ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.28
Committed: Wed Oct 31 17:45:34 2012 UTC (12 years, 6 months ago) by benhoob
Content type: application/x-tex
Branch: MAIN
Changes since 1.27: +8 -5 lines
Log Message:
fixes to signal contamination section

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 In this Section we discuss the systematic uncertainty on the BG
5     prediction. This prediction is assembled from the event
6     counts in the peak region of the transverse mass distribution as
7     well as Monte Carlo
8     with a number of correction factors, as described previously.
9     The
10     final uncertainty on the prediction is built up from the uncertainties in these
11     individual
12     components.
13     The calculation is done for each signal
14     region,
15     for electrons and muons separately.
16    
17 linacre 1.21 The choice to normalize to the peak region of $M_T$ has the
18 claudioc 1.7 advantage that some uncertainties, e.g., luminosity, cancel.
19     It does however introduce complications because it couples
20     some of the uncertainties in non-trivial ways. For example,
21     the primary effect of an uncertainty on the rare MC cross-section
22     is to introduce an uncertainty in the rare MC background estimate
23     which comes entirely from MC. But this uncertainty also affects,
24     for example,
25     the $t\bar{t} \to$ dilepton BG estimate because it changes the
26     $t\bar{t}$ normalization to the peak region (because some of the
27     events in the peak region are from rare processes). These effects
28 vimartin 1.22 are carefully accounted for. The contribution to the overall
29     uncertainty from each background source is tabulated in
30     Section~\ref{sec:bgunc-bottomline}.
31 vimartin 1.19 Here we discuss the uncertainties one-by-one and comment
32 claudioc 1.7 on their impact on the overall result, at least to first order.
33     Second order effects, such as the one described, are also included.
34    
35     \subsection{Statistical uncertainties on the event counts in the $M_T$
36     peak regions}
37 claudioc 1.15 These vary between 2\% and 20\%, depending on the signal region
38 claudioc 1.7 (different
39     signal regions have different \met\ requirements, thus they also have
40 linacre 1.21 different $M_T$ regions used as control).
41 claudioc 1.7 Since
42 vimartin 1.19 the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43 claudioc 1.7 fractional uncertainty is pretty much carried through all the way to
44     the end. There is also an uncertainty from the finite MC event counts
45     in the $M_T$ peak regions. This is also included, but it is smaller.
46    
47 claudioc 1.15 Normalizing to the $M_T$ peak has the distinct advantages that
48     uncertainties on luminosity, cross-sections, trigger efficiency,
49     lepton ID, cancel out.
50 vimartin 1.19 For the low statistics regions with high \met\ requirements, the
51     price to pay in terms of event count is that statistical uncertainties start
52 claudioc 1.15 to become significant. In the future we may consider a different
53     normalization startegy in the low statistics regions.
54    
55 claudioc 1.7 \subsection{Uncertainty from the choice of $M_T$ peak region}
56 claudioc 1.15
57     This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.
58     If the $M_T$ peak region is not well modelled, this would introduce an
59     uncertainty.
60    
61 linacre 1.21 We have tested this possibility by recalculating the post-veto scale factors for a different
62 claudioc 1.15 choice
63     of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 linacre 1.21 $50 < M_T < 80$ GeV). This is shown in Table~\ref{tab:mtpeaksf2}.
65 claudioc 1.15 The two results for the scale factors are very compatible.
66     We do not take any systematic uncertainty for this possible effect.
67    
68     \begin{table}[!h]
69     \begin{center}
70     {\footnotesize
71     \begin{tabular}{l||c|c|c|c|c|c|c}
72     \hline
73     Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74     \hline
75     \hline
76     \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77     \hline
78     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79     $\mu$ post-veto \mt-SF & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80     \hline
81     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82     \hline
83     \hline
84     e pre-veto \mt-SF & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85     e post-veto \mt-SF & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86     \hline
87     e veto \mt-SF & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88     \hline
89     \hline
90     \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91     \hline
92     $\mu$ pre-veto \mt-SF & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93     $\mu$ post-veto \mt-SF & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94     \hline
95     $\mu$ veto \mt-SF & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96     \hline
97     \hline
98     e pre-veto \mt-SF & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99     e post-veto \mt-SF & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100     \hline
101     e veto \mt-SF & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102     \hline
103     \end{tabular}}
104     \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105     \ttdl\ sample, while the post-veto SFs are applied to the single
106     lepton samples. The veto SF is shown for comparison across channels.
107     The raw MC is used for backgrounds from rare processes.
108     The uncertainties are statistical only.
109     \label{tab:mtpeaksf2}}
110     \end{center}
111     \end{table}
112    
113 claudioc 1.7
114 linacre 1.21 \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115 claudioc 1.7 These are taken as 50\%, uncorrelated.
116     The primary effect is to introduce a 50\%
117     uncertainty
118     on the $W +$ jets and rare BG
119     background predictions, respectively. However they also
120     have an effect on the other BGs via the $M_T$ peak normalization
121     in a way that tends to reduce the uncertainty. This is easy
122     to understand: if the $W$ cross-section is increased by 50\%, then
123     the $W$ background goes up. But the number of $M_T$ peak events
124     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126     BG goes down.
127    
128 linacre 1.20 \subsection{Tail-to-peak ratios for lepton +
129 claudioc 1.7 jets top and W events}
130 linacre 1.20 The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131     The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 claudioc 1.26 Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133     uncertainty is given in Table~\ref{tab:cr1yields}.
134     This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 linacre 1.20 The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136    
137 claudioc 1.7
138     \subsection{Uncertainty on extra jet radiation for dilepton
139     background}
140     As discussed in Section~\ref{sec:jetmultiplicity}, the
141     jet distribution in
142     $t\bar{t} \to$
143     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 claudioc 1.15 it agree with the data. The 3\% uncertainties on $K_3$ and $K_4$
145 claudioc 1.7 comes from data/MC statistics. This
146 linacre 1.21 results directly in a 3\% uncertainty on the dilepton background, which is by far
147 claudioc 1.7 the most important one.
148    
149 claudioc 1.18 \subsection{Uncertainty from MC statistics}
150     This affects mostly the \ttll\ background estimate, which is taken
151     from
152     Monte Carlo with appropriate correction factors. This uncertainty
153     is negligible in the low \met\ signal regions, and grows to about
154     15\% in SRG.
155    
156 vimartin 1.5
157 vimartin 1.22 \subsection{Uncertainty on the \ttll\ Background}
158 linacre 1.23 \label{sec:ttdilbkgunc}
159 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
160     derived from control samples in data. The uncertainty associated with
161 vimartin 1.22 the \ttbar\ background is derived from the level of closure of the
162     background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163     CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164     checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165     to the \ttdl\ background prediction based on these tests are
166     5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167    
168     \begin{figure}[hbt]
169     \begin{center}
170     \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171     \caption{
172     \label{fig:ttdlunc}%\protect
173     Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174     applying SFs) to data for CR4 and CR5 for all the signal
175     region requirements considered (A-G). The bands indicate the
176     systematic uncertainties assigned based on these tests,
177     ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178     \end{center}
179     \end{figure}
180    
181 vimartin 1.27 \clearpage
182     \subsubsection{Check of the impact of Signal Contamination}
183    
184     We examine the contribution of possible signal events in the \ttll\
185     control regions (CR4 and CR5). It should be emphasized that these
186 benhoob 1.28 regions are not used to apply data/MC SFs. They are used only to quantify
187 vimartin 1.27 the level of data/MC agreement and assign a corresponding uncertainty.
188 benhoob 1.28 As a result, if signal events were to populate these control regions
189     this would not lead to an increase in the predicted background.
190 vimartin 1.27
191     To illustrate how much signal is expected to populate these control
192 benhoob 1.28 regions, we examine signal points near the edge of the analysis
193 vimartin 1.27 sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
194     m($\chi^0$) = 0 for T2bw with x=0.75 and m(stop) = 350
195     m($\chi^0$) = 0 for T2bw with x=0.5).
196     Table~\ref{tab:signalcontamination} compares the expected signal
197     yields and the raw total MC background prediction in the control
198     regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
199     and SRD (these are the signal regions that dominate the
200     sensitivity). The signal contamination is smaller than the uncertainty
201     on the dilepton background and smaller than the signal/background in
202     the signal regions, with the exception of the T2bw scenario with x=0.5.
203     However, based on the fact that the CR4 and CR5 are not used to extract
204 benhoob 1.28 data/MC scale factors and that we do not observe evidence for signal
205     contamination in these control regions (CR5, the control region with
206     larger statistical precision, actually shows a slight deficit of data w.r.t. MC), we
207     do not assign a correction for signal contamination in these control regions.
208 vimartin 1.27
209     \begin{table}[!h]
210     \begin{center}
211     {\small
212     \begin{tabular}{l l||c|c|c}
213     \hline
214     \multicolumn{2}{c||}{Sample} & CR B & CR C & CR D \\
215     \hline
216     \hline
217     \multirow{4}{*}{CR4} & Raw MC & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
218     %\hline
219     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
220     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
221     & T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $32.1 \pm 1.5$ $(19\%)$ & $14.7 \pm 1.0$ $(29\%)$ & $5.5 \pm 0.6$ $(28\%)$ \\
222     \hline
223     \hline
224     \multirow{4}{*}{CR5} & Raw MC & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
225     %\hline
226     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
227     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
228     & T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $33.0 \pm 1.5$ $(11\%)$& $14.4 \pm 1.0$ $(14\%)$& $5.7 \pm 0.6$ $(15\%)$ \\
229     \hline
230     \hline
231     \hline
232     \multirow{4}{*}{SIGNAL} & Raw MC & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
233     & T2tt m(stop) = 450 m($\chi^0$) = 0 & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
234     & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
235     & T2bw x=0.5 m(stop) = 350 m($\chi^0$) = 0 & $105.5 \pm 2.8$ $(22\%)$& $44.6 \pm 1.8$ $(27\%)$& $15.9 \pm 1.1$ $(26\%)$ \\
236     \hline
237     \end{tabular}}
238     \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
239     yields for a few signal points on the edge of our sensitivity in the \ttll\
240     control regions CR4, CR5 and in the corresponding signal region.
241     The numbers in parenthesis are the expected signal yield divided by
242     the total background. The uncertainties are statistical only.
243     \label{tab:signalcontamination}}
244     \end{center}
245     \end{table}
246    
247     %CR5 DUMP
248     %Total & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
249     %\hline
250     %\hline
251     %Data & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
252     %\hline
253     %T2tt m(stop) = 250 m($\chi^0$) = 0 & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
254     %\hline
255     %T2tt m(stop) = 300 m($\chi^0$) = 50 & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
256     %\hline
257     %T2tt m(stop) = 300 m($\chi^0$) = 100 & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
258     %\hline
259     %T2tt m(stop) = 350 m($\chi^0$) = 0 & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
260     %\hline
261     %T2tt m(stop) = 450 m($\chi^0$) = 0 & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
262     %\hline
263     %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0 & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
264     %\hline
265     %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0 & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
266     %\hline
267    
268     %CR4 DUMP
269     %\hline
270     %Total & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
271     %\hline
272     %\hline
273     %Data & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
274     %\hline
275     %T2tt m(stop) = 250 m($\chi^0$) = 0 & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
276     %\hline
277     %T2tt m(stop) = 300 m($\chi^0$) = 50 & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
278     %\hline
279     %T2tt m(stop) = 300 m($\chi^0$) = 100 & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
280     %\hline
281     %T2tt m(stop) = 350 m($\chi^0$) = 0 & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
282     %\hline
283     %T2tt m(stop) = 450 m($\chi^0$) = 0 & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
284     %\hline
285     %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0 & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
286     %\hline
287     %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0 & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
288     %\hline
289    
290 vimartin 1.22
291 linacre 1.23 \subsubsection{Check of the uncertainty on the \ttll\ Background}
292 vimartin 1.22
293 linacre 1.23 We check that the systematic uncertainty assigned to the \ttll\ background prediction
294     covers the uncertainty associated with
295     the theoretical modeling of the \ttbar\ production and decay
296     by comparing the background predictions obtained using
297 vimartin 1.2 alternative MC samples. It should be noted that the full analysis is
298     performed with the alternative samples under consideration,
299     including the derivation of the various data-to-MC scale factors.
300     The variations considered are
301    
302     \begin{itemize}
303     \item Top mass: The alternative values for the top mass differ
304 linacre 1.21 from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
305 vimartin 1.2 = 166.5~\GeV$.
306     \item Jet-parton matching scale: This corresponds to variations in the
307     scale at which the Matrix Element partons from Madgraph are matched
308     to Parton Shower partons from Pythia. The nominal value is
309     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
310     $x_q>40~\GeV$.
311     \item Renormalization and factorization scale: The alternative samples
312     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
313     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
314     \sum_{\mathrm{jets}} \pt^2$.
315     \item Alternative generators: Samples produced with different
316 claudioc 1.15 generators, Powheg (our default) and Madgraph.
317 vimartin 1.2 \item Modeling of taus: The alternative sample does not include
318 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
319     This effect was studied earlier using 7~TeV samples and found to be negligible.
320 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
321 vimartin 1.19 recommendations. The events are reweighted using alternative
322 vimartin 1.2 PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
323 linacre 1.21 alternative eigenvector variations and the ``master equation''.
324     The NNPDF2.1 set with 100 replicas is also used. The central value is
325 vimartin 1.2 determined from the mean and the uncertainty is derived from the
326     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
327 burkett 1.6 alternative predictions and their uncertainties.
328     This effect was studied earlier using 7~TeV samples and found to be negligible.
329     \end{itemize}
330 benhoob 1.1
331 claudioc 1.16 \begin{figure}[hbt]
332     \begin{center}
333     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
334     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
335     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
336     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
337     \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
338     \caption{
339     \label{fig:ttllsyst}\protect
340     Comparison of the \ttll\ central prediction with those using
341     alternative MC samples. The blue band corresponds to the
342     total statistical error for all data and MC samples. The
343     alternative sample predictions are indicated by the
344     datapoints. The uncertainties on the alternative predictions
345     correspond to the uncorrelated statistical uncertainty from
346     the size of the alternative sample only. Note the
347     suppressed vertical scales.}
348     \end{center}
349     \end{figure}
350 vimartin 1.14
351    
352     \begin{table}[!h]
353     \begin{center}
354     {\footnotesize
355     \begin{tabular}{l||c|c|c|c|c|c|c}
356     \hline
357     $\Delta/N$ [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
358     Match Up & Match Down \\
359     \hline
360     \hline
361     SRA & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$ \\
362     \hline
363     SRB & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$ \\
364     \hline
365 claudioc 1.16 % SRC & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$ \\
366     % \hline
367     % SRD & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$ \\
368     % \hline
369     % SRE & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$ \\
370 vimartin 1.14 \hline
371     \end{tabular}}
372 claudioc 1.16 \caption{ Relative difference in \ttdl\ predictions for alternative MC
373     samples in
374     the higher statistics regions SRA and SRB. These differences
375     are based on the central values of the predictions. For a fuller
376     picture
377     of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
378 vimartin 1.14 \label{tab:fracdiff}}
379     \end{center}
380     \end{table}
381    
382    
383 claudioc 1.16 In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
384     for regions A through E. We can make the following observations based
385     on this Figure.
386 vimartin 1.14
387 claudioc 1.16 \begin{itemize}
388     \item In the tighter signal regions we are running out of
389     statistics.
390     \item Within the limited statistics, there is no evidence that the
391     situation changes as we go from signal region A to signal region E.
392 linacre 1.23 %Therefore, we assess a systematic based on the relatively high
393     %statistics
394     %test in signal region A, and apply the same systematic uncertainty
395     %to all other regions.
396     \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
397     fully cover the alternative MC variations.
398 claudioc 1.16 \item In order to fully (as opposed as 1$\sigma$) cover the
399     alternative MC variations in region A we would have to take a
400     systematic
401 linacre 1.23 uncertainty of $\approx 10\%$ instead of $5\%$. This would be driven by the
402 claudioc 1.16 scale up/scale down variations, see Table~\ref{tab:fracdiff}.
403     \end{itemize}
404 vimartin 1.14
405 claudioc 1.16 \begin{table}[!ht]
406 vimartin 1.14 \begin{center}
407 claudioc 1.16 \begin{tabular}{l|c|c}
408 vimartin 1.14 \hline
409 claudioc 1.16 Sample
410     & K3 & K4\\
411 vimartin 1.14 \hline
412     \hline
413 claudioc 1.16 Powheg & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
414     Madgraph & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
415     Mass Up & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
416     Mass Down & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
417     Scale Up & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
418     Scale Down & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
419     Match Up & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
420     Match Down & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
421 vimartin 1.14 \hline
422     \end{tabular}
423 claudioc 1.16 \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
424     fraction of events with additional hard jets from radiation in
425     \ttll\ events. \label{tab:njetskfactors_met100}}
426 vimartin 1.14 \end{center}
427     \end{table}
428    
429    
430 claudioc 1.16 However, we have two pieces of information indicating that the
431     scale up/scale down variations are inconsistent with the data.
432     These are described below.
433    
434     The first piece of information is that the jet multiplicity in the scale
435 vimartin 1.19 up/scale down sample is the most inconsistent with the data. This is shown
436 claudioc 1.16 in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
437 vimartin 1.19 $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
438 claudioc 1.16 different \ttbar\ MC samples. The data/MC disagreement in the $N_{jets}$
439     distribution
440     for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
441     and~\ref{fig:dileptonnjets_scaledw}. This should be compared with the
442     equivalent $N_{jets}$ plots for the default Powheg MC, see
443     Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
444    
445     \begin{figure}[hbt]
446     \begin{center}
447     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
448     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
449     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
450     \caption{
451     \label{fig:dileptonnjets_scaleup}%\protect
452     SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
453     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
454     \end{center}
455     \end{figure}
456    
457 benhoob 1.1 \begin{figure}[hbt]
458     \begin{center}
459 claudioc 1.16 \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
460     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
461     \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
462     \caption{
463     \label{fig:dileptonnjets_scaledw}%\protect
464     SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
465     (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}
466 vimartin 1.2 \end{center}
467 claudioc 1.16 \end{figure}
468    
469    
470     \clearpage
471    
472     The second piece of information is that we have performed closure
473     tests in CR5 using the alternative MC samples. These are exactly
474     the same tests as the one performed in Section~\ref{sec:CR5} on the
475     Powheg sample. As we argued previously, this is a very powerful
476     test of the background calculation.
477     The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
478     Concentrating on the relatively high statistics CR5A region, we see
479     for all \ttbar\ MC samples except scale up/scale down we obtain
480     closure within 1$\sigma$. The scale up/scale down tests closes
481     worse, only within 2$\sigma$. This again is evidence that the
482     scale up/scale down variations are in disagreement with the data.
483    
484     \input{hugeCR5Table.tex}
485    
486     Based on the two observations above, we argue that the MC
487     scale up/scale down variations are too extreme. We feel that
488     a reasonable choice would be to take one-half of the scale up/scale
489     down variations in our MC. This factor of 1/2 would then bring
490     the discrepancy in the closure test of
491     Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
492     from about 2$\sigma$ to about 1$\sigma$.
493    
494     Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
495     up/scale
496     down variations by a factor 2, we can see that a systematic
497     uncertainty
498 linacre 1.23 of 5\% covers the range of reasonable variations from different MC
499     models in SRA and SRB.
500     %The alternative MC models indicate that a 6\% systematic uncertainty
501     %covers the range of reasonable variations.
502     Note that this 5\% is also consistent with the level at which we are
503 vimartin 1.22 able to test the closure of the method with alternative samples in CR5 for the high statistics
504     regions (Table~\ref{tab:hugecr5yields}).
505     The range of reasonable variations obtained with the alternative
506     samples are consistent with the uncertainties assigned for
507     the \ttll\ background based on the closure of the background
508     predictions and data in CR4 and CR5.
509 claudioc 1.16
510    
511    
512    
513    
514     %\begin{table}[!h]
515     %\begin{center}
516     %{\footnotesize
517     %\begin{tabular}{l||c||c|c|c|c|c|c|c}
518     %\hline
519     %Sample & Powheg & Madgraph & Mass Up & Mass Down & Scale
520     %Up & Scale Down &
521     %Match Up & Match Down \\
522     %\hline
523     %\hline
524     %SRA & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$ \\
525     %\hline
526     %SRB & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$ \\
527     %\hline
528     %SRC & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$ \\
529     %\hline
530     %SRD & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$ \\
531     %\hline
532     %SRE & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$ \\
533     %\hline
534     %\end{tabular}}
535     %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
536     %\label{tab:ttdlalt}}
537     %\end{center}
538     %\end{table}
539    
540    
541    
542    
543     %\begin{table}[!h]
544     %\begin{center}
545     %{\footnotesize
546     %\begin{tabular}{l||c|c|c|c|c|c|c}
547     %\hline
548     %$N \sigma$ & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
549     %Match Up & Match Down \\
550     %\hline
551     %\hline
552     %SRA & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$ \\
553     %\hline
554     %SRB & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$ \\
555     %\hline
556     %SRC & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$ \\
557     %\hline
558     %SRD & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$ \\
559     %\hline
560     %SRE & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$ \\
561     %\hline
562     %\end{tabular}}
563     %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
564     %\label{tab:nsig}}
565     %\end{center}
566     %\end{table}
567    
568    
569     %\begin{table}[!h]
570     %\begin{center}
571     %\begin{tabular}{l||c|c|c|c}
572     %\hline
573     %Av. $\Delta$ Evt. & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
574     %& $\Delta$ Match \\
575     %\hline
576     %\hline
577     %SRA & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$) \\
578     %\hline
579     %SRB & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$) \\
580     %\hline
581     %SRC & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$) \\
582     %\hline
583     %SRD & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$) \\
584     %\hline
585     %SRE & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$) \\
586     %\hline
587     %\end{tabular}
588     %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
589     %\label{tab:devt}}
590     %\end{center}
591     %\end{table}
592    
593    
594 vimartin 1.2
595 claudioc 1.7 \clearpage
596 vimartin 1.2
597     %
598     %
599     %The methodology for determining the systematics on the background
600     %predictions has not changed with respect to the nominal analysis.
601     %Because the template method has not changed, the same
602     %systematic uncertainty is assessed on this prediction (32\%).
603     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
604     %The systematic uncertainty in the OF background prediction based on
605     %e$\mu$ events has changed, due to the different composition of this
606     %sample after vetoing events containing b-tagged jets.
607     %
608     %As in the nominal analysis, we do not require the e$\mu$ events
609     %to satisfy the dilepton mass requirement and apply a scaling factor K,
610     %extracted from MC, to account for the fraction of e$\mu$ events
611     %which satisfy the dilepton mass requirement. This procedure is used
612     %in order to improve the statistical precision of the OF background estimate.
613     %
614     %For the selection used in the nominal analysis,
615     %the e$\mu$ sample is completely dominated by $t\bar{t}$
616     %events, and we observe that K is statistically consistent with constant with
617     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
618     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
619     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
620     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
621     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
622     %Therefore, the sample composition changes
623     %as the \MET\ requirement is varied, and as a result K depends
624     %on the \MET\ requirement.
625     %
626     %We thus measure K in MC separately for each
627     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
628     %%The systematic uncertainty on K is determined separately for each \MET\
629     %%requirement by comparing the relative difference in K in data vs. MC.
630     %The values of K used are the MC predictions
631     %%and the total systematic uncertainty on the OF prediction
632     %%as shown in
633     %(Table \ref{fig:kvmettable}).
634     %The contribution to the total OF prediction systematic uncertainty
635     %from K is assessed from the ratio of K in data and MC,
636     %shown in Fig.~\ref{fig:kvmet} (right).
637     %The ratio is consistent with unity to roughly 17\%,
638     %so we take this value as the systematic from K.
639     %17\% added in quadrature with 7\% from
640     %the electron to muon efficieny ratio
641     %(as assessed in the inclusive analysis)
642     %yields a total systematic of $\sim$18\%
643     %which we round up to 20\%.
644     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
645     %so we take a systematic based on the statistical uncertainty
646     %of the MC prediction for K.
647     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
648     %%Although we cannot check the value of K in data for \MET\ $>$ 150
649     %%because we find no OF events inside the Z mass window for this \MET\
650     %%cut, the overall OF yields with no dilepton mass requirement
651     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
652     %
653     %
654     %%Below Old
655     %
656     %%In reevaluating the systematics on the OF prediction, however,
657     %%we observed a different behavior of K as a function of \MET\
658     %%as was seen in the inclusive analysis.
659     %
660     %%Recall that K is the ratio of the number of \emu\ events
661     %%inside the Z window to the total number of \emu\ events.
662     %%In the inclusive analysis, it is taken from \ttbar\ MC
663     %%and used to scale the inclusive \emu\ yield in data.
664     %%The yield scaled by K is then corrected for
665     %%the $e$ vs $\mu$ efficiency difference to obtain the
666     %%final OF prediction.
667     %
668     %%Based on the plot in figure \ref{fig:kvmet},
669     %%we choose to use a different
670     %%K for each \MET\ cut and assess a systematic uncertainty
671     %%on the OF prediction based on the difference between
672     %%K in data and MC.
673     %%The variation of K as a function of \MET\ is caused
674     %%by a change in sample composition with increasing \MET.
675     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
676     %%not negligible (as it was in the inclusive analysis)
677     %%because of the b veto. (See appendix \ref{app:kinemu}.)
678     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
679     %
680     %
681     %
682     %
683     %\begin{figure}[hbt]
684     % \begin{center}
685     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
686     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
687     % \caption{
688     % \label{fig:kvmet}\protect
689     % The left plot shows
690     % K as a function of \MET\ in MC (red) and data (black).
691     % The bin low edge corresponds to the \MET\ cut, and the
692     % bins are inclusive.
693     % The MC used is a sum of all SM MC used in the yield table of
694     % section \ref{sec:yields}.
695     % The right plot is the ratio of K in data to MC.
696     % The ratio is fit to a line whose slope is consistent with zero
697     % (the fit parameters are
698     % 0.9 $\pm$ 0.4 for the intercept and
699     % 0.001 $\pm$ 0.005 for the slope).
700     % }
701     % \end{center}
702     %\end{figure}
703     %
704     %
705     %
706     %\begin{table}[htb]
707     %\begin{center}
708     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
709     %The uncertainties shown are the total relative systematic used for the OF prediction,
710     %which is the systematic uncertainty from K added in quadrature with
711     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
712     %inclusive analysis.
713     %}
714     %\begin{tabular}{lcc}
715     %\hline
716     %\MET\ Cut & K & Relative Systematic \\
717     %\hline
718     %%the met zero row is used only for normalization of the money plot.
719     %%0 & 0.1 & \\
720     %30 & 0.12 & 20\% \\
721     %60 & 0.13 & 20\% \\
722     %80 & 0.12 & 20\% \\
723     %100 & 0.12 & 20\% \\
724     %150 & 0.09 & 25\% \\
725     %200 & 0.06 & 60\% \\
726     %\hline
727     %\end{tabular}
728     %\end{center}
729     %\end{table}
730 vimartin 1.4
731 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
732     This is the uncertainty associated with how well the isolated track
733     veto performance is modeled by the Monte Carlo. This uncertainty
734     only applies to the fraction of dilepton BG events that have
735     a second e/$\mu$ or a one prong $\tau \to h$, with
736 claudioc 1.15 $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is about 1/3, see
737     Table~\ref{tab:trueisotrk}.
738     The uncertainty for these events
739 vimartin 1.19 is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
740 vimartin 1.4
741 vimartin 1.13 \begin{table}[!h]
742     \begin{center}
743     {\footnotesize
744 vimartin 1.14 \begin{tabular}{l||c|c|c|c|c|c|c}
745 vimartin 1.13 \hline
746 vimartin 1.14 Sample & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
747 vimartin 1.13 \hline
748     \hline
749 vimartin 1.14 $\mu$ Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$ \\
750 vimartin 1.13 \hline
751     \hline
752 vimartin 1.14 e Frac. \ttdl\ with true iso. trk. & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$ \\
753 vimartin 1.13 \hline
754     \end{tabular}}
755     \caption{ Fraction of \ttdl\ events with a true isolated track.
756     \label{tab:trueisotrk}}
757     \end{center}
758     \end{table}
759    
760 claudioc 1.15 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
761     \label{sec:trkveto}
762    
763 vimartin 1.13
764 vimartin 1.4 In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
765     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
766     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
767 claudioc 1.15 we would need to apply a data-to-MC scale factor in order to correctly
768     predict the \ttll\ background.
769    
770     This study
771 vimartin 1.4 addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
772     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
773     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
774     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
775 claudioc 1.15
776 vimartin 1.4 Furthermore, we test the data and MC
777     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
778     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
779     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
780     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
781     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
782     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
783     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
784     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
785     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
786     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
787     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
788 vimartin 1.19 due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
789 vimartin 1.4
790 claudioc 1.15 The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
791 vimartin 1.4 All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
792     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
793     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
794     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
795     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
796     \met\ $<$ 30 GeV and 0 b-tagged events.
797     The specific criteria for tags and probes for electrons and muons are:
798    
799     %We study the isolated track veto efficiency in bins of \njets.
800     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
801     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
802    
803    
804     \begin{itemize}
805     \item{Electrons}
806    
807     \begin{itemize}
808     \item{Tag criteria}
809    
810     \begin{itemize}
811     \item Electron passes full analysis ID/iso selection
812 benhoob 1.12 \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
813     \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
814 vimartin 1.4 \end{itemize}
815    
816     \item{Probe criteria}
817     \begin{itemize}
818     \item Electron passes full analysis ID selection
819     \item \pt\ $>$ 30 GeV
820     \end{itemize}
821     \end{itemize}
822     \item{Muons}
823     \begin{itemize}
824     \item{Tag criteria}
825     \begin{itemize}
826     \item Muon passes full analysis ID/iso selection
827     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
828 benhoob 1.12 \item Matched to 1 of the 2 single muon triggers
829 vimartin 1.4 \begin{itemize}
830     \item \verb=HLT_IsoMu30_v*=
831     \item \verb=HLT_IsoMu30_eta2p1_v*=
832     \end{itemize}
833     \end{itemize}
834     \item{Probe criteria}
835     \begin{itemize}
836     \item Muon passes full analysis ID selection
837     \item \pt\ $>$ 30 GeV
838     \end{itemize}
839     \end{itemize}
840     \end{itemize}
841    
842     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
843     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
844     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
845 vimartin 1.19 In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
846 benhoob 1.12 efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
847 vimartin 1.4 For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
848     a data vs. MC discrepancy in the isolated track veto efficiency.
849    
850    
851     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
852     %This requirement is chosen because most of the tracks rejected by the isolated
853     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
854    
855     \begin{figure}[hbt]
856     \begin{center}
857 benhoob 1.12 \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
858     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
859     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
860     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
861     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
862     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
863     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
864     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
865     \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
866     \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
867 vimartin 1.4 \caption{
868     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
869     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
870     }
871     \end{center}
872     \end{figure}
873    
874     \clearpage
875    
876     \begin{table}[!ht]
877     \begin{center}
878 benhoob 1.10 \begin{tabular}{l|c|c|c|c|c}
879 benhoob 1.11
880     %Electrons:
881 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
882     %Total MC yields : 2497277
883     %Total DATA yields : 2649453
884 benhoob 1.11 %Muons:
885 benhoob 1.12 %Selection : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
886     %Total MC yields : 3749863
887 benhoob 1.11 %Total DATA yields : 4210022
888 benhoob 1.12 %Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1
889     %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
890 benhoob 1.11
891 vimartin 1.4 \hline
892     \hline
893 benhoob 1.11 e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
894 vimartin 1.4 \hline
895 benhoob 1.12 data & 0.098 $\pm$ 0.0002 & 0.036 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.006 $\pm$ 0.0000 \\
896     mc & 0.097 $\pm$ 0.0002 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 & 0.005 $\pm$ 0.0000 \\
897     data/mc & 1.00 $\pm$ 0.00 & 1.04 $\pm$ 0.00 & 1.04 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
898 benhoob 1.11
899 vimartin 1.4 \hline
900     \hline
901 benhoob 1.11 $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
902 vimartin 1.4 \hline
903 benhoob 1.9 data & 0.094 $\pm$ 0.0001 & 0.034 $\pm$ 0.0001 & 0.016 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
904 benhoob 1.12 mc & 0.093 $\pm$ 0.0001 & 0.033 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.009 $\pm$ 0.0000 & 0.006 $\pm$ 0.0000 \\
905     data/mc & 1.01 $\pm$ 0.00 & 1.03 $\pm$ 0.00 & 1.03 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
906 benhoob 1.11
907 vimartin 1.4 \hline
908     \hline
909 benhoob 1.11 e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
910 vimartin 1.4 \hline
911 benhoob 1.12 data & 0.110 $\pm$ 0.0005 & 0.044 $\pm$ 0.0003 & 0.022 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.009 $\pm$ 0.0002 \\
912     mc & 0.110 $\pm$ 0.0005 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
913     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.02 & 1.08 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
914 benhoob 1.11
915 vimartin 1.4 \hline
916     \hline
917 benhoob 1.11 $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
918 vimartin 1.4 \hline
919 benhoob 1.9 data & 0.106 $\pm$ 0.0004 & 0.043 $\pm$ 0.0003 & 0.023 $\pm$ 0.0002 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0001 \\
920 benhoob 1.12 mc & 0.106 $\pm$ 0.0004 & 0.042 $\pm$ 0.0003 & 0.021 $\pm$ 0.0002 & 0.013 $\pm$ 0.0002 & 0.009 $\pm$ 0.0001 \\
921     data/mc & 1.00 $\pm$ 0.01 & 1.04 $\pm$ 0.01 & 1.06 $\pm$ 0.01 & 1.08 $\pm$ 0.02 & 1.07 $\pm$ 0.02 \\
922 benhoob 1.11
923 vimartin 1.4 \hline
924     \hline
925 benhoob 1.11 e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
926 vimartin 1.4 \hline
927 benhoob 1.12 data & 0.117 $\pm$ 0.0012 & 0.050 $\pm$ 0.0008 & 0.026 $\pm$ 0.0006 & 0.017 $\pm$ 0.0005 & 0.012 $\pm$ 0.0004 \\
928     mc & 0.120 $\pm$ 0.0012 & 0.048 $\pm$ 0.0008 & 0.025 $\pm$ 0.0006 & 0.016 $\pm$ 0.0005 & 0.011 $\pm$ 0.0004 \\
929     data/mc & 0.97 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.05 $\pm$ 0.03 & 1.07 $\pm$ 0.04 & 1.07 $\pm$ 0.05 \\
930 benhoob 1.11
931 vimartin 1.4 \hline
932     \hline
933 benhoob 1.11 $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
934 vimartin 1.4 \hline
935 benhoob 1.9 data & 0.111 $\pm$ 0.0010 & 0.048 $\pm$ 0.0007 & 0.026 $\pm$ 0.0005 & 0.018 $\pm$ 0.0004 & 0.013 $\pm$ 0.0004 \\
936 benhoob 1.12 mc & 0.115 $\pm$ 0.0010 & 0.048 $\pm$ 0.0006 & 0.025 $\pm$ 0.0005 & 0.016 $\pm$ 0.0004 & 0.012 $\pm$ 0.0003 \\
937     data/mc & 0.97 $\pm$ 0.01 & 1.01 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.09 $\pm$ 0.04 & 1.09 $\pm$ 0.04 \\
938 benhoob 1.11
939 vimartin 1.4 \hline
940     \hline
941 benhoob 1.11 e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
942 vimartin 1.4 \hline
943 benhoob 1.12 data & 0.123 $\pm$ 0.0031 & 0.058 $\pm$ 0.0022 & 0.034 $\pm$ 0.0017 & 0.023 $\pm$ 0.0014 & 0.017 $\pm$ 0.0012 \\
944     mc & 0.131 $\pm$ 0.0030 & 0.055 $\pm$ 0.0020 & 0.030 $\pm$ 0.0015 & 0.020 $\pm$ 0.0013 & 0.015 $\pm$ 0.0011 \\
945     data/mc & 0.94 $\pm$ 0.03 & 1.06 $\pm$ 0.06 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 & 1.17 $\pm$ 0.12 \\
946 benhoob 1.11
947 vimartin 1.4 \hline
948     \hline
949 benhoob 1.11 $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
950 vimartin 1.4 \hline
951 benhoob 1.9 data & 0.121 $\pm$ 0.0025 & 0.055 $\pm$ 0.0018 & 0.033 $\pm$ 0.0014 & 0.022 $\pm$ 0.0011 & 0.017 $\pm$ 0.0010 \\
952 benhoob 1.12 mc & 0.120 $\pm$ 0.0024 & 0.052 $\pm$ 0.0016 & 0.029 $\pm$ 0.0012 & 0.019 $\pm$ 0.0010 & 0.014 $\pm$ 0.0009 \\
953     data/mc & 1.01 $\pm$ 0.03 & 1.06 $\pm$ 0.05 & 1.14 $\pm$ 0.07 & 1.14 $\pm$ 0.08 & 1.16 $\pm$ 0.10 \\
954 benhoob 1.11
955 vimartin 1.4 \hline
956     \hline
957 benhoob 1.11 e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
958 vimartin 1.4 \hline
959 benhoob 1.12 data & 0.129 $\pm$ 0.0080 & 0.070 $\pm$ 0.0061 & 0.044 $\pm$ 0.0049 & 0.031 $\pm$ 0.0042 & 0.021 $\pm$ 0.0034 \\
960     mc & 0.132 $\pm$ 0.0075 & 0.059 $\pm$ 0.0053 & 0.035 $\pm$ 0.0041 & 0.025 $\pm$ 0.0035 & 0.017 $\pm$ 0.0029 \\
961     data/mc & 0.98 $\pm$ 0.08 & 1.18 $\pm$ 0.15 & 1.26 $\pm$ 0.20 & 1.24 $\pm$ 0.24 & 1.18 $\pm$ 0.28 \\
962 benhoob 1.11
963 vimartin 1.4 \hline
964     \hline
965 benhoob 1.11 $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
966 vimartin 1.4 \hline
967 benhoob 1.9 data & 0.136 $\pm$ 0.0067 & 0.064 $\pm$ 0.0048 & 0.041 $\pm$ 0.0039 & 0.029 $\pm$ 0.0033 & 0.024 $\pm$ 0.0030 \\
968 benhoob 1.12 mc & 0.130 $\pm$ 0.0063 & 0.065 $\pm$ 0.0046 & 0.035 $\pm$ 0.0034 & 0.020 $\pm$ 0.0026 & 0.013 $\pm$ 0.0022 \\
969     data/mc & 1.04 $\pm$ 0.07 & 0.99 $\pm$ 0.10 & 1.19 $\pm$ 0.16 & 1.47 $\pm$ 0.25 & 1.81 $\pm$ 0.37 \\
970    
971 vimartin 1.4 \hline
972 benhoob 1.11 \hline
973 benhoob 1.9
974 vimartin 1.4 \end{tabular}
975 vimartin 1.19 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
976     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
977     jet multiplicity requirements.}
978 vimartin 1.4 \end{center}
979     \end{table}
980    
981 vimartin 1.22 \clearpage
982     \subsection{Summary of uncertainties}
983 linacre 1.24 \label{sec:bgunc-bottomline}
984    
985 linacre 1.25 The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
986 linacre 1.24
987 vimartin 1.22 \input{uncertainties_table.tex}
988 vimartin 1.4
989 linacre 1.24
990    
991    
992    
993 vimartin 1.4 %Figure.~\ref{fig:reliso} compares the relative track isolation
994     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
995     %muon for $\Z+4$ jet events and various \ttll\ components. The
996     %isolation distributions show significant differences, particularly
997     %between the leptons from a \W\ or \Z\ decay and the tracks arising
998     %from $\tau$ decays. As can also be seen in the figure, the \pt\
999     %distribution for the various categories of tracks is different, where
1000     %the decay products from $\tau$s are significantly softer. Since the
1001     %\pt\ enters the denominator of the isolation definition and hence
1002     %alters the isolation variable...
1003    
1004     %\begin{figure}[hbt]
1005     % \begin{center}
1006     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
1007     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
1008     % \caption{
1009     % \label{fig:reliso}%\protect
1010     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
1011     % Z+Jets and ttbar dilepton have similar isolation distributions
1012     % ttbar with leptonic and single prong taus tend to be less
1013     % isolated. The difference in the isolation can be attributed
1014     % to the different \pt\ distribution of the samples, since
1015     % $\tau$ decay products tend to be softer than leptons arising
1016     % from \W\ or \Z\ decays.}
1017     % \end{center}
1018     %\end{figure}
1019    
1020     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
1021    
1022    
1023     %BEGIN SECTION TO WRITE OUT
1024     %In detail, the procedure to correct the dilepton background is:
1025    
1026     %\begin{itemize}
1027     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
1028     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
1029     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
1030     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
1031     %the lepton \pt {\bf TODO: verify this in data and MC.}.
1032     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
1033     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
1034     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
1035     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
1036     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
1037     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
1038     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
1039     %\end{itemize}
1040     %END SECTION TO WRITE OUT
1041    
1042    
1043 claudioc 1.15 %{\bf fix me: What you have written in the next paragraph does not
1044     %explain how $\epsilon_{fake}$ is measured.
1045     %Why not measure $\epsilon_{fake}$ in the b-veto region?}
1046 vimartin 1.4
1047 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
1048     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
1049     %applying an additional scale factor for the single lepton background
1050     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
1051     %veto and after subtracting the \ttll\ component, corrected for the
1052     %isolation efficiency derived previously.
1053     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
1054     %isolated track in single lepton events is independent of \mt\, so the use of
1055     %an overall scale factor is justified to estimate the contribution in
1056     %the \mt\ tail.
1057     %
1058     %\begin{figure}[hbt]
1059     % \begin{center}
1060     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
1061     % \caption{
1062     % \label{fig:vetoeffcomp}%\protect
1063     % Efficiency for selecting an isolated track comparing
1064     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
1065     % data as a function of \mt. The
1066     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
1067     % \mt\, while the data ranges between the two. This behavior
1068     % is expected since the low \mt\ region is predominantly \ttlj, while the
1069     % high \mt\ region contains mostly \ttll\ events.}
1070     % \end{center}
1071     %\end{figure}
1072 vimartin 1.4
1073 vimartin 1.22
1074 claudioc 1.7
1075 claudioc 1.17 % THIS NEEDS TO BE WRITTEN