ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.22
Committed: Sat Oct 20 19:57:24 2012 UTC (12 years, 6 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
Changes since 1.21: +42 -17 lines
Log Message:
updating with preapp status

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 In this Section we discuss the systematic uncertainty on the BG
5     prediction. This prediction is assembled from the event
6     counts in the peak region of the transverse mass distribution as
7     well as Monte Carlo
8     with a number of correction factors, as described previously.
9     The
10     final uncertainty on the prediction is built up from the uncertainties in these
11     individual
12     components.
13     The calculation is done for each signal
14     region,
15     for electrons and muons separately.
16    
17 linacre 1.21 The choice to normalize to the peak region of $M_T$ has the
18 claudioc 1.7 advantage that some uncertainties, e.g., luminosity, cancel.
19     It does however introduce complications because it couples
20     some of the uncertainties in non-trivial ways. For example,
21     the primary effect of an uncertainty on the rare MC cross-section
22     is to introduce an uncertainty in the rare MC background estimate
23     which comes entirely from MC. But this uncertainty also affects,
24     for example,
25     the $t\bar{t} \to$ dilepton BG estimate because it changes the
26     $t\bar{t}$ normalization to the peak region (because some of the
27     events in the peak region are from rare processes). These effects
28 vimartin 1.22 are carefully accounted for. The contribution to the overall
29     uncertainty from each background source is tabulated in
30     Section~\ref{sec:bgunc-bottomline}.
31 vimartin 1.19 Here we discuss the uncertainties one-by-one and comment
32 claudioc 1.7 on their impact on the overall result, at least to first order.
33     Second order effects, such as the one described, are also included.
34    
35     \subsection{Statistical uncertainties on the event counts in the $M_T$
36     peak regions}
37 claudioc 1.15 These vary between 2\% and 20\%, depending on the signal region
38 claudioc 1.7 (different
39     signal regions have different \met\ requirements, thus they also have
40 linacre 1.21 different $M_T$ regions used as control).
41 claudioc 1.7 Since
42 vimartin 1.19 the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 claudioc 1.7 fractional uncertainty is pretty much carried through all the way to
44     the end. There is also an uncertainty from the finite MC event counts
45     in the $M_T$ peak regions. This is also included, but it is smaller.
46    
47 claudioc 1.15 Normalizing to the $M_T$ peak has the distinct advantages that
48     uncertainties on luminosity, cross-sections, trigger efficiency,
49     lepton ID, cancel out.
50 vimartin 1.19 For the low statistics regions with high \met\ requirements, the
51     price to pay in terms of event count is that statistical uncertainties start
52 claudioc 1.15 to become significant. In the future we may consider a different
53     normalization startegy in the low statistics regions.
54    
55 claudioc 1.7 \subsection{Uncertainty from the choice of $M_T$ peak region}
56 claudioc 1.15
57     This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58     If the $M_T$ peak region is not well modelled, this would introduce an
59     uncertainty.
60    
61 linacre 1.21 We have tested this possibility by recalculating the post-veto scale factors for a different
62 claudioc 1.15 choice
63     of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 linacre 1.21 $50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}.
65 claudioc 1.15 The two results for the scale factors are very compatible.
66     We do not take any systematic uncertainty for this possible effect.
67    
68     \begin{table}[!h]
69     \begin{center}
70     {\footnotesize
71     \begin{tabular}{l||c|c|c|c|c|c|c}
72     \hline
73     Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74     \hline
75     \hline
76     \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77     \hline
78     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79     $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80     \hline
81     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82     \hline
83     \hline
84     e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85     e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86     \hline
87     e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88     \hline
89     \hline
90     \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91     \hline
92     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93     $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94     \hline
95     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96     \hline
97     \hline
98     e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99     e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100     \hline
101     e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102     \hline
103     \end{tabular}}
104     \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105     \ttdl\ sample, while the post-veto SFs are applied to the single
106     lepton samples. The veto SF is shown for comparison across channels.
107     The raw MC is used for backgrounds from rare processes.
108     The uncertainties are statistical only.
109     \label{tab:mtpeaksf2}}
110     \end{center}
111     \end{table}
112    
113 claudioc 1.7
114 linacre 1.21 \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 claudioc 1.7 These are taken as 50\%, uncorrelated.
116     The primary effect is to introduce a 50\%
117     uncertainty
118     on the $W +$ jets and rare BG
119     background predictions, respectively. However they also
120     have an effect on the other BGs via the $M_T$ peak normalization
121     in a way that tends to reduce the uncertainty. This is easy
122     to understand: if the $W$ cross-section is increased by 50\%, then
123     the $W$ background goes up. But the number of $M_T$ peak events
124     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126     BG goes down.
127    
128 linacre 1.20 \subsection{Tail-to-peak ratios for lepton +
129 claudioc 1.7 jets top and W events}
130 linacre 1.20 The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131     The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132     Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
133     The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
134    
135 claudioc 1.7
136     \subsection{Uncertainty on extra jet radiation for dilepton
137     background}
138     As discussed in Section~\ref{sec:jetmultiplicity}, the
139     jet distribution in
140     $t\bar{t} \to$
141     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
142 claudioc 1.15 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
143 claudioc 1.7 comes from data/MC statistics. This
144 linacre 1.21 results directly in a 3\% uncertainty on the dilepton background, which is by far
145 claudioc 1.7 the most important one.
146    
147 claudioc 1.18 \subsection{Uncertainty from MC statistics}
148     This affects mostly the \ttll\ background estimate, which is taken
149     from
150     Monte Carlo with appropriate correction factors. This uncertainty
151     is negligible in the low \met\ signal regions, and grows to about
152     15\% in SRG.
153    
154 vimartin 1.5
155 vimartin 1.22 \subsection{Uncertainty on the \ttll\ Background}
156 benhoob 1.1
157 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
158     derived from control samples in data. The uncertainty associated with
159 vimartin 1.22 the \ttbar\ background is derived from the level of closure of the
160     background prediction in CR4 (Table~\ref{tab:cr4yields}) and
161     CR5 (Table~\ref{tab:cr5yields}). The results from these control region
162     checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
163     to the \ttdl\ background prediction based on these tests are
164     5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
165    
166     \begin{figure}[hbt]
167     \begin{center}
168     \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
169     \caption{
170     \label{fig:ttdlunc}%\protect
171     Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
172     applying SFs) to data for CR4 and CR5 for all the signal
173     region requirements considered (A-G). The bands indicate the
174     systematic uncertainties assigned based on these tests,
175     ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
176     \end{center}
177     \end{figure}
178    
179    
180     \subsubsection{Check of the uncertainty on the \ttll\ Acceptance}
181    
182     The uncertainty associated with
183 vimartin 1.2 the theoretical modeling of the \ttbar\ production and decay is
184 vimartin 1.22 checked by comparing the background predictions obtained using
185 vimartin 1.2 alternative MC samples. It should be noted that the full analysis is
186     performed with the alternative samples under consideration,
187     including the derivation of the various data-to-MC scale factors.
188     The variations considered are
189    
190     \begin{itemize}
191     \item Top mass: The alternative values for the top mass differ
192 linacre 1.21 from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
193 vimartin 1.2 = 166.5~\GeV$.
194     \item Jet-parton matching scale: This corresponds to variations in the
195     scale at which the Matrix Element partons from Madgraph are matched
196     to Parton Shower partons from Pythia. The nominal value is
197     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
198     $x_q>40~\GeV$.
199     \item Renormalization and factorization scale: The alternative samples
200     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
201     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
202     \sum_{\mathrm{jets}} \pt^2$.
203     \item Alternative generators: Samples produced with different
204 claudioc 1.15 generators, Powheg (our default) and Madgraph.
205 vimartin 1.2 \item Modeling of taus: The alternative sample does not include
206 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
207     This effect was studied earlier using 7~TeV samples and found to be negligible.
208 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
209 vimartin 1.19 recommendations. The events are reweighted using alternative
210 vimartin 1.2 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
211 linacre 1.21 alternative eigenvector variations and the ``master equation''.
212     The NNPDF2.1 set with 100 replicas is also used. The central value is
213 vimartin 1.2 determined from the mean and the uncertainty is derived from the
214     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
215 burkett 1.6 alternative predictions and their uncertainties.
216     This effect was studied earlier using 7~TeV samples and found to be negligible.
217     \end{itemize}
218 benhoob 1.1
219 claudioc 1.16 \begin{figure}[hbt]
220     \begin{center}
221     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
222     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
223     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
224     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
225     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
226     \caption{
227     \label{fig:ttllsyst}\protect
228     Comparison of the \ttll\ central prediction with those using
229     alternative MC samples. The blue band corresponds to the
230     total statistical error for all data and MC samples. The
231     alternative sample predictions are indicated by the
232     datapoints. The uncertainties on the alternative predictions
233     correspond to the uncorrelated statistical uncertainty from
234     the size of the alternative sample only. Note the
235     suppressed vertical scales.}
236     \end{center}
237     \end{figure}
238 vimartin 1.14
239    
240     \begin{table}[!h]
241     \begin{center}
242     {\footnotesize
243     \begin{tabular}{l||c|c|c|c|c|c|c}
244     \hline
245     $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
246     Match Up & Match Down \\
247     \hline
248     \hline
249     SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
250     \hline
251     SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
252     \hline
253 claudioc 1.16 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
254     % \hline
255     % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
256     % \hline
257     % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
258 vimartin 1.14 \hline
259     \end{tabular}}
260 claudioc 1.16 \caption{ Relative difference in \ttdl\ predictions for alternative MC
261     samples in
262     the higher statistics regions SRA and SRB. These differences
263     are based on the central values of the predictions. For a fuller
264     picture
265     of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
266 vimartin 1.14 \label{tab:fracdiff}}
267     \end{center}
268     \end{table}
269    
270    
271 claudioc 1.16 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
272     for regions A through E. We can make the following observations based
273     on this Figure.
274 vimartin 1.14
275 claudioc 1.16 \begin{itemize}
276     \item In the tighter signal regions we are running out of
277     statistics.
278     \item Within the limited statistics, there is no evidence that the
279     situation changes as we go from signal region A to signal region E.
280     Therefore, we assess a systematic based on the relatively high
281     statistics
282     test in signal region A, and apply the same systematic uncertainty
283     to all other regions.
284     \item In order to fully (as opposed as 1$\sigma$) cover the
285     alternative MC variations in region A we would have to take a
286     systematic
287     uncertainty of $\approx 10\%$. This would be driven by the
288     scale up/scale down variations, see Table~\ref{tab:fracdiff}.
289     \end{itemize}
290 vimartin 1.14
291 claudioc 1.16 \begin{table}[!ht]
292 vimartin 1.14 \begin{center}
293 claudioc 1.16 \begin{tabular}{l|c|c}
294 vimartin 1.14 \hline
295 claudioc 1.16 Sample
296     & K3 & K4\\
297 vimartin 1.14 \hline
298     \hline
299 claudioc 1.16 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
300     Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
301     Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
302     Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
303     Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
304     Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
305     Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
306     Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
307 vimartin 1.14 \hline
308     \end{tabular}
309 claudioc 1.16 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
310     fraction of events with additional hard jets from radiation in
311     \ttll\ events. \label{tab:njetskfactors_met100}}
312 vimartin 1.14 \end{center}
313     \end{table}
314    
315    
316 claudioc 1.16 However, we have two pieces of information indicating that the
317     scale up/scale down variations are inconsistent with the data.
318     These are described below.
319    
320     The first piece of information is that the jet multiplicity in the scale
321 vimartin 1.19 up/scale down sample is the most inconsistent with the data. This is shown
322 claudioc 1.16 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
323 vimartin 1.19 $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
324 claudioc 1.16 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
325     distribution
326     for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
327     and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
328     equivalent $N_{jets}$ plots for the default Powheg MC, see
329     Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
330    
331     \begin{figure}[hbt]
332     \begin{center}
333     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
334     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
335     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
336     \caption{
337     \label{fig:dileptonnjets_scaleup}%\protect
338     SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
339     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
340     \end{center}
341     \end{figure}
342    
343 benhoob 1.1 \begin{figure}[hbt]
344     \begin{center}
345 claudioc 1.16 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
346     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
347     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
348     \caption{
349     \label{fig:dileptonnjets_scaledw}%\protect
350     SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
351     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
352 vimartin 1.2 \end{center}
353 claudioc 1.16 \end{figure}
354    
355    
356     \clearpage
357    
358     The second piece of information is that we have performed closure
359     tests in CR5 using the alternative MC samples. These are exactly
360     the same tests as the one performed in Section~\ref{sec:CR5} on the
361     Powheg sample. As we argued previously, this is a very powerful
362     test of the background calculation.
363     The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
364     Concentrating on the relatively high statistics CR5A region, we see
365     for all \ttbar\ MC samples except scale up/scale down we obtain
366     closure within 1$\sigma$. The scale up/scale down tests closes
367     worse, only within 2$\sigma$. This again is evidence that the
368     scale up/scale down variations are in disagreement with the data.
369    
370     \input{hugeCR5Table.tex}
371    
372     Based on the two observations above, we argue that the MC
373     scale up/scale down variations are too extreme. We feel that
374     a reasonable choice would be to take one-half of the scale up/scale
375     down variations in our MC. This factor of 1/2 would then bring
376     the discrepancy in the closure test of
377     Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
378     from about 2$\sigma$ to about 1$\sigma$.
379    
380     Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
381     up/scale
382     down variations by a factor 2, we can see that a systematic
383     uncertainty
384     of 6\% would fully cover all of the variations from different MC
385     samples in SRA and SRB.
386 vimartin 1.22 The alternative MC models indicate that a 6\% systematic uncertainty to
387     cover the range of reasonable variations.
388 claudioc 1.16 Note that this 6\% is also consistent with the level at which we are
389 vimartin 1.22 able to test the closure of the method with alternative samples in CR5 for the high statistics
390     regions (Table~\ref{tab:hugecr5yields}).
391     The range of reasonable variations obtained with the alternative
392     samples are consistent with the uncertainties assigned for
393     the \ttll\ background based on the closure of the background
394     predictions and data in CR4 and CR5.
395 claudioc 1.16
396    
397    
398    
399    
400     %\begin{table}[!h]
401     %\begin{center}
402     %{\footnotesize
403     %\begin{tabular}{l||c||c|c|c|c|c|c|c}
404     %\hline
405     %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
406     %Up & Scale Down &
407     %Match Up & Match Down \\
408     %\hline
409     %\hline
410     %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
411     %\hline
412     %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
413     %\hline
414     %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
415     %\hline
416     %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
417     %\hline
418     %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
419     %\hline
420     %\end{tabular}}
421     %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
422     %\label{tab:ttdlalt}}
423     %\end{center}
424     %\end{table}
425    
426    
427    
428    
429     %\begin{table}[!h]
430     %\begin{center}
431     %{\footnotesize
432     %\begin{tabular}{l||c|c|c|c|c|c|c}
433     %\hline
434     %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
435     %Match Up & Match Down \\
436     %\hline
437     %\hline
438     %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
439     %\hline
440     %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
441     %\hline
442     %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
443     %\hline
444     %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
445     %\hline
446     %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
447     %\hline
448     %\end{tabular}}
449     %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
450     %\label{tab:nsig}}
451     %\end{center}
452     %\end{table}
453    
454    
455     %\begin{table}[!h]
456     %\begin{center}
457     %\begin{tabular}{l||c|c|c|c}
458     %\hline
459     %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
460     %& $\Delta$ Match \\
461     %\hline
462     %\hline
463     %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
464     %\hline
465     %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
466     %\hline
467     %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
468     %\hline
469     %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
470     %\hline
471     %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
472     %\hline
473     %\end{tabular}
474     %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
475     %\label{tab:devt}}
476     %\end{center}
477     %\end{table}
478    
479    
480 vimartin 1.2
481 claudioc 1.7 \clearpage
482 vimartin 1.2
483     %
484     %
485     %The methodology for determining the systematics on the background
486     %predictions has not changed with respect to the nominal analysis.
487     %Because the template method has not changed, the same
488     %systematic uncertainty is assessed on this prediction (32\%).
489     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
490     %The systematic uncertainty in the OF background prediction based on
491     %e$\mu$ events has changed, due to the different composition of this
492     %sample after vetoing events containing b-tagged jets.
493     %
494     %As in the nominal analysis, we do not require the e$\mu$ events
495     %to satisfy the dilepton mass requirement and apply a scaling factor K,
496     %extracted from MC, to account for the fraction of e$\mu$ events
497     %which satisfy the dilepton mass requirement. This procedure is used
498     %in order to improve the statistical precision of the OF background estimate.
499     %
500     %For the selection used in the nominal analysis,
501     %the e$\mu$ sample is completely dominated by $t\bar{t}$
502     %events, and we observe that K is statistically consistent with constant with
503     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
504     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
505     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
506     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
507     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
508     %Therefore, the sample composition changes
509     %as the \MET\ requirement is varied, and as a result K depends
510     %on the \MET\ requirement.
511     %
512     %We thus measure K in MC separately for each
513     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
514     %%The systematic uncertainty on K is determined separately for each \MET\
515     %%requirement by comparing the relative difference in K in data vs. MC.
516     %The values of K used are the MC predictions
517     %%and the total systematic uncertainty on the OF prediction
518     %%as shown in
519     %(Table \ref{fig:kvmettable}).
520     %The contribution to the total OF prediction systematic uncertainty
521     %from K is assessed from the ratio of K in data and MC,
522     %shown in Fig.~\ref{fig:kvmet} (right).
523     %The ratio is consistent with unity to roughly 17\%,
524     %so we take this value as the systematic from K.
525     %17\% added in quadrature with 7\% from
526     %the electron to muon efficieny ratio
527     %(as assessed in the inclusive analysis)
528     %yields a total systematic of $\sim$18\%
529     %which we round up to 20\%.
530     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
531     %so we take a systematic based on the statistical uncertainty
532     %of the MC prediction for K.
533     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
534     %%Although we cannot check the value of K in data for \MET\ $>$ 150
535     %%because we find no OF events inside the Z mass window for this \MET\
536     %%cut, the overall OF yields with no dilepton mass requirement
537     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
538     %
539     %
540     %%Below Old
541     %
542     %%In reevaluating the systematics on the OF prediction, however,
543     %%we observed a different behavior of K as a function of \MET\
544     %%as was seen in the inclusive analysis.
545     %
546     %%Recall that K is the ratio of the number of \emu\ events
547     %%inside the Z window to the total number of \emu\ events.
548     %%In the inclusive analysis, it is taken from \ttbar\ MC
549     %%and used to scale the inclusive \emu\ yield in data.
550     %%The yield scaled by K is then corrected for
551     %%the $e$ vs $\mu$ efficiency difference to obtain the
552     %%final OF prediction.
553     %
554     %%Based on the plot in figure \ref{fig:kvmet},
555     %%we choose to use a different
556     %%K for each \MET\ cut and assess a systematic uncertainty
557     %%on the OF prediction based on the difference between
558     %%K in data and MC.
559     %%The variation of K as a function of \MET\ is caused
560     %%by a change in sample composition with increasing \MET.
561     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
562     %%not negligible (as it was in the inclusive analysis)
563     %%because of the b veto. (See appendix \ref{app:kinemu}.)
564     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
565     %
566     %
567     %
568     %
569     %\begin{figure}[hbt]
570     % \begin{center}
571     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
572     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
573     % \caption{
574     % \label{fig:kvmet}\protect
575     % The left plot shows
576     % K as a function of \MET\ in MC (red) and data (black).
577     % The bin low edge corresponds to the \MET\ cut, and the
578     % bins are inclusive.
579     % The MC used is a sum of all SM MC used in the yield table of
580     % section \ref{sec:yields}.
581     % The right plot is the ratio of K in data to MC.
582     % The ratio is fit to a line whose slope is consistent with zero
583     % (the fit parameters are
584     % 0.9 $\pm$ 0.4 for the intercept and
585     % 0.001 $\pm$ 0.005 for the slope).
586     % }
587     % \end{center}
588     %\end{figure}
589     %
590     %
591     %
592     %\begin{table}[htb]
593     %\begin{center}
594     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
595     %The uncertainties shown are the total relative systematic used for the OF prediction,
596     %which is the systematic uncertainty from K added in quadrature with
597     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
598     %inclusive analysis.
599     %}
600     %\begin{tabular}{lcc}
601     %\hline
602     %\MET\ Cut & K & Relative Systematic \\
603     %\hline
604     %%the met zero row is used only for normalization of the money plot.
605     %%0 & 0.1 & \\
606     %30 & 0.12 & 20\% \\
607     %60 & 0.13 & 20\% \\
608     %80 & 0.12 & 20\% \\
609     %100 & 0.12 & 20\% \\
610     %150 & 0.09 & 25\% \\
611     %200 & 0.06 & 60\% \\
612     %\hline
613     %\end{tabular}
614     %\end{center}
615     %\end{table}
616 vimartin 1.4
617 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
618     This is the uncertainty associated with how well the isolated track
619     veto performance is modeled by the Monte Carlo. This uncertainty
620     only applies to the fraction of dilepton BG events that have
621     a second e/$\mu$ or a one prong $\tau \to h$, with
622 claudioc 1.15 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
623     Table~\ref{tab:trueisotrk}.
624     The uncertainty for these events
625 vimartin 1.19 is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
626 vimartin 1.4
627 vimartin 1.13 \begin{table}[!h]
628     \begin{center}
629     {\footnotesize
630 vimartin 1.14 \begin{tabular}{l||c|c|c|c|c|c|c}
631 vimartin 1.13 \hline
632 vimartin 1.14 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
633 vimartin 1.13 \hline
634     \hline
635 vimartin 1.14 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
636 vimartin 1.13 \hline
637     \hline
638 vimartin 1.14 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
639 vimartin 1.13 \hline
640     \end{tabular}}
641     \caption{ Fraction of \ttdl\ events with a true isolated track.
642     \label{tab:trueisotrk}}
643     \end{center}
644     \end{table}
645    
646 claudioc 1.15 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
647     \label{sec:trkveto}
648    
649 vimartin 1.13
650 vimartin 1.4 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
651     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
652     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
653 claudioc 1.15 we would need to apply a data-to-MC scale factor in order to correctly
654     predict the \ttll\ background.
655    
656     This study
657 vimartin 1.4 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
658     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
659     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
660     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
661 claudioc 1.15
662 vimartin 1.4 Furthermore, we test the data and MC
663     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
664     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
665     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
666     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
667     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
668     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
669     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
670     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
671     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
672     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
673     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
674 vimartin 1.19 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
675 vimartin 1.4
676 claudioc 1.15 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
677 vimartin 1.4 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
678     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
679     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
680     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
681     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
682     \met\ $<$ 30 GeV and 0 b-tagged events.
683     The specific criteria for tags and probes for electrons and muons are:
684    
685     %We study the isolated track veto efficiency in bins of \njets.
686     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
687     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
688    
689    
690     \begin{itemize}
691     \item{Electrons}
692    
693     \begin{itemize}
694     \item{Tag criteria}
695    
696     \begin{itemize}
697     \item Electron passes full analysis ID/iso selection
698 benhoob 1.12 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
699     \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
700 vimartin 1.4 \end{itemize}
701    
702     \item{Probe criteria}
703     \begin{itemize}
704     \item Electron passes full analysis ID selection
705     \item \pt\ $>$ 30 GeV
706     \end{itemize}
707     \end{itemize}
708     \item{Muons}
709     \begin{itemize}
710     \item{Tag criteria}
711     \begin{itemize}
712     \item Muon passes full analysis ID/iso selection
713     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
714 benhoob 1.12 \item Matched to 1 of the 2 single muon triggers
715 vimartin 1.4 \begin{itemize}
716     \item \verb=HLT_IsoMu30_v*=
717     \item \verb=HLT_IsoMu30_eta2p1_v*=
718     \end{itemize}
719     \end{itemize}
720     \item{Probe criteria}
721     \begin{itemize}
722     \item Muon passes full analysis ID selection
723     \item \pt\ $>$ 30 GeV
724     \end{itemize}
725     \end{itemize}
726     \end{itemize}
727    
728     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
729     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
730     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
731 vimartin 1.19 In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
732 benhoob 1.12 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
733 vimartin 1.4 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
734     a data vs. MC discrepancy in the isolated track veto efficiency.
735    
736    
737     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
738     %This requirement is chosen because most of the tracks rejected by the isolated
739     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
740    
741     \begin{figure}[hbt]
742     \begin{center}
743 benhoob 1.12 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
744     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
745     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
746     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
747     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
748     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
749     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
750     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
751     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
752     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
753 vimartin 1.4 \caption{
754     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
755     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
756     }
757     \end{center}
758     \end{figure}
759    
760     \clearpage
761    
762     \begin{table}[!ht]
763     \begin{center}
764 benhoob 1.10 \begin{tabular}{l|c|c|c|c|c}
765 benhoob 1.11
766     %Electrons:
767 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
768     %Total MC yields : 2497277
769     %Total DATA yields : 2649453
770 benhoob 1.11 %Muons:
771 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
772     %Total MC yields : 3749863
773 benhoob 1.11 %Total DATA yields : 4210022
774 benhoob 1.12 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
775     %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
776 benhoob 1.11
777 vimartin 1.4 \hline
778     \hline
779 benhoob 1.11 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
780 vimartin 1.4 \hline
781 benhoob 1.12 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
782     mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
783     data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
784 benhoob 1.11
785 vimartin 1.4 \hline
786     \hline
787 benhoob 1.11 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
788 vimartin 1.4 \hline
789 benhoob 1.9 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
790 benhoob 1.12 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
791     data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
792 benhoob 1.11
793 vimartin 1.4 \hline
794     \hline
795 benhoob 1.11 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
796 vimartin 1.4 \hline
797 benhoob 1.12 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
798     mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
799     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
800 benhoob 1.11
801 vimartin 1.4 \hline
802     \hline
803 benhoob 1.11 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
804 vimartin 1.4 \hline
805 benhoob 1.9 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
806 benhoob 1.12 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
807     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
808 benhoob 1.11
809 vimartin 1.4 \hline
810     \hline
811 benhoob 1.11 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
812 vimartin 1.4 \hline
813 benhoob 1.12 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
814     mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
815     data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
816 benhoob 1.11
817 vimartin 1.4 \hline
818     \hline
819 benhoob 1.11 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
820 vimartin 1.4 \hline
821 benhoob 1.9 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
822 benhoob 1.12 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
823     data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
824 benhoob 1.11
825 vimartin 1.4 \hline
826     \hline
827 benhoob 1.11 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
828 vimartin 1.4 \hline
829 benhoob 1.12 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
830     mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
831     data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
832 benhoob 1.11
833 vimartin 1.4 \hline
834     \hline
835 benhoob 1.11 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
836 vimartin 1.4 \hline
837 benhoob 1.9 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
838 benhoob 1.12 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
839     data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
840 benhoob 1.11
841 vimartin 1.4 \hline
842     \hline
843 benhoob 1.11 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
844 vimartin 1.4 \hline
845 benhoob 1.12 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
846     mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
847     data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
848 benhoob 1.11
849 vimartin 1.4 \hline
850     \hline
851 benhoob 1.11 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
852 vimartin 1.4 \hline
853 benhoob 1.9 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
854 benhoob 1.12 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
855     data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
856    
857 vimartin 1.4 \hline
858 benhoob 1.11 \hline
859 benhoob 1.9
860 vimartin 1.4 \end{tabular}
861 vimartin 1.19 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
862     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
863     jet multiplicity requirements.}
864 vimartin 1.4 \end{center}
865     \end{table}
866    
867 vimartin 1.22 \clearpage
868     \subsection{Summary of uncertainties}
869     \label{sec:bgunc-bottomline}.
870     \input{uncertainties_table.tex}
871 vimartin 1.4
872     %Figure.~\ref{fig:reliso} compares the relative track isolation
873     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
874     %muon for $\Z+4$ jet events and various \ttll\ components. The
875     %isolation distributions show significant differences, particularly
876     %between the leptons from a \W\ or \Z\ decay and the tracks arising
877     %from $\tau$ decays. As can also be seen in the figure, the \pt\
878     %distribution for the various categories of tracks is different, where
879     %the decay products from $\tau$s are significantly softer. Since the
880     %\pt\ enters the denominator of the isolation definition and hence
881     %alters the isolation variable...
882    
883     %\begin{figure}[hbt]
884     % \begin{center}
885     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
886     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
887     % \caption{
888     % \label{fig:reliso}%\protect
889     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
890     % Z+Jets and ttbar dilepton have similar isolation distributions
891     % ttbar with leptonic and single prong taus tend to be less
892     % isolated. The difference in the isolation can be attributed
893     % to the different \pt\ distribution of the samples, since
894     % $\tau$ decay products tend to be softer than leptons arising
895     % from \W\ or \Z\ decays.}
896     % \end{center}
897     %\end{figure}
898    
899     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
900    
901    
902     %BEGIN SECTION TO WRITE OUT
903     %In detail, the procedure to correct the dilepton background is:
904    
905     %\begin{itemize}
906     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
907     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
908     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
909     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
910     %the lepton \pt {\bf TODO: verify this in data and MC.}.
911     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
912     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
913     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
914     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
915     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
916     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
917     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
918     %\end{itemize}
919     %END SECTION TO WRITE OUT
920    
921    
922 claudioc 1.15 %{\bf fix me: What you have written in the next paragraph does not
923     %explain how $\epsilon_{fake}$ is measured.
924     %Why not measure $\epsilon_{fake}$ in the b-veto region?}
925 vimartin 1.4
926 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
927     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
928     %applying an additional scale factor for the single lepton background
929     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
930     %veto and after subtracting the \ttll\ component, corrected for the
931     %isolation efficiency derived previously.
932     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
933     %isolated track in single lepton events is independent of \mt\, so the use of
934     %an overall scale factor is justified to estimate the contribution in
935     %the \mt\ tail.
936     %
937     %\begin{figure}[hbt]
938     % \begin{center}
939     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
940     % \caption{
941     % \label{fig:vetoeffcomp}%\protect
942     % Efficiency for selecting an isolated track comparing
943     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
944     % data as a function of \mt. The
945     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
946     % \mt\, while the data ranges between the two. This behavior
947     % is expected since the low \mt\ region is predominantly \ttlj, while the
948     % high \mt\ region contains mostly \ttll\ events.}
949     % \end{center}
950     %\end{figure}
951 vimartin 1.4
952 vimartin 1.22
953 claudioc 1.7
954 claudioc 1.17 % THIS NEEDS TO BE WRITTEN