.4 \hline
807     \hline
808 benhoob 1.11 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
809 vimartin 1.4 \hline
810 benhoob 1.9 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
811 benhoob 1.12 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
812     data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
813 benhoob 1.11
814 vimartin 1.4 \hline
815     \hline
816 benhoob 1.11 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
817 vimartin 1.4 \hline
818 benhoob 1.12 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
819     mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
820     data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
821 benhoob 1.11
822 vimartin 1.4 \hline
823     \hline
824 benhoob 1.11 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
825 vimartin 1.4 \hline
826 benhoob 1.9 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
827 benhoob 1.12 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
828     data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
829    
830 vimartin 1.4 \hline
831 benhoob 1.11 \hline
832 benhoob 1.9
833 vimartin 1.4 \end{tabular}
834     \end{center}
835     \end{table}
836    
837    
838     %Figure.~\ref{fig:reliso} compares the relative track isolation
839     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
840     %muon for $\Z+4$ jet events and various \ttll\ components. The
841     %isolation distributions show significant differences, particularly
842     %between the leptons from a \W\ or \Z\ decay and the tracks arising
843     %from $\tau$ decays. As can also be seen in the figure, the \pt\
844     %distribution for the various categories of tracks is different, where
845     %the decay products from $\tau$s are significantly softer. Since the
846     %\pt\ enters the denominator of the isolation definition and hence
847     %alters the isolation variable...
848    
849     %\begin{figure}[hbt]
850     % \begin{center}
851     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
852     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
853     % \caption{
854     % \label{fig:reliso}%\protect
855     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
856     % Z+Jets and ttbar dilepton have similar isolation distributions
857     % ttbar with leptonic and single prong taus tend to be less
858     % isolated. The difference in the isolation can be attributed
859     % to the different \pt\ distribution of the samples, since
860     % $\tau$ decay products tend to be softer than leptons arising
861     % from \W\ or \Z\ decays.}
862     % \end{center}
863     %\end{figure}
864    
865     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
866    
867    
868     %BEGIN SECTION TO WRITE OUT
869     %In detail, the procedure to correct the dilepton background is:
870    
871     %\begin{itemize}
872     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
873     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
874     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
875     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
876     %the lepton \pt {\bf TODO: verify this in data and MC.}.
877     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
878     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
879     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
880     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
881     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
882     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
883     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
884     %\end{itemize}
885     %END SECTION TO WRITE OUT
886    
887    
888 claudioc 1.15 %{\bf fix me: What you have written in the next paragraph does not
889     %explain how $\epsilon_{fake}$ is measured.
890     %Why not measure $\epsilon_{fake}$ in the b-veto region?}
891 vimartin 1.4
892 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
893     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
894     %applying an additional scale factor for the single lepton background
895     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
896     %veto and after subtracting the \ttll\ component, corrected for the
897     %isolation efficiency derived previously.
898     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
899     %isolated track in single lepton events is independent of \mt\, so the use of
900     %an overall scale factor is justified to estimate the contribution in
901     %the \mt\ tail.
902     %
903     %\begin{figure}[hbt]
904     % \begin{center}
905     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
906     % \caption{
907     % \label{fig:vetoeffcomp}%\protect
908     % Efficiency for selecting an isolated track comparing
909     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
910     % data as a function of \mt. The
911     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
912     % \mt\, while the data ranges between the two. This behavior
913     % is expected since the low \mt\ region is predominantly \ttlj, while the
914     % high \mt\ region contains mostly \ttll\ events.}
915     % \end{center}
916     %\end{figure}
917 vimartin 1.4
918 claudioc 1.17 % \subsection{Summary of uncertainties}
919     % \label{sec:bgunc-bottomline}.
920 claudioc 1.7
921 claudioc 1.17 % THIS NEEDS TO BE WRITTEN