ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.27
Committed: Wed Oct 31 17:13:29 2012 UTC (12 years, 6 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
Changes since 1.26: +106 -0 lines
Log Message:
adding arc comments

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 In this Section we discuss the systematic uncertainty on the BG
5     prediction. This prediction is assembled from the event
6     counts in the peak region of the transverse mass distribution as
7     well as Monte Carlo
8     with a number of correction factors, as described previously.
9     The
10     final uncertainty on the prediction is built up from the uncertainties in these
11     individual
12     components.
13     The calculation is done for each signal
14     region,
15     for electrons and muons separately.
16    
17 linacre 1.21 The choice to normalize to the peak region of $M_T$ has the
18 claudioc 1.7 advantage that some uncertainties, e.g., luminosity, cancel.
19     It does however introduce complications because it couples
20     some of the uncertainties in non-trivial ways. For example,
21     the primary effect of an uncertainty on the rare MC cross-section
22     is to introduce an uncertainty in the rare MC background estimate
23     which comes entirely from MC. But this uncertainty also affects,
24     for example,
25     the $t\bar{t} \to$ dilepton BG estimate because it changes the
26     $t\bar{t}$ normalization to the peak region (because some of the
27     events in the peak region are from rare processes). These effects
28 vimartin 1.22 are carefully accounted for. The contribution to the overall
29     uncertainty from each background source is tabulated in
30     Section~\ref{sec:bgunc-bottomline}.
31 vimartin 1.19 Here we discuss the uncertainties one-by-one and comment
32 claudioc 1.7 on their impact on the overall result, at least to first order.
33     Second order effects, such as the one described, are also included.
34    
35     \subsection{Statistical uncertainties on the event counts in the $M_T$
36     peak regions}
37 claudioc 1.15 These vary between 2\% and 20\%, depending on the signal region
38 claudioc 1.7 (different
39     signal regions have different \met\ requirements, thus they also have
40 linacre 1.21 different $M_T$ regions used as control).
41 claudioc 1.7 Since
42 vimartin 1.19 the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 claudioc 1.7 fractional uncertainty is pretty much carried through all the way to
44     the end. There is also an uncertainty from the finite MC event counts
45     in the $M_T$ peak regions. This is also included, but it is smaller.
46    
47 claudioc 1.15 Normalizing to the $M_T$ peak has the distinct advantages that
48     uncertainties on luminosity, cross-sections, trigger efficiency,
49     lepton ID, cancel out.
50 vimartin 1.19 For the low statistics regions with high \met\ requirements, the
51     price to pay in terms of event count is that statistical uncertainties start
52 claudioc 1.15 to become significant. In the future we may consider a different
53     normalization startegy in the low statistics regions.
54    
55 claudioc 1.7 \subsection{Uncertainty from the choice of $M_T$ peak region}
56 claudioc 1.15
57     This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58     If the $M_T$ peak region is not well modelled, this would introduce an
59     uncertainty.
60    
61 linacre 1.21 We have tested this possibility by recalculating the post-veto scale factors for a different
62 claudioc 1.15 choice
63     of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 linacre 1.21 $50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}.
65 claudioc 1.15 The two results for the scale factors are very compatible.
66     We do not take any systematic uncertainty for this possible effect.
67    
68     \begin{table}[!h]
69     \begin{center}
70     {\footnotesize
71     \begin{tabular}{l||c|c|c|c|c|c|c}
72     \hline
73     Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74     \hline
75     \hline
76     \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77     \hline
78     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79     $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80     \hline
81     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82     \hline
83     \hline
84     e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85     e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86     \hline
87     e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88     \hline
89     \hline
90     \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91     \hline
92     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93     $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94     \hline
95     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96     \hline
97     \hline
98     e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99     e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100     \hline
101     e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102     \hline
103     \end{tabular}}
104     \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105     \ttdl\ sample, while the post-veto SFs are applied to the single
106     lepton samples. The veto SF is shown for comparison across channels.
107     The raw MC is used for backgrounds from rare processes.
108     The uncertainties are statistical only.
109     \label{tab:mtpeaksf2}}
110     \end{center}
111     \end{table}
112    
113 claudioc 1.7
114 linacre 1.21 \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 claudioc 1.7 These are taken as 50\%, uncorrelated.
116     The primary effect is to introduce a 50\%
117     uncertainty
118     on the $W +$ jets and rare BG
119     background predictions, respectively. However they also
120     have an effect on the other BGs via the $M_T$ peak normalization
121     in a way that tends to reduce the uncertainty. This is easy
122     to understand: if the $W$ cross-section is increased by 50\%, then
123     the $W$ background goes up. But the number of $M_T$ peak events
124     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126     BG goes down.
127    
128 linacre 1.20 \subsection{Tail-to-peak ratios for lepton +
129 claudioc 1.7 jets top and W events}
130 linacre 1.20 The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131     The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 claudioc 1.26 Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133     uncertainty is given in Table~\ref{tab:cr1yields}.
134     This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 linacre 1.20 The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136    
137 claudioc 1.7
138     \subsection{Uncertainty on extra jet radiation for dilepton
139     background}
140     As discussed in Section~\ref{sec:jetmultiplicity}, the
141     jet distribution in
142     $t\bar{t} \to$
143     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 claudioc 1.15 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
145 claudioc 1.7 comes from data/MC statistics. This
146 linacre 1.21 results directly in a 3\% uncertainty on the dilepton background, which is by far
147 claudioc 1.7 the most important one.
148    
149 claudioc 1.18 \subsection{Uncertainty from MC statistics}
150     This affects mostly the \ttll\ background estimate, which is taken
151     from
152     Monte Carlo with appropriate correction factors. This uncertainty
153     is negligible in the low \met\ signal regions, and grows to about
154     15\% in SRG.
155    
156 vimartin 1.5
157 vimartin 1.22 \subsection{Uncertainty on the \ttll\ Background}
158 linacre 1.23 \label{sec:ttdilbkgunc}
159 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
160     derived from control samples in data. The uncertainty associated with
161 vimartin 1.22 the \ttbar\ background is derived from the level of closure of the
162     background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163     CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164     checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165     to the \ttdl\ background prediction based on these tests are
166     5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167    
168     \begin{figure}[hbt]
169     \begin{center}
170     \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171     \caption{
172     \label{fig:ttdlunc}%\protect
173     Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174     applying SFs) to data for CR4 and CR5 for all the signal
175     region requirements considered (A-G). The bands indicate the
176     systematic uncertainties assigned based on these tests,
177     ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178     \end{center}
179     \end{figure}
180    
181 vimartin 1.27 \clearpage
182     \subsubsection{Check of the impact of Signal Contamination}
183    
184     We examine the contribution of possible signal events in the \ttll\
185     control regions (CR4 and CR5). It should be emphasized that these
186     regions are not used to apply data/MC SFs. They are used to quantify
187     the level of data/MC agreement and assign a corresponding uncertainty.
188    
189     To illustrate how much signal is expected to populate these control
190     regions, we examine signal points near the edge of the analysis'
191     sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
192     m($\chi^0$) = 0 for T2bw with x=0.75 and m(stop) = 350
193     m($\chi^0$) = 0 for T2bw with x=0.5).
194     Table~\ref{tab:signalcontamination} compares the expected signal
195     yields and the raw total MC background prediction in the control
196     regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
197     and SRD (these are the signal regions that dominate the
198     sensitivity). The signal contamination is smaller than the uncertainty
199     on the dilepton background and smaller than the signal/background in
200     the signal regions, with the exception of the T2bw scenario with x=0.5.
201     However, based on the fact that the CR4 and CR5 are not used to extract
202     data/MC SFs and that CR4 shows a slight deficit of data compared to
203     the MC prediction, indicating that we do not observe evidence of
204     signal contamination, we do not assign an additional uncertainty.
205    
206     \begin{table}[!h]
207     \begin{center}
208     {\small
209     \begin{tabular}{l l||c|c|c}
210     \hline
211     \multicolumn{2}{c||}{Sample} & CR B & CR C & CR D \\
212     \hline
213     \hline
214     \multirow{4}{*}{CR4} & Raw MC & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
215     %\hline
216     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
217     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
218     & T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $32.1 \pm 1.5$ $(19\%)$ & $14.7 \pm 1.0$ $(29\%)$ & $5.5 \pm 0.6$ $(28\%)$ \\
219     \hline
220     \hline
221     \multirow{4}{*}{CR5} & Raw MC & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
222     %\hline
223     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
224     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
225     & T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $33.0 \pm 1.5$ $(11\%)$& $14.4 \pm 1.0$ $(14\%)$& $5.7 \pm 0.6$ $(15\%)$ \\
226     \hline
227     \hline
228     \hline
229     \multirow{4}{*}{SIGNAL} & Raw MC & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
230     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
231     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
232     & T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $105.5 \pm 2.8$ $(22\%)$& $44.6 \pm 1.8$ $(27\%)$& $15.9 \pm 1.1$ $(26\%)$ \\
233     \hline
234     \end{tabular}}
235     \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
236     yields for a few signal points on the edge of our sensitivity in the \ttll\
237     control regions CR4, CR5 and in the corresponding signal region.
238     The numbers in parenthesis are the expected signal yield divided by
239     the total background. The uncertainties are statistical only.
240     \label{tab:signalcontamination}}
241     \end{center}
242     \end{table}
243    
244     %CR5 DUMP
245     %Total & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
246     %\hline
247     %\hline
248     %Data & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
249     %\hline
250     %T2tt m(stop) = 250 m($\chi^0$) = 0 & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
251     %\hline
252     %T2tt m(stop) = 300 m($\chi^0$) = 50 & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
253     %\hline
254     %T2tt m(stop) = 300 m($\chi^0$) = 100 & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
255     %\hline
256     %T2tt m(stop) = 350 m($\chi^0$) = 0 & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
257     %\hline
258     %T2tt m(stop) = 450 m($\chi^0$) = 0 & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
259     %\hline
260     %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0 & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
261     %\hline
262     %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0 & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
263     %\hline
264    
265     %CR4 DUMP
266     %\hline
267     %Total & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
268     %\hline
269     %\hline
270     %Data & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
271     %\hline
272     %T2tt m(stop) = 250 m($\chi^0$) = 0 & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
273     %\hline
274     %T2tt m(stop) = 300 m($\chi^0$) = 50 & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
275     %\hline
276     %T2tt m(stop) = 300 m($\chi^0$) = 100 & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
277     %\hline
278     %T2tt m(stop) = 350 m($\chi^0$) = 0 & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
279     %\hline
280     %T2tt m(stop) = 450 m($\chi^0$) = 0 & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
281     %\hline
282     %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0 & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
283     %\hline
284     %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0 & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
285     %\hline
286    
287 vimartin 1.22
288 linacre 1.23 \subsubsection{Check of the uncertainty on the \ttll\ Background}
289 vimartin 1.22
290 linacre 1.23 We check that the systematic uncertainty assigned to the \ttll\ background prediction
291     covers the uncertainty associated with
292     the theoretical modeling of the \ttbar\ production and decay
293     by comparing the background predictions obtained using
294 vimartin 1.2 alternative MC samples. It should be noted that the full analysis is
295     performed with the alternative samples under consideration,
296     including the derivation of the various data-to-MC scale factors.
297     The variations considered are
298    
299     \begin{itemize}
300     \item Top mass: The alternative values for the top mass differ
301 linacre 1.21 from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
302 vimartin 1.2 = 166.5~\GeV$.
303     \item Jet-parton matching scale: This corresponds to variations in the
304     scale at which the Matrix Element partons from Madgraph are matched
305     to Parton Shower partons from Pythia. The nominal value is
306     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
307     $x_q>40~\GeV$.
308     \item Renormalization and factorization scale: The alternative samples
309     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
310     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
311     \sum_{\mathrm{jets}} \pt^2$.
312     \item Alternative generators: Samples produced with different
313 claudioc 1.15 generators, Powheg (our default) and Madgraph.
314 vimartin 1.2 \item Modeling of taus: The alternative sample does not include
315 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
316     This effect was studied earlier using 7~TeV samples and found to be negligible.
317 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
318 vimartin 1.19 recommendations. The events are reweighted using alternative
319 vimartin 1.2 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
320 linacre 1.21 alternative eigenvector variations and the ``master equation''.
321     The NNPDF2.1 set with 100 replicas is also used. The central value is
322 vimartin 1.2 determined from the mean and the uncertainty is derived from the
323     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
324 burkett 1.6 alternative predictions and their uncertainties.
325     This effect was studied earlier using 7~TeV samples and found to be negligible.
326     \end{itemize}
327 benhoob 1.1
328 claudioc 1.16 \begin{figure}[hbt]
329     \begin{center}
330     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
331     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
332     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
333     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
334     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
335     \caption{
336     \label{fig:ttllsyst}\protect
337     Comparison of the \ttll\ central prediction with those using
338     alternative MC samples. The blue band corresponds to the
339     total statistical error for all data and MC samples. The
340     alternative sample predictions are indicated by the
341     datapoints. The uncertainties on the alternative predictions
342     correspond to the uncorrelated statistical uncertainty from
343     the size of the alternative sample only. Note the
344     suppressed vertical scales.}
345     \end{center}
346     \end{figure}
347 vimartin 1.14
348    
349     \begin{table}[!h]
350     \begin{center}
351     {\footnotesize
352     \begin{tabular}{l||c|c|c|c|c|c|c}
353     \hline
354     $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
355     Match Up & Match Down \\
356     \hline
357     \hline
358     SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
359     \hline
360     SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
361     \hline
362 claudioc 1.16 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
363     % \hline
364     % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
365     % \hline
366     % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
367 vimartin 1.14 \hline
368     \end{tabular}}
369 claudioc 1.16 \caption{ Relative difference in \ttdl\ predictions for alternative MC
370     samples in
371     the higher statistics regions SRA and SRB. These differences
372     are based on the central values of the predictions. For a fuller
373     picture
374     of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
375 vimartin 1.14 \label{tab:fracdiff}}
376     \end{center}
377     \end{table}
378    
379    
380 claudioc 1.16 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
381     for regions A through E. We can make the following observations based
382     on this Figure.
383 vimartin 1.14
384 claudioc 1.16 \begin{itemize}
385     \item In the tighter signal regions we are running out of
386     statistics.
387     \item Within the limited statistics, there is no evidence that the
388     situation changes as we go from signal region A to signal region E.
389 linacre 1.23 %Therefore, we assess a systematic based on the relatively high
390     %statistics
391     %test in signal region A, and apply the same systematic uncertainty
392     %to all other regions.
393     \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
394     fully cover the alternative MC variations.
395 claudioc 1.16 \item In order to fully (as opposed as 1$\sigma$) cover the
396     alternative MC variations in region A we would have to take a
397     systematic
398 linacre 1.23 uncertainty of $\approx 10\%$ instead of $5\%$. This would be driven by the
399 claudioc 1.16 scale up/scale down variations, see Table~\ref{tab:fracdiff}.
400     \end{itemize}
401 vimartin 1.14
402 claudioc 1.16 \begin{table}[!ht]
403 vimartin 1.14 \begin{center}
404 claudioc 1.16 \begin{tabular}{l|c|c}
405 vimartin 1.14 \hline
406 claudioc 1.16 Sample
407     & K3 & K4\\
408 vimartin 1.14 \hline
409     \hline
410 claudioc 1.16 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
411     Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
412     Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
413     Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
414     Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
415     Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
416     Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
417     Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
418 vimartin 1.14 \hline
419     \end{tabular}
420 claudioc 1.16 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
421     fraction of events with additional hard jets from radiation in
422     \ttll\ events. \label{tab:njetskfactors_met100}}
423 vimartin 1.14 \end{center}
424     \end{table}
425    
426    
427 claudioc 1.16 However, we have two pieces of information indicating that the
428     scale up/scale down variations are inconsistent with the data.
429     These are described below.
430    
431     The first piece of information is that the jet multiplicity in the scale
432 vimartin 1.19 up/scale down sample is the most inconsistent with the data. This is shown
433 claudioc 1.16 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
434 vimartin 1.19 $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
435 claudioc 1.16 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
436     distribution
437     for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
438     and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
439     equivalent $N_{jets}$ plots for the default Powheg MC, see
440     Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
441    
442     \begin{figure}[hbt]
443     \begin{center}
444     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
445     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
446     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
447     \caption{
448     \label{fig:dileptonnjets_scaleup}%\protect
449     SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
450     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
451     \end{center}
452     \end{figure}
453    
454 benhoob 1.1 \begin{figure}[hbt]
455     \begin{center}
456 claudioc 1.16 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
457     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
458     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
459     \caption{
460     \label{fig:dileptonnjets_scaledw}%\protect
461     SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
462     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
463 vimartin 1.2 \end{center}
464 claudioc 1.16 \end{figure}
465    
466    
467     \clearpage
468    
469     The second piece of information is that we have performed closure
470     tests in CR5 using the alternative MC samples. These are exactly
471     the same tests as the one performed in Section~\ref{sec:CR5} on the
472     Powheg sample. As we argued previously, this is a very powerful
473     test of the background calculation.
474     The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
475     Concentrating on the relatively high statistics CR5A region, we see
476     for all \ttbar\ MC samples except scale up/scale down we obtain
477     closure within 1$\sigma$. The scale up/scale down tests closes
478     worse, only within 2$\sigma$. This again is evidence that the
479     scale up/scale down variations are in disagreement with the data.
480    
481     \input{hugeCR5Table.tex}
482    
483     Based on the two observations above, we argue that the MC
484     scale up/scale down variations are too extreme. We feel that
485     a reasonable choice would be to take one-half of the scale up/scale
486     down variations in our MC. This factor of 1/2 would then bring
487     the discrepancy in the closure test of
488     Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
489     from about 2$\sigma$ to about 1$\sigma$.
490    
491     Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
492     up/scale
493     down variations by a factor 2, we can see that a systematic
494     uncertainty
495 linacre 1.23 of 5\% covers the range of reasonable variations from different MC
496     models in SRA and SRB.
497     %The alternative MC models indicate that a 6\% systematic uncertainty
498     %covers the range of reasonable variations.
499     Note that this 5\% is also consistent with the level at which we are
500 vimartin 1.22 able to test the closure of the method with alternative samples in CR5 for the high statistics
501     regions (Table~\ref{tab:hugecr5yields}).
502     The range of reasonable variations obtained with the alternative
503     samples are consistent with the uncertainties assigned for
504     the \ttll\ background based on the closure of the background
505     predictions and data in CR4 and CR5.
506 claudioc 1.16
507    
508    
509    
510    
511     %\begin{table}[!h]
512     %\begin{center}
513     %{\footnotesize
514     %\begin{tabular}{l||c||c|c|c|c|c|c|c}
515     %\hline
516     %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
517     %Up & Scale Down &
518     %Match Up & Match Down \\
519     %\hline
520     %\hline
521     %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
522     %\hline
523     %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
524     %\hline
525     %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
526     %\hline
527     %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
528     %\hline
529     %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
530     %\hline
531     %\end{tabular}}
532     %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
533     %\label{tab:ttdlalt}}
534     %\end{center}
535     %\end{table}
536    
537    
538    
539    
540     %\begin{table}[!h]
541     %\begin{center}
542     %{\footnotesize
543     %\begin{tabular}{l||c|c|c|c|c|c|c}
544     %\hline
545     %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
546     %Match Up & Match Down \\
547     %\hline
548     %\hline
549     %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
550     %\hline
551     %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
552     %\hline
553     %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
554     %\hline
555     %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
556     %\hline
557     %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
558     %\hline
559     %\end{tabular}}
560     %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
561     %\label{tab:nsig}}
562     %\end{center}
563     %\end{table}
564    
565    
566     %\begin{table}[!h]
567     %\begin{center}
568     %\begin{tabular}{l||c|c|c|c}
569     %\hline
570     %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
571     %& $\Delta$ Match \\
572     %\hline
573     %\hline
574     %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
575     %\hline
576     %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
577     %\hline
578     %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
579     %\hline
580     %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
581     %\hline
582     %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
583     %\hline
584     %\end{tabular}
585     %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
586     %\label{tab:devt}}
587     %\end{center}
588     %\end{table}
589    
590    
591 vimartin 1.2
592 claudioc 1.7 \clearpage
593 vimartin 1.2
594     %
595     %
596     %The methodology for determining the systematics on the background
597     %predictions has not changed with respect to the nominal analysis.
598     %Because the template method has not changed, the same
599     %systematic uncertainty is assessed on this prediction (32\%).
600     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
601     %The systematic uncertainty in the OF background prediction based on
602     %e$\mu$ events has changed, due to the different composition of this
603     %sample after vetoing events containing b-tagged jets.
604     %
605     %As in the nominal analysis, we do not require the e$\mu$ events
606     %to satisfy the dilepton mass requirement and apply a scaling factor K,
607     %extracted from MC, to account for the fraction of e$\mu$ events
608     %which satisfy the dilepton mass requirement. This procedure is used
609     %in order to improve the statistical precision of the OF background estimate.
610     %
611     %For the selection used in the nominal analysis,
612     %the e$\mu$ sample is completely dominated by $t\bar{t}$
613     %events, and we observe that K is statistically consistent with constant with
614     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
615     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
616     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
617     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
618     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
619     %Therefore, the sample composition changes
620     %as the \MET\ requirement is varied, and as a result K depends
621     %on the \MET\ requirement.
622     %
623     %We thus measure K in MC separately for each
624     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
625     %%The systematic uncertainty on K is determined separately for each \MET\
626     %%requirement by comparing the relative difference in K in data vs. MC.
627     %The values of K used are the MC predictions
628     %%and the total systematic uncertainty on the OF prediction
629     %%as shown in
630     %(Table \ref{fig:kvmettable}).
631     %The contribution to the total OF prediction systematic uncertainty
632     %from K is assessed from the ratio of K in data and MC,
633     %shown in Fig.~\ref{fig:kvmet} (right).
634     %The ratio is consistent with unity to roughly 17\%,
635     %so we take this value as the systematic from K.
636     %17\% added in quadrature with 7\% from
637     %the electron to muon efficieny ratio
638     %(as assessed in the inclusive analysis)
639     %yields a total systematic of $\sim$18\%
640     %which we round up to 20\%.
641     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
642     %so we take a systematic based on the statistical uncertainty
643     %of the MC prediction for K.
644     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
645     %%Although we cannot check the value of K in data for \MET\ $>$ 150
646     %%because we find no OF events inside the Z mass window for this \MET\
647     %%cut, the overall OF yields with no dilepton mass requirement
648     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
649     %
650     %
651     %%Below Old
652     %
653     %%In reevaluating the systematics on the OF prediction, however,
654     %%we observed a different behavior of K as a function of \MET\
655     %%as was seen in the inclusive analysis.
656     %
657     %%Recall that K is the ratio of the number of \emu\ events
658     %%inside the Z window to the total number of \emu\ events.
659     %%In the inclusive analysis, it is taken from \ttbar\ MC
660     %%and used to scale the inclusive \emu\ yield in data.
661     %%The yield scaled by K is then corrected for
662     %%the $e$ vs $\mu$ efficiency difference to obtain the
663     %%final OF prediction.
664     %
665     %%Based on the plot in figure \ref{fig:kvmet},
666     %%we choose to use a different
667     %%K for each \MET\ cut and assess a systematic uncertainty
668     %%on the OF prediction based on the difference between
669     %%K in data and MC.
670     %%The variation of K as a function of \MET\ is caused
671     %%by a change in sample composition with increasing \MET.
672     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
673     %%not negligible (as it was in the inclusive analysis)
674     %%because of the b veto. (See appendix \ref{app:kinemu}.)
675     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
676     %
677     %
678     %
679     %
680     %\begin{figure}[hbt]
681     % \begin{center}
682     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
683     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
684     % \caption{
685     % \label{fig:kvmet}\protect
686     % The left plot shows
687     % K as a function of \MET\ in MC (red) and data (black).
688     % The bin low edge corresponds to the \MET\ cut, and the
689     % bins are inclusive.
690     % The MC used is a sum of all SM MC used in the yield table of
691     % section \ref{sec:yields}.
692     % The right plot is the ratio of K in data to MC.
693     % The ratio is fit to a line whose slope is consistent with zero
694     % (the fit parameters are
695     % 0.9 $\pm$ 0.4 for the intercept and
696     % 0.001 $\pm$ 0.005 for the slope).
697     % }
698     % \end{center}
699     %\end{figure}
700     %
701     %
702     %
703     %\begin{table}[htb]
704     %\begin{center}
705     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
706     %The uncertainties shown are the total relative systematic used for the OF prediction,
707     %which is the systematic uncertainty from K added in quadrature with
708     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
709     %inclusive analysis.
710     %}
711     %\begin{tabular}{lcc}
712     %\hline
713     %\MET\ Cut & K & Relative Systematic \\
714     %\hline
715     %%the met zero row is used only for normalization of the money plot.
716     %%0 & 0.1 & \\
717     %30 & 0.12 & 20\% \\
718     %60 & 0.13 & 20\% \\
719     %80 & 0.12 & 20\% \\
720     %100 & 0.12 & 20\% \\
721     %150 & 0.09 & 25\% \\
722     %200 & 0.06 & 60\% \\
723     %\hline
724     %\end{tabular}
725     %\end{center}
726     %\end{table}
727 vimartin 1.4
728 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
729     This is the uncertainty associated with how well the isolated track
730     veto performance is modeled by the Monte Carlo. This uncertainty
731     only applies to the fraction of dilepton BG events that have
732     a second e/$\mu$ or a one prong $\tau \to h$, with
733 claudioc 1.15 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
734     Table~\ref{tab:trueisotrk}.
735     The uncertainty for these events
736 vimartin 1.19 is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
737 vimartin 1.4
738 vimartin 1.13 \begin{table}[!h]
739     \begin{center}
740     {\footnotesize
741 vimartin 1.14 \begin{tabular}{l||c|c|c|c|c|c|c}
742 vimartin 1.13 \hline
743 vimartin 1.14 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
744 vimartin 1.13 \hline
745     \hline
746 vimartin 1.14 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
747 vimartin 1.13 \hline
748     \hline
749 vimartin 1.14 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
750 vimartin 1.13 \hline
751     \end{tabular}}
752     \caption{ Fraction of \ttdl\ events with a true isolated track.
753     \label{tab:trueisotrk}}
754     \end{center}
755     \end{table}
756    
757 claudioc 1.15 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
758     \label{sec:trkveto}
759    
760 vimartin 1.13
761 vimartin 1.4 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
762     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
763     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
764 claudioc 1.15 we would need to apply a data-to-MC scale factor in order to correctly
765     predict the \ttll\ background.
766    
767     This study
768 vimartin 1.4 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
769     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
770     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
771     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
772 claudioc 1.15
773 vimartin 1.4 Furthermore, we test the data and MC
774     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
775     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
776     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
777     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
778     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
779     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
780     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
781     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
782     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
783     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
784     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
785 vimartin 1.19 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
786 vimartin 1.4
787 claudioc 1.15 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
788 vimartin 1.4 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
789     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
790     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
791     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
792     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
793     \met\ $<$ 30 GeV and 0 b-tagged events.
794     The specific criteria for tags and probes for electrons and muons are:
795    
796     %We study the isolated track veto efficiency in bins of \njets.
797     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
798     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
799    
800    
801     \begin{itemize}
802     \item{Electrons}
803    
804     \begin{itemize}
805     \item{Tag criteria}
806    
807     \begin{itemize}
808     \item Electron passes full analysis ID/iso selection
809 benhoob 1.12 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
810     \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
811 vimartin 1.4 \end{itemize}
812    
813     \item{Probe criteria}
814     \begin{itemize}
815     \item Electron passes full analysis ID selection
816     \item \pt\ $>$ 30 GeV
817     \end{itemize}
818     \end{itemize}
819     \item{Muons}
820     \begin{itemize}
821     \item{Tag criteria}
822     \begin{itemize}
823     \item Muon passes full analysis ID/iso selection
824     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
825 benhoob 1.12 \item Matched to 1 of the 2 single muon triggers
826 vimartin 1.4 \begin{itemize}
827     \item \verb=HLT_IsoMu30_v*=
828     \item \verb=HLT_IsoMu30_eta2p1_v*=
829     \end{itemize}
830     \end{itemize}
831     \item{Probe criteria}
832     \begin{itemize}
833     \item Muon passes full analysis ID selection
834     \item \pt\ $>$ 30 GeV
835     \end{itemize}
836     \end{itemize}
837     \end{itemize}
838    
839     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
840     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
841     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
842 vimartin 1.19 In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
843 benhoob 1.12 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
844 vimartin 1.4 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
845     a data vs. MC discrepancy in the isolated track veto efficiency.
846    
847    
848     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
849     %This requirement is chosen because most of the tracks rejected by the isolated
850     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
851    
852     \begin{figure}[hbt]
853     \begin{center}
854 benhoob 1.12 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
855     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
856     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
857     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
858     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
859     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
860     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
861     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
862     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
863     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
864 vimartin 1.4 \caption{
865     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
866     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
867     }
868     \end{center}
869     \end{figure}
870    
871     \clearpage
872    
873     \begin{table}[!ht]
874     \begin{center}
875 benhoob 1.10 \begin{tabular}{l|c|c|c|c|c}
876 benhoob 1.11
877     %Electrons:
878 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
879     %Total MC yields : 2497277
880     %Total DATA yields : 2649453
881 benhoob 1.11 %Muons:
882 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
883     %Total MC yields : 3749863
884 benhoob 1.11 %Total DATA yields : 4210022
885 benhoob 1.12 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
886     %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
887 benhoob 1.11
888 vimartin 1.4 \hline
889     \hline
890 benhoob 1.11 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
891 vimartin 1.4 \hline
892 benhoob 1.12 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
893     mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
894     data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
895 benhoob 1.11
896 vimartin 1.4 \hline
897     \hline
898 benhoob 1.11 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
899 vimartin 1.4 \hline
900 benhoob 1.9 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
901 benhoob 1.12 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
902     data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
903 benhoob 1.11
904 vimartin 1.4 \hline
905     \hline
906 benhoob 1.11 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
907 vimartin 1.4 \hline
908 benhoob 1.12 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
909     mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
910     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
911 benhoob 1.11
912 vimartin 1.4 \hline
913     \hline
914 benhoob 1.11 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
915 vimartin 1.4 \hline
916 benhoob 1.9 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
917 benhoob 1.12 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
918     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
919 benhoob 1.11
920 vimartin 1.4 \hline
921     \hline
922 benhoob 1.11 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
923 vimartin 1.4 \hline
924 benhoob 1.12 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
925     mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
926     data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
927 benhoob 1.11
928 vimartin 1.4 \hline
929     \hline
930 benhoob 1.11 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
931 vimartin 1.4 \hline
932 benhoob 1.9 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
933 benhoob 1.12 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
934     data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
935 benhoob 1.11
936 vimartin 1.4 \hline
937     \hline
938 benhoob 1.11 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
939 vimartin 1.4 \hline
940 benhoob 1.12 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
941     mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
942     data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
943 benhoob 1.11
944 vimartin 1.4 \hline
945     \hline
946 benhoob 1.11 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
947 vimartin 1.4 \hline
948 benhoob 1.9 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
949 benhoob 1.12 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
950     data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
951 benhoob 1.11
952 vimartin 1.4 \hline
953     \hline
954 benhoob 1.11 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
955 vimartin 1.4 \hline
956 benhoob 1.12 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
957     mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
958     data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
959 benhoob 1.11
960 vimartin 1.4 \hline
961     \hline
962 benhoob 1.11 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
963 vimartin 1.4 \hline
964 benhoob 1.9 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
965 benhoob 1.12 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
966     data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
967    
968 vimartin 1.4 \hline
969 benhoob 1.11 \hline
970 benhoob 1.9
971 vimartin 1.4 \end{tabular}
972 vimartin 1.19 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
973     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
974     jet multiplicity requirements.}
975 vimartin 1.4 \end{center}
976     \end{table}
977    
978 vimartin 1.22 \clearpage
979     \subsection{Summary of uncertainties}
980 linacre 1.24 \label{sec:bgunc-bottomline}
981    
982 linacre 1.25 The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
983 linacre 1.24
984 vimartin 1.22 \input{uncertainties_table.tex}
985 vimartin 1.4
986 linacre 1.24
987    
988    
989    
990 vimartin 1.4 %Figure.~\ref{fig:reliso} compares the relative track isolation
991     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
992     %muon for $\Z+4$ jet events and various \ttll\ components. The
993     %isolation distributions show significant differences, particularly
994     %between the leptons from a \W\ or \Z\ decay and the tracks arising
995     %from $\tau$ decays. As can also be seen in the figure, the \pt\
996     %distribution for the various categories of tracks is different, where
997     %the decay products from $\tau$s are significantly softer. Since the
998     %\pt\ enters the denominator of the isolation definition and hence
999     %alters the isolation variable...
1000    
1001     %\begin{figure}[hbt]
1002     % \begin{center}
1003     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
1004     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
1005     % \caption{
1006     % \label{fig:reliso}%\protect
1007     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
1008     % Z+Jets and ttbar dilepton have similar isolation distributions
1009     % ttbar with leptonic and single prong taus tend to be less
1010     % isolated. The difference in the isolation can be attributed
1011     % to the different \pt\ distribution of the samples, since
1012     % $\tau$ decay products tend to be softer than leptons arising
1013     % from \W\ or \Z\ decays.}
1014     % \end{center}
1015     %\end{figure}
1016    
1017     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
1018    
1019    
1020     %BEGIN SECTION TO WRITE OUT
1021     %In detail, the procedure to correct the dilepton background is:
1022    
1023     %\begin{itemize}
1024     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
1025     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
1026     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
1027     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
1028     %the lepton \pt {\bf TODO: verify this in data and MC.}.
1029     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
1030     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
1031     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
1032     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
1033     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
1034     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
1035     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
1036     %\end{itemize}
1037     %END SECTION TO WRITE OUT
1038    
1039    
1040 claudioc 1.15 %{\bf fix me: What you have written in the next paragraph does not
1041     %explain how $\epsilon_{fake}$ is measured.
1042     %Why not measure $\epsilon_{fake}$ in the b-veto region?}
1043 vimartin 1.4
1044 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
1045     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
1046     %applying an additional scale factor for the single lepton background
1047     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
1048     %veto and after subtracting the \ttll\ component, corrected for the
1049     %isolation efficiency derived previously.
1050     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
1051     %isolated track in single lepton events is independent of \mt\, so the use of
1052     %an overall scale factor is justified to estimate the contribution in
1053     %the \mt\ tail.
1054     %
1055     %\begin{figure}[hbt]
1056     % \begin{center}
1057     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
1058     % \caption{
1059     % \label{fig:vetoeffcomp}%\protect
1060     % Efficiency for selecting an isolated track comparing
1061     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
1062     % data as a function of \mt. The
1063     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
1064     % \mt\, while the data ranges between the two. This behavior
1065     % is expected since the low \mt\ region is predominantly \ttlj, while the
1066     % high \mt\ region contains mostly \ttll\ events.}
1067     % \end{center}
1068     %\end{figure}
1069 vimartin 1.4
1070 vimartin 1.22
1071 claudioc 1.7
1072 claudioc 1.17 % THIS NEEDS TO BE WRITTEN