ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.23
Committed: Sat Oct 20 21:21:34 2012 UTC (12 years, 6 months ago) by linacre
Content type: application/x-tex
Branch: MAIN
Changes since 1.22: +18 -15 lines
Log Message:
minor edits

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 In this Section we discuss the systematic uncertainty on the BG
5     prediction. This prediction is assembled from the event
6     counts in the peak region of the transverse mass distribution as
7     well as Monte Carlo
8     with a number of correction factors, as described previously.
9     The
10     final uncertainty on the prediction is built up from the uncertainties in these
11     individual
12     components.
13     The calculation is done for each signal
14     region,
15     for electrons and muons separately.
16    
17 linacre 1.21 The choice to normalize to the peak region of $M_T$ has the
18 claudioc 1.7 advantage that some uncertainties, e.g., luminosity, cancel.
19     It does however introduce complications because it couples
20     some of the uncertainties in non-trivial ways. For example,
21     the primary effect of an uncertainty on the rare MC cross-section
22     is to introduce an uncertainty in the rare MC background estimate
23     which comes entirely from MC. But this uncertainty also affects,
24     for example,
25     the $t\bar{t} \to$ dilepton BG estimate because it changes the
26     $t\bar{t}$ normalization to the peak region (because some of the
27     events in the peak region are from rare processes). These effects
28 vimartin 1.22 are carefully accounted for. The contribution to the overall
29     uncertainty from each background source is tabulated in
30     Section~\ref{sec:bgunc-bottomline}.
31 vimartin 1.19 Here we discuss the uncertainties one-by-one and comment
32 claudioc 1.7 on their impact on the overall result, at least to first order.
33     Second order effects, such as the one described, are also included.
34    
35     \subsection{Statistical uncertainties on the event counts in the $M_T$
36     peak regions}
37 claudioc 1.15 These vary between 2\% and 20\%, depending on the signal region
38 claudioc 1.7 (different
39     signal regions have different \met\ requirements, thus they also have
40 linacre 1.21 different $M_T$ regions used as control).
41 claudioc 1.7 Since
42 vimartin 1.19 the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 claudioc 1.7 fractional uncertainty is pretty much carried through all the way to
44     the end. There is also an uncertainty from the finite MC event counts
45     in the $M_T$ peak regions. This is also included, but it is smaller.
46    
47 claudioc 1.15 Normalizing to the $M_T$ peak has the distinct advantages that
48     uncertainties on luminosity, cross-sections, trigger efficiency,
49     lepton ID, cancel out.
50 vimartin 1.19 For the low statistics regions with high \met\ requirements, the
51     price to pay in terms of event count is that statistical uncertainties start
52 claudioc 1.15 to become significant. In the future we may consider a different
53     normalization startegy in the low statistics regions.
54    
55 claudioc 1.7 \subsection{Uncertainty from the choice of $M_T$ peak region}
56 claudioc 1.15
57     This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58     If the $M_T$ peak region is not well modelled, this would introduce an
59     uncertainty.
60    
61 linacre 1.21 We have tested this possibility by recalculating the post-veto scale factors for a different
62 claudioc 1.15 choice
63     of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 linacre 1.21 $50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}.
65 claudioc 1.15 The two results for the scale factors are very compatible.
66     We do not take any systematic uncertainty for this possible effect.
67    
68     \begin{table}[!h]
69     \begin{center}
70     {\footnotesize
71     \begin{tabular}{l||c|c|c|c|c|c|c}
72     \hline
73     Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74     \hline
75     \hline
76     \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77     \hline
78     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79     $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80     \hline
81     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82     \hline
83     \hline
84     e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85     e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86     \hline
87     e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88     \hline
89     \hline
90     \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91     \hline
92     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93     $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94     \hline
95     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96     \hline
97     \hline
98     e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99     e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100     \hline
101     e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102     \hline
103     \end{tabular}}
104     \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105     \ttdl\ sample, while the post-veto SFs are applied to the single
106     lepton samples. The veto SF is shown for comparison across channels.
107     The raw MC is used for backgrounds from rare processes.
108     The uncertainties are statistical only.
109     \label{tab:mtpeaksf2}}
110     \end{center}
111     \end{table}
112    
113 claudioc 1.7
114 linacre 1.21 \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 claudioc 1.7 These are taken as 50\%, uncorrelated.
116     The primary effect is to introduce a 50\%
117     uncertainty
118     on the $W +$ jets and rare BG
119     background predictions, respectively. However they also
120     have an effect on the other BGs via the $M_T$ peak normalization
121     in a way that tends to reduce the uncertainty. This is easy
122     to understand: if the $W$ cross-section is increased by 50\%, then
123     the $W$ background goes up. But the number of $M_T$ peak events
124     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126     BG goes down.
127    
128 linacre 1.20 \subsection{Tail-to-peak ratios for lepton +
129 claudioc 1.7 jets top and W events}
130 linacre 1.20 The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131     The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132     Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its uncertainty is given in Table~\ref{tab:cr1yields}). This uncertainty affects both $R_{wjet}$ and $R_{top}$.
133     The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
134    
135 claudioc 1.7
136     \subsection{Uncertainty on extra jet radiation for dilepton
137     background}
138     As discussed in Section~\ref{sec:jetmultiplicity}, the
139     jet distribution in
140     $t\bar{t} \to$
141     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
142 claudioc 1.15 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
143 claudioc 1.7 comes from data/MC statistics. This
144 linacre 1.21 results directly in a 3\% uncertainty on the dilepton background, which is by far
145 claudioc 1.7 the most important one.
146    
147 claudioc 1.18 \subsection{Uncertainty from MC statistics}
148     This affects mostly the \ttll\ background estimate, which is taken
149     from
150     Monte Carlo with appropriate correction factors. This uncertainty
151     is negligible in the low \met\ signal regions, and grows to about
152     15\% in SRG.
153    
154 vimartin 1.5
155 vimartin 1.22 \subsection{Uncertainty on the \ttll\ Background}
156 linacre 1.23 \label{sec:ttdilbkgunc}
157 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
158     derived from control samples in data. The uncertainty associated with
159 vimartin 1.22 the \ttbar\ background is derived from the level of closure of the
160     background prediction in CR4 (Table~\ref{tab:cr4yields}) and
161     CR5 (Table~\ref{tab:cr5yields}). The results from these control region
162     checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
163     to the \ttdl\ background prediction based on these tests are
164     5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
165    
166     \begin{figure}[hbt]
167     \begin{center}
168     \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
169     \caption{
170     \label{fig:ttdlunc}%\protect
171     Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
172     applying SFs) to data for CR4 and CR5 for all the signal
173     region requirements considered (A-G). The bands indicate the
174     systematic uncertainties assigned based on these tests,
175     ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
176     \end{center}
177     \end{figure}
178    
179    
180 linacre 1.23 \subsubsection{Check of the uncertainty on the \ttll\ Background}
181 vimartin 1.22
182 linacre 1.23 We check that the systematic uncertainty assigned to the \ttll\ background prediction
183     covers the uncertainty associated with
184     the theoretical modeling of the \ttbar\ production and decay
185     by comparing the background predictions obtained using
186 vimartin 1.2 alternative MC samples. It should be noted that the full analysis is
187     performed with the alternative samples under consideration,
188     including the derivation of the various data-to-MC scale factors.
189     The variations considered are
190    
191     \begin{itemize}
192     \item Top mass: The alternative values for the top mass differ
193 linacre 1.21 from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
194 vimartin 1.2 = 166.5~\GeV$.
195     \item Jet-parton matching scale: This corresponds to variations in the
196     scale at which the Matrix Element partons from Madgraph are matched
197     to Parton Shower partons from Pythia. The nominal value is
198     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
199     $x_q>40~\GeV$.
200     \item Renormalization and factorization scale: The alternative samples
201     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
202     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
203     \sum_{\mathrm{jets}} \pt^2$.
204     \item Alternative generators: Samples produced with different
205 claudioc 1.15 generators, Powheg (our default) and Madgraph.
206 vimartin 1.2 \item Modeling of taus: The alternative sample does not include
207 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
208     This effect was studied earlier using 7~TeV samples and found to be negligible.
209 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
210 vimartin 1.19 recommendations. The events are reweighted using alternative
211 vimartin 1.2 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
212 linacre 1.21 alternative eigenvector variations and the ``master equation''.
213     The NNPDF2.1 set with 100 replicas is also used. The central value is
214 vimartin 1.2 determined from the mean and the uncertainty is derived from the
215     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
216 burkett 1.6 alternative predictions and their uncertainties.
217     This effect was studied earlier using 7~TeV samples and found to be negligible.
218     \end{itemize}
219 benhoob 1.1
220 claudioc 1.16 \begin{figure}[hbt]
221     \begin{center}
222     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
223     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
224     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
225     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
226     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
227     \caption{
228     \label{fig:ttllsyst}\protect
229     Comparison of the \ttll\ central prediction with those using
230     alternative MC samples. The blue band corresponds to the
231     total statistical error for all data and MC samples. The
232     alternative sample predictions are indicated by the
233     datapoints. The uncertainties on the alternative predictions
234     correspond to the uncorrelated statistical uncertainty from
235     the size of the alternative sample only. Note the
236     suppressed vertical scales.}
237     \end{center}
238     \end{figure}
239 vimartin 1.14
240    
241     \begin{table}[!h]
242     \begin{center}
243     {\footnotesize
244     \begin{tabular}{l||c|c|c|c|c|c|c}
245     \hline
246     $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
247     Match Up & Match Down \\
248     \hline
249     \hline
250     SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
251     \hline
252     SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
253     \hline
254 claudioc 1.16 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
255     % \hline
256     % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
257     % \hline
258     % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
259 vimartin 1.14 \hline
260     \end{tabular}}
261 claudioc 1.16 \caption{ Relative difference in \ttdl\ predictions for alternative MC
262     samples in
263     the higher statistics regions SRA and SRB. These differences
264     are based on the central values of the predictions. For a fuller
265     picture
266     of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
267 vimartin 1.14 \label{tab:fracdiff}}
268     \end{center}
269     \end{table}
270    
271    
272 claudioc 1.16 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
273     for regions A through E. We can make the following observations based
274     on this Figure.
275 vimartin 1.14
276 claudioc 1.16 \begin{itemize}
277     \item In the tighter signal regions we are running out of
278     statistics.
279     \item Within the limited statistics, there is no evidence that the
280     situation changes as we go from signal region A to signal region E.
281 linacre 1.23 %Therefore, we assess a systematic based on the relatively high
282     %statistics
283     %test in signal region A, and apply the same systematic uncertainty
284     %to all other regions.
285     \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
286     fully cover the alternative MC variations.
287 claudioc 1.16 \item In order to fully (as opposed as 1$\sigma$) cover the
288     alternative MC variations in region A we would have to take a
289     systematic
290 linacre 1.23 uncertainty of $\approx 10\%$ instead of $5\%$. This would be driven by the
291 claudioc 1.16 scale up/scale down variations, see Table~\ref{tab:fracdiff}.
292     \end{itemize}
293 vimartin 1.14
294 claudioc 1.16 \begin{table}[!ht]
295 vimartin 1.14 \begin{center}
296 claudioc 1.16 \begin{tabular}{l|c|c}
297 vimartin 1.14 \hline
298 claudioc 1.16 Sample
299     & K3 & K4\\
300 vimartin 1.14 \hline
301     \hline
302 claudioc 1.16 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
303     Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
304     Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
305     Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
306     Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
307     Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
308     Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
309     Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
310 vimartin 1.14 \hline
311     \end{tabular}
312 claudioc 1.16 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
313     fraction of events with additional hard jets from radiation in
314     \ttll\ events. \label{tab:njetskfactors_met100}}
315 vimartin 1.14 \end{center}
316     \end{table}
317    
318    
319 claudioc 1.16 However, we have two pieces of information indicating that the
320     scale up/scale down variations are inconsistent with the data.
321     These are described below.
322    
323     The first piece of information is that the jet multiplicity in the scale
324 vimartin 1.19 up/scale down sample is the most inconsistent with the data. This is shown
325 claudioc 1.16 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
326 vimartin 1.19 $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
327 claudioc 1.16 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
328     distribution
329     for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
330     and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
331     equivalent $N_{jets}$ plots for the default Powheg MC, see
332     Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
333    
334     \begin{figure}[hbt]
335     \begin{center}
336     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
337     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
338     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
339     \caption{
340     \label{fig:dileptonnjets_scaleup}%\protect
341     SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
342     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
343     \end{center}
344     \end{figure}
345    
346 benhoob 1.1 \begin{figure}[hbt]
347     \begin{center}
348 claudioc 1.16 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
349     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
350     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
351     \caption{
352     \label{fig:dileptonnjets_scaledw}%\protect
353     SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
354     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
355 vimartin 1.2 \end{center}
356 claudioc 1.16 \end{figure}
357    
358    
359     \clearpage
360    
361     The second piece of information is that we have performed closure
362     tests in CR5 using the alternative MC samples. These are exactly
363     the same tests as the one performed in Section~\ref{sec:CR5} on the
364     Powheg sample. As we argued previously, this is a very powerful
365     test of the background calculation.
366     The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
367     Concentrating on the relatively high statistics CR5A region, we see
368     for all \ttbar\ MC samples except scale up/scale down we obtain
369     closure within 1$\sigma$. The scale up/scale down tests closes
370     worse, only within 2$\sigma$. This again is evidence that the
371     scale up/scale down variations are in disagreement with the data.
372    
373     \input{hugeCR5Table.tex}
374    
375     Based on the two observations above, we argue that the MC
376     scale up/scale down variations are too extreme. We feel that
377     a reasonable choice would be to take one-half of the scale up/scale
378     down variations in our MC. This factor of 1/2 would then bring
379     the discrepancy in the closure test of
380     Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
381     from about 2$\sigma$ to about 1$\sigma$.
382    
383     Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
384     up/scale
385     down variations by a factor 2, we can see that a systematic
386     uncertainty
387 linacre 1.23 of 5\% covers the range of reasonable variations from different MC
388     models in SRA and SRB.
389     %The alternative MC models indicate that a 6\% systematic uncertainty
390     %covers the range of reasonable variations.
391     Note that this 5\% is also consistent with the level at which we are
392 vimartin 1.22 able to test the closure of the method with alternative samples in CR5 for the high statistics
393     regions (Table~\ref{tab:hugecr5yields}).
394     The range of reasonable variations obtained with the alternative
395     samples are consistent with the uncertainties assigned for
396     the \ttll\ background based on the closure of the background
397     predictions and data in CR4 and CR5.
398 claudioc 1.16
399    
400    
401    
402    
403     %\begin{table}[!h]
404     %\begin{center}
405     %{\footnotesize
406     %\begin{tabular}{l||c||c|c|c|c|c|c|c}
407     %\hline
408     %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
409     %Up & Scale Down &
410     %Match Up & Match Down \\
411     %\hline
412     %\hline
413     %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
414     %\hline
415     %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
416     %\hline
417     %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
418     %\hline
419     %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
420     %\hline
421     %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
422     %\hline
423     %\end{tabular}}
424     %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
425     %\label{tab:ttdlalt}}
426     %\end{center}
427     %\end{table}
428    
429    
430    
431    
432     %\begin{table}[!h]
433     %\begin{center}
434     %{\footnotesize
435     %\begin{tabular}{l||c|c|c|c|c|c|c}
436     %\hline
437     %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
438     %Match Up & Match Down \\
439     %\hline
440     %\hline
441     %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
442     %\hline
443     %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
444     %\hline
445     %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
446     %\hline
447     %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
448     %\hline
449     %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
450     %\hline
451     %\end{tabular}}
452     %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
453     %\label{tab:nsig}}
454     %\end{center}
455     %\end{table}
456    
457    
458     %\begin{table}[!h]
459     %\begin{center}
460     %\begin{tabular}{l||c|c|c|c}
461     %\hline
462     %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
463     %& $\Delta$ Match \\
464     %\hline
465     %\hline
466     %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
467     %\hline
468     %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
469     %\hline
470     %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
471     %\hline
472     %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
473     %\hline
474     %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
475     %\hline
476     %\end{tabular}
477     %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
478     %\label{tab:devt}}
479     %\end{center}
480     %\end{table}
481    
482    
483 vimartin 1.2
484 claudioc 1.7 \clearpage
485 vimartin 1.2
486     %
487     %
488     %The methodology for determining the systematics on the background
489     %predictions has not changed with respect to the nominal analysis.
490     %Because the template method has not changed, the same
491     %systematic uncertainty is assessed on this prediction (32\%).
492     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
493     %The systematic uncertainty in the OF background prediction based on
494     %e$\mu$ events has changed, due to the different composition of this
495     %sample after vetoing events containing b-tagged jets.
496     %
497     %As in the nominal analysis, we do not require the e$\mu$ events
498     %to satisfy the dilepton mass requirement and apply a scaling factor K,
499     %extracted from MC, to account for the fraction of e$\mu$ events
500     %which satisfy the dilepton mass requirement. This procedure is used
501     %in order to improve the statistical precision of the OF background estimate.
502     %
503     %For the selection used in the nominal analysis,
504     %the e$\mu$ sample is completely dominated by $t\bar{t}$
505     %events, and we observe that K is statistically consistent with constant with
506     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
507     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
508     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
509     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
510     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
511     %Therefore, the sample composition changes
512     %as the \MET\ requirement is varied, and as a result K depends
513     %on the \MET\ requirement.
514     %
515     %We thus measure K in MC separately for each
516     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
517     %%The systematic uncertainty on K is determined separately for each \MET\
518     %%requirement by comparing the relative difference in K in data vs. MC.
519     %The values of K used are the MC predictions
520     %%and the total systematic uncertainty on the OF prediction
521     %%as shown in
522     %(Table \ref{fig:kvmettable}).
523     %The contribution to the total OF prediction systematic uncertainty
524     %from K is assessed from the ratio of K in data and MC,
525     %shown in Fig.~\ref{fig:kvmet} (right).
526     %The ratio is consistent with unity to roughly 17\%,
527     %so we take this value as the systematic from K.
528     %17\% added in quadrature with 7\% from
529     %the electron to muon efficieny ratio
530     %(as assessed in the inclusive analysis)
531     %yields a total systematic of $\sim$18\%
532     %which we round up to 20\%.
533     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
534     %so we take a systematic based on the statistical uncertainty
535     %of the MC prediction for K.
536     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
537     %%Although we cannot check the value of K in data for \MET\ $>$ 150
538     %%because we find no OF events inside the Z mass window for this \MET\
539     %%cut, the overall OF yields with no dilepton mass requirement
540     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
541     %
542     %
543     %%Below Old
544     %
545     %%In reevaluating the systematics on the OF prediction, however,
546     %%we observed a different behavior of K as a function of \MET\
547     %%as was seen in the inclusive analysis.
548     %
549     %%Recall that K is the ratio of the number of \emu\ events
550     %%inside the Z window to the total number of \emu\ events.
551     %%In the inclusive analysis, it is taken from \ttbar\ MC
552     %%and used to scale the inclusive \emu\ yield in data.
553     %%The yield scaled by K is then corrected for
554     %%the $e$ vs $\mu$ efficiency difference to obtain the
555     %%final OF prediction.
556     %
557     %%Based on the plot in figure \ref{fig:kvmet},
558     %%we choose to use a different
559     %%K for each \MET\ cut and assess a systematic uncertainty
560     %%on the OF prediction based on the difference between
561     %%K in data and MC.
562     %%The variation of K as a function of \MET\ is caused
563     %%by a change in sample composition with increasing \MET.
564     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
565     %%not negligible (as it was in the inclusive analysis)
566     %%because of the b veto. (See appendix \ref{app:kinemu}.)
567     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
568     %
569     %
570     %
571     %
572     %\begin{figure}[hbt]
573     % \begin{center}
574     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
575     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
576     % \caption{
577     % \label{fig:kvmet}\protect
578     % The left plot shows
579     % K as a function of \MET\ in MC (red) and data (black).
580     % The bin low edge corresponds to the \MET\ cut, and the
581     % bins are inclusive.
582     % The MC used is a sum of all SM MC used in the yield table of
583     % section \ref{sec:yields}.
584     % The right plot is the ratio of K in data to MC.
585     % The ratio is fit to a line whose slope is consistent with zero
586     % (the fit parameters are
587     % 0.9 $\pm$ 0.4 for the intercept and
588     % 0.001 $\pm$ 0.005 for the slope).
589     % }
590     % \end{center}
591     %\end{figure}
592     %
593     %
594     %
595     %\begin{table}[htb]
596     %\begin{center}
597     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
598     %The uncertainties shown are the total relative systematic used for the OF prediction,
599     %which is the systematic uncertainty from K added in quadrature with
600     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
601     %inclusive analysis.
602     %}
603     %\begin{tabular}{lcc}
604     %\hline
605     %\MET\ Cut & K & Relative Systematic \\
606     %\hline
607     %%the met zero row is used only for normalization of the money plot.
608     %%0 & 0.1 & \\
609     %30 & 0.12 & 20\% \\
610     %60 & 0.13 & 20\% \\
611     %80 & 0.12 & 20\% \\
612     %100 & 0.12 & 20\% \\
613     %150 & 0.09 & 25\% \\
614     %200 & 0.06 & 60\% \\
615     %\hline
616     %\end{tabular}
617     %\end{center}
618     %\end{table}
619 vimartin 1.4
620 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
621     This is the uncertainty associated with how well the isolated track
622     veto performance is modeled by the Monte Carlo. This uncertainty
623     only applies to the fraction of dilepton BG events that have
624     a second e/$\mu$ or a one prong $\tau \to h$, with
625 claudioc 1.15 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
626     Table~\ref{tab:trueisotrk}.
627     The uncertainty for these events
628 vimartin 1.19 is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
629 vimartin 1.4
630 vimartin 1.13 \begin{table}[!h]
631     \begin{center}
632     {\footnotesize
633 vimartin 1.14 \begin{tabular}{l||c|c|c|c|c|c|c}
634 vimartin 1.13 \hline
635 vimartin 1.14 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
636 vimartin 1.13 \hline
637     \hline
638 vimartin 1.14 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
639 vimartin 1.13 \hline
640     \hline
641 vimartin 1.14 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
642 vimartin 1.13 \hline
643     \end{tabular}}
644     \caption{ Fraction of \ttdl\ events with a true isolated track.
645     \label{tab:trueisotrk}}
646     \end{center}
647     \end{table}
648    
649 claudioc 1.15 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
650     \label{sec:trkveto}
651    
652 vimartin 1.13
653 vimartin 1.4 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
654     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
655     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
656 claudioc 1.15 we would need to apply a data-to-MC scale factor in order to correctly
657     predict the \ttll\ background.
658    
659     This study
660 vimartin 1.4 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
661     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
662     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
663     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
664 claudioc 1.15
665 vimartin 1.4 Furthermore, we test the data and MC
666     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
667     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
668     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
669     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
670     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
671     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
672     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
673     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
674     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
675     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
676     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
677 vimartin 1.19 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
678 vimartin 1.4
679 claudioc 1.15 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
680 vimartin 1.4 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
681     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
682     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
683     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
684     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
685     \met\ $<$ 30 GeV and 0 b-tagged events.
686     The specific criteria for tags and probes for electrons and muons are:
687    
688     %We study the isolated track veto efficiency in bins of \njets.
689     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
690     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
691    
692    
693     \begin{itemize}
694     \item{Electrons}
695    
696     \begin{itemize}
697     \item{Tag criteria}
698    
699     \begin{itemize}
700     \item Electron passes full analysis ID/iso selection
701 benhoob 1.12 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
702     \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
703 vimartin 1.4 \end{itemize}
704    
705     \item{Probe criteria}
706     \begin{itemize}
707     \item Electron passes full analysis ID selection
708     \item \pt\ $>$ 30 GeV
709     \end{itemize}
710     \end{itemize}
711     \item{Muons}
712     \begin{itemize}
713     \item{Tag criteria}
714     \begin{itemize}
715     \item Muon passes full analysis ID/iso selection
716     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
717 benhoob 1.12 \item Matched to 1 of the 2 single muon triggers
718 vimartin 1.4 \begin{itemize}
719     \item \verb=HLT_IsoMu30_v*=
720     \item \verb=HLT_IsoMu30_eta2p1_v*=
721     \end{itemize}
722     \end{itemize}
723     \item{Probe criteria}
724     \begin{itemize}
725     \item Muon passes full analysis ID selection
726     \item \pt\ $>$ 30 GeV
727     \end{itemize}
728     \end{itemize}
729     \end{itemize}
730    
731     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
732     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
733     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
734 vimartin 1.19 In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
735 benhoob 1.12 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
736 vimartin 1.4 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
737     a data vs. MC discrepancy in the isolated track veto efficiency.
738    
739    
740     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
741     %This requirement is chosen because most of the tracks rejected by the isolated
742     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
743    
744     \begin{figure}[hbt]
745     \begin{center}
746 benhoob 1.12 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
747     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
748     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
749     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
750     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
751     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
752     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
753     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
754     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
755     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
756 vimartin 1.4 \caption{
757     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
758     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
759     }
760     \end{center}
761     \end{figure}
762    
763     \clearpage
764    
765     \begin{table}[!ht]
766     \begin{center}
767 benhoob 1.10 \begin{tabular}{l|c|c|c|c|c}
768 benhoob 1.11
769     %Electrons:
770 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
771     %Total MC yields : 2497277
772     %Total DATA yields : 2649453
773 benhoob 1.11 %Muons:
774 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
775     %Total MC yields : 3749863
776 benhoob 1.11 %Total DATA yields : 4210022
777 benhoob 1.12 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
778     %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
779 benhoob 1.11
780 vimartin 1.4 \hline
781     \hline
782 benhoob 1.11 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
783 vimartin 1.4 \hline
784 benhoob 1.12 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
785     mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
786     data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
787 benhoob 1.11
788 vimartin 1.4 \hline
789     \hline
790 benhoob 1.11 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
791 vimartin 1.4 \hline
792 benhoob 1.9 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
793 benhoob 1.12 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
794     data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
795 benhoob 1.11
796 vimartin 1.4 \hline
797     \hline
798 benhoob 1.11 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
799 vimartin 1.4 \hline
800 benhoob 1.12 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
801     mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
802     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
803 benhoob 1.11
804 vimartin 1.4 \hline
805     \hline
806 benhoob 1.11 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
807 vimartin 1.4 \hline
808 benhoob 1.9 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
809 benhoob 1.12 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
810     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
811 benhoob 1.11
812 vimartin 1.4 \hline
813     \hline
814 benhoob 1.11 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
815 vimartin 1.4 \hline
816 benhoob 1.12 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
817     mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
818     data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
819 benhoob 1.11
820 vimartin 1.4 \hline
821     \hline
822 benhoob 1.11 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
823 vimartin 1.4 \hline
824 benhoob 1.9 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
825 benhoob 1.12 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
826     data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
827 benhoob 1.11
828 vimartin 1.4 \hline
829     \hline
830 benhoob 1.11 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
831 vimartin 1.4 \hline
832 benhoob 1.12 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
833     mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
834     data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
835 benhoob 1.11
836 vimartin 1.4 \hline
837     \hline
838 benhoob 1.11 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
839 vimartin 1.4 \hline
840 benhoob 1.9 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
841 benhoob 1.12 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
842     data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
843 benhoob 1.11
844 vimartin 1.4 \hline
845     \hline
846 benhoob 1.11 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
847 vimartin 1.4 \hline
848 benhoob 1.12 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
849     mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
850     data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
851 benhoob 1.11
852 vimartin 1.4 \hline
853     \hline
854 benhoob 1.11 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
855 vimartin 1.4 \hline
856 benhoob 1.9 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
857 benhoob 1.12 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
858     data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
859    
860 vimartin 1.4 \hline
861 benhoob 1.11 \hline
862 benhoob 1.9
863 vimartin 1.4 \end{tabular}
864 vimartin 1.19 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
865     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
866     jet multiplicity requirements.}
867 vimartin 1.4 \end{center}
868     \end{table}
869    
870 vimartin 1.22 \clearpage
871     \subsection{Summary of uncertainties}
872     \label{sec:bgunc-bottomline}.
873     \input{uncertainties_table.tex}
874 vimartin 1.4
875     %Figure.~\ref{fig:reliso} compares the relative track isolation
876     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
877     %muon for $\Z+4$ jet events and various \ttll\ components. The
878     %isolation distributions show significant differences, particularly
879     %between the leptons from a \W\ or \Z\ decay and the tracks arising
880     %from $\tau$ decays. As can also be seen in the figure, the \pt\
881     %distribution for the various categories of tracks is different, where
882     %the decay products from $\tau$s are significantly softer. Since the
883     %\pt\ enters the denominator of the isolation definition and hence
884     %alters the isolation variable...
885    
886     %\begin{figure}[hbt]
887     % \begin{center}
888     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
889     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
890     % \caption{
891     % \label{fig:reliso}%\protect
892     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
893     % Z+Jets and ttbar dilepton have similar isolation distributions
894     % ttbar with leptonic and single prong taus tend to be less
895     % isolated. The difference in the isolation can be attributed
896     % to the different \pt\ distribution of the samples, since
897     % $\tau$ decay products tend to be softer than leptons arising
898     % from \W\ or \Z\ decays.}
899     % \end{center}
900     %\end{figure}
901    
902     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
903    
904    
905     %BEGIN SECTION TO WRITE OUT
906     %In detail, the procedure to correct the dilepton background is:
907    
908     %\begin{itemize}
909     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
910     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
911     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
912     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
913     %the lepton \pt {\bf TODO: verify this in data and MC.}.
914     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
915     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
916     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
917     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
918     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
919     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
920     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
921     %\end{itemize}
922     %END SECTION TO WRITE OUT
923    
924    
925 claudioc 1.15 %{\bf fix me: What you have written in the next paragraph does not
926     %explain how $\epsilon_{fake}$ is measured.
927     %Why not measure $\epsilon_{fake}$ in the b-veto region?}
928 vimartin 1.4
929 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
930     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
931     %applying an additional scale factor for the single lepton background
932     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
933     %veto and after subtracting the \ttll\ component, corrected for the
934     %isolation efficiency derived previously.
935     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
936     %isolated track in single lepton events is independent of \mt\, so the use of
937     %an overall scale factor is justified to estimate the contribution in
938     %the \mt\ tail.
939     %
940     %\begin{figure}[hbt]
941     % \begin{center}
942     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
943     % \caption{
944     % \label{fig:vetoeffcomp}%\protect
945     % Efficiency for selecting an isolated track comparing
946     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
947     % data as a function of \mt. The
948     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
949     % \mt\, while the data ranges between the two. This behavior
950     % is expected since the low \mt\ region is predominantly \ttlj, while the
951     % high \mt\ region contains mostly \ttll\ events.}
952     % \end{center}
953     %\end{figure}
954 vimartin 1.4
955 vimartin 1.22
956 claudioc 1.7
957 claudioc 1.17 % THIS NEEDS TO BE WRITTEN