ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.4
Committed: Tue Oct 2 20:45:10 2012 UTC (12 years, 7 months ago) by vimartin
Content type: application/x-tex
Branch: MAIN
Changes since 1.3: +281 -0 lines
Log Message:
reorganization for 8TeV

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 vimartin 1.2 \subsection{Uncertainty on the \ttll\ Acceptance}
5 benhoob 1.1
6 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
7     derived from control samples in data. The uncertainty associated with
8     the theoretical modeling of the \ttbar\ production and decay is
9     estimated by comparing the background predictions obtained using
10     alternative MC samples. It should be noted that the full analysis is
11     performed with the alternative samples under consideration,
12     including the derivation of the various data-to-MC scale factors.
13     The variations considered are
14    
15     \begin{itemize}
16     \item Top mass: The alternative values for the top mass differ
17     from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
18     = 166.5~\GeV$.
19     \item Jet-parton matching scale: This corresponds to variations in the
20     scale at which the Matrix Element partons from Madgraph are matched
21     to Parton Shower partons from Pythia. The nominal value is
22     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
23     $x_q>40~\GeV$.
24     \item Renormalization and factorization scale: The alternative samples
25     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
26     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
27     \sum_{\mathrm{jets}} \pt^2$.
28     \item Alternative generators: Samples produced with different
29     generators include MC@NLO and Powheg (NLO generators) and
30     Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
31     hadronisation, while POWHEG uses Pythia6.
32     \item Modeling of taus: The alternative sample does not include
33     Tauola and is otherwise identical to the Powheg sample.
34     \item The PDF uncertainty is estimated following the PDF4LHC
35     recommendations[CITE]. The events are reweighted using alternative
36     PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
37     alternative eigenvector variations and the ``master equation''. In
38     addition, the NNPDF2.1 set with 100 replicas. The central value is
39     determined from the mean and the uncertainty is derived from the
40     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
41     alternative predictions and their uncertainties.
42     \end{itemize}
43 benhoob 1.1
44    
45     \begin{figure}[hbt]
46     \begin{center}
47 vimartin 1.2 \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
48 benhoob 1.1 \caption{
49 vimartin 1.2 \label{fig:ttllsyst}%\protect
50 vimartin 1.3 Comparison of the \ttll\ central prediction with those using
51     alternative MC samples. The blue band corresponds to the
52     total statistical error for all data and MC samples. The
53     alternative sample predictions are indicated by the
54     datapoints. The uncertainties on the alternative predictions
55     correspond to the uncorrelated statistical uncertainty from
56     the size of the alternative sample only.}
57 vimartin 1.2 \end{center}
58     \end{figure}
59    
60    
61    
62     %
63     %
64     %The methodology for determining the systematics on the background
65     %predictions has not changed with respect to the nominal analysis.
66     %Because the template method has not changed, the same
67     %systematic uncertainty is assessed on this prediction (32\%).
68     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
69     %The systematic uncertainty in the OF background prediction based on
70     %e$\mu$ events has changed, due to the different composition of this
71     %sample after vetoing events containing b-tagged jets.
72     %
73     %As in the nominal analysis, we do not require the e$\mu$ events
74     %to satisfy the dilepton mass requirement and apply a scaling factor K,
75     %extracted from MC, to account for the fraction of e$\mu$ events
76     %which satisfy the dilepton mass requirement. This procedure is used
77     %in order to improve the statistical precision of the OF background estimate.
78     %
79     %For the selection used in the nominal analysis,
80     %the e$\mu$ sample is completely dominated by $t\bar{t}$
81     %events, and we observe that K is statistically consistent with constant with
82     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
83     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
84     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
85     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
86     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
87     %Therefore, the sample composition changes
88     %as the \MET\ requirement is varied, and as a result K depends
89     %on the \MET\ requirement.
90     %
91     %We thus measure K in MC separately for each
92     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
93     %%The systematic uncertainty on K is determined separately for each \MET\
94     %%requirement by comparing the relative difference in K in data vs. MC.
95     %The values of K used are the MC predictions
96     %%and the total systematic uncertainty on the OF prediction
97     %%as shown in
98     %(Table \ref{fig:kvmettable}).
99     %The contribution to the total OF prediction systematic uncertainty
100     %from K is assessed from the ratio of K in data and MC,
101     %shown in Fig.~\ref{fig:kvmet} (right).
102     %The ratio is consistent with unity to roughly 17\%,
103     %so we take this value as the systematic from K.
104     %17\% added in quadrature with 7\% from
105     %the electron to muon efficieny ratio
106     %(as assessed in the inclusive analysis)
107     %yields a total systematic of $\sim$18\%
108     %which we round up to 20\%.
109     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
110     %so we take a systematic based on the statistical uncertainty
111     %of the MC prediction for K.
112     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
113     %%Although we cannot check the value of K in data for \MET\ $>$ 150
114     %%because we find no OF events inside the Z mass window for this \MET\
115     %%cut, the overall OF yields with no dilepton mass requirement
116     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
117     %
118     %
119     %%Below Old
120     %
121     %%In reevaluating the systematics on the OF prediction, however,
122     %%we observed a different behavior of K as a function of \MET\
123     %%as was seen in the inclusive analysis.
124     %
125     %%Recall that K is the ratio of the number of \emu\ events
126     %%inside the Z window to the total number of \emu\ events.
127     %%In the inclusive analysis, it is taken from \ttbar\ MC
128     %%and used to scale the inclusive \emu\ yield in data.
129     %%The yield scaled by K is then corrected for
130     %%the $e$ vs $\mu$ efficiency difference to obtain the
131     %%final OF prediction.
132     %
133     %%Based on the plot in figure \ref{fig:kvmet},
134     %%we choose to use a different
135     %%K for each \MET\ cut and assess a systematic uncertainty
136     %%on the OF prediction based on the difference between
137     %%K in data and MC.
138     %%The variation of K as a function of \MET\ is caused
139     %%by a change in sample composition with increasing \MET.
140     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
141     %%not negligible (as it was in the inclusive analysis)
142     %%because of the b veto. (See appendix \ref{app:kinemu}.)
143     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
144     %
145     %
146     %
147     %
148     %\begin{figure}[hbt]
149     % \begin{center}
150     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
151     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
152     % \caption{
153     % \label{fig:kvmet}\protect
154     % The left plot shows
155     % K as a function of \MET\ in MC (red) and data (black).
156     % The bin low edge corresponds to the \MET\ cut, and the
157     % bins are inclusive.
158     % The MC used is a sum of all SM MC used in the yield table of
159     % section \ref{sec:yields}.
160     % The right plot is the ratio of K in data to MC.
161     % The ratio is fit to a line whose slope is consistent with zero
162     % (the fit parameters are
163     % 0.9 $\pm$ 0.4 for the intercept and
164     % 0.001 $\pm$ 0.005 for the slope).
165     % }
166     % \end{center}
167     %\end{figure}
168     %
169     %
170     %
171     %\begin{table}[htb]
172     %\begin{center}
173     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
174     %The uncertainties shown are the total relative systematic used for the OF prediction,
175     %which is the systematic uncertainty from K added in quadrature with
176     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
177     %inclusive analysis.
178     %}
179     %\begin{tabular}{lcc}
180     %\hline
181     %\MET\ Cut & K & Relative Systematic \\
182     %\hline
183     %%the met zero row is used only for normalization of the money plot.
184     %%0 & 0.1 & \\
185     %30 & 0.12 & 20\% \\
186     %60 & 0.13 & 20\% \\
187     %80 & 0.12 & 20\% \\
188     %100 & 0.12 & 20\% \\
189     %150 & 0.09 & 25\% \\
190     %200 & 0.06 & 60\% \\
191     %\hline
192     %\end{tabular}
193     %\end{center}
194     %\end{table}
195 vimartin 1.4
196    
197     \subsubsection{Isolated Track Veto: Tag and Probe Studies}
198    
199     In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
200     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
201     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
202     we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
203     addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
204     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
205     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
206     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
207     Furthermore, we test the data and MC
208     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
209     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
210     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
211     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
212     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
213     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
214     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
215     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
216     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
217     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
218     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
219     due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
220    
221     The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
222     All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
223     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
224     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
225     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
226     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
227     \met\ $<$ 30 GeV and 0 b-tagged events.
228     The specific criteria for tags and probes for electrons and muons are:
229    
230     %We study the isolated track veto efficiency in bins of \njets.
231     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
232     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
233    
234    
235     \begin{itemize}
236     \item{Electrons}
237    
238     \begin{itemize}
239     \item{Tag criteria}
240    
241     \begin{itemize}
242     \item Electron passes full analysis ID/iso selection
243     \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
244    
245     \item Matched to 1 of the 2 electron tag-and-probe triggers
246     \begin{itemize}
247     \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
248     \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
249     \end{itemize}
250     \end{itemize}
251    
252     \item{Probe criteria}
253     \begin{itemize}
254     \item Electron passes full analysis ID selection
255     \item \pt\ $>$ 30 GeV
256     \end{itemize}
257     \end{itemize}
258     \item{Muons}
259     \begin{itemize}
260     \item{Tag criteria}
261     \begin{itemize}
262     \item Muon passes full analysis ID/iso selection
263     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
264     \item Matched to 1 of the 2 electron tag-and-probe triggers
265     \begin{itemize}
266     \item \verb=HLT_IsoMu30_v*=
267     \item \verb=HLT_IsoMu30_eta2p1_v*=
268     \end{itemize}
269     \end{itemize}
270     \item{Probe criteria}
271     \begin{itemize}
272     \item Muon passes full analysis ID selection
273     \item \pt\ $>$ 30 GeV
274     \end{itemize}
275     \end{itemize}
276     \end{itemize}
277    
278     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
279     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
280     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
281     In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
282     efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
283     For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
284     a data vs. MC discrepancy in the isolated track veto efficiency.
285    
286    
287     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
288     %This requirement is chosen because most of the tracks rejected by the isolated
289     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
290    
291     \begin{figure}[hbt]
292     \begin{center}
293     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
294     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
295     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
296     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
297     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
298     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
299     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
300     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
301     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
302     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
303     \caption{
304     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
305     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
306     }
307     \end{center}
308     \end{figure}
309    
310     \clearpage
311    
312     \begin{table}[!ht]
313     \begin{center}
314     \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
315     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
316     jet multiplicity requirements.}
317     \begin{tabular}{l|l|c|c|c|c|c}
318     \hline
319     \hline
320     e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
321     \hline
322     data & 0.088 $\pm$ 0.0003 & 0.030 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.007 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\
323     mc & 0.087 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0001 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\
324     data/mc & 1.01 $\pm$ 0.00 & 0.99 $\pm$ 0.01 & 0.97 $\pm$ 0.01 & 0.95 $\pm$ 0.01 & 0.93 $\pm$ 0.01 \\
325     \hline
326     \hline
327     $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
328     \hline
329     data & 0.087 $\pm$ 0.0002 & 0.031 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.008 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\
330     mc & 0.085 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0000 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\
331     data/mc & 1.02 $\pm$ 0.00 & 1.06 $\pm$ 0.00 & 1.06 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
332     \hline
333     \hline
334     e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
335     \hline
336     data & 0.099 $\pm$ 0.0008 & 0.038 $\pm$ 0.0005 & 0.019 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 & 0.008 $\pm$ 0.0002 \\
337     mc & 0.100 $\pm$ 0.0004 & 0.038 $\pm$ 0.0003 & 0.019 $\pm$ 0.0002 & 0.012 $\pm$ 0.0002 & 0.008 $\pm$ 0.0001 \\
338     data/mc & 0.99 $\pm$ 0.01 & 1.00 $\pm$ 0.02 & 0.99 $\pm$ 0.02 & 0.98 $\pm$ 0.03 & 0.97 $\pm$ 0.03 \\
339     \hline
340     \hline
341     $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
342     \hline
343     data & 0.100 $\pm$ 0.0006 & 0.041 $\pm$ 0.0004 & 0.022 $\pm$ 0.0003 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0002 \\
344     mc & 0.099 $\pm$ 0.0004 & 0.039 $\pm$ 0.0002 & 0.020 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 \\
345     data/mc & 1.01 $\pm$ 0.01 & 1.05 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.06 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
346     \hline
347     \hline
348     e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
349     \hline
350     data & 0.105 $\pm$ 0.0020 & 0.042 $\pm$ 0.0013 & 0.021 $\pm$ 0.0009 & 0.013 $\pm$ 0.0007 & 0.009 $\pm$ 0.0006 \\
351     mc & 0.109 $\pm$ 0.0011 & 0.043 $\pm$ 0.0007 & 0.021 $\pm$ 0.0005 & 0.013 $\pm$ 0.0004 & 0.009 $\pm$ 0.0003 \\
352     data/mc & 0.96 $\pm$ 0.02 & 0.97 $\pm$ 0.03 & 1.00 $\pm$ 0.05 & 1.01 $\pm$ 0.06 & 0.97 $\pm$ 0.08 \\
353     \hline
354     \hline
355     $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
356     \hline
357     data & 0.106 $\pm$ 0.0016 & 0.045 $\pm$ 0.0011 & 0.025 $\pm$ 0.0008 & 0.016 $\pm$ 0.0007 & 0.012 $\pm$ 0.0006 \\
358     mc & 0.108 $\pm$ 0.0009 & 0.044 $\pm$ 0.0006 & 0.024 $\pm$ 0.0004 & 0.016 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 \\
359     data/mc & 0.98 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.04 $\pm$ 0.04 & 1.04 $\pm$ 0.05 & 1.06 $\pm$ 0.06 \\
360     \hline
361     \hline
362     e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
363     \hline
364     data & 0.117 $\pm$ 0.0055 & 0.051 $\pm$ 0.0038 & 0.029 $\pm$ 0.0029 & 0.018 $\pm$ 0.0023 & 0.012 $\pm$ 0.0019 \\
365     mc & 0.120 $\pm$ 0.0031 & 0.052 $\pm$ 0.0021 & 0.027 $\pm$ 0.0015 & 0.018 $\pm$ 0.0012 & 0.013 $\pm$ 0.0011 \\
366     data/mc & 0.97 $\pm$ 0.05 & 0.99 $\pm$ 0.08 & 1.10 $\pm$ 0.13 & 1.03 $\pm$ 0.15 & 0.91 $\pm$ 0.16 \\
367     \hline
368     \hline
369     $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
370     \hline
371     data & 0.111 $\pm$ 0.0044 & 0.050 $\pm$ 0.0030 & 0.029 $\pm$ 0.0024 & 0.019 $\pm$ 0.0019 & 0.014 $\pm$ 0.0017 \\
372     mc & 0.115 $\pm$ 0.0025 & 0.051 $\pm$ 0.0017 & 0.030 $\pm$ 0.0013 & 0.020 $\pm$ 0.0011 & 0.015 $\pm$ 0.0009 \\
373     data/mc & 0.97 $\pm$ 0.04 & 0.97 $\pm$ 0.07 & 0.95 $\pm$ 0.09 & 0.97 $\pm$ 0.11 & 0.99 $\pm$ 0.13 \\
374     \hline
375     \hline
376     e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
377     \hline
378     data & 0.113 $\pm$ 0.0148 & 0.048 $\pm$ 0.0100 & 0.033 $\pm$ 0.0083 & 0.020 $\pm$ 0.0065 & 0.017 $\pm$ 0.0062 \\
379     mc & 0.146 $\pm$ 0.0092 & 0.064 $\pm$ 0.0064 & 0.034 $\pm$ 0.0048 & 0.024 $\pm$ 0.0040 & 0.021 $\pm$ 0.0037 \\
380     data/mc & 0.78 $\pm$ 0.11 & 0.74 $\pm$ 0.17 & 0.96 $\pm$ 0.28 & 0.82 $\pm$ 0.30 & 0.85 $\pm$ 0.34 \\
381     \hline
382     \hline
383     $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
384     \hline
385     data & 0.130 $\pm$ 0.0128 & 0.052 $\pm$ 0.0085 & 0.028 $\pm$ 0.0063 & 0.019 $\pm$ 0.0052 & 0.019 $\pm$ 0.0052 \\
386     mc & 0.105 $\pm$ 0.0064 & 0.045 $\pm$ 0.0043 & 0.027 $\pm$ 0.0034 & 0.019 $\pm$ 0.0028 & 0.014 $\pm$ 0.0024 \\
387     data/mc & 1.23 $\pm$ 0.14 & 1.18 $\pm$ 0.22 & 1.03 $\pm$ 0.27 & 1.01 $\pm$ 0.32 & 1.37 $\pm$ 0.45 \\
388     \hline
389     \hline
390    
391     \end{tabular}
392     \end{center}
393     \end{table}
394    
395    
396    
397     %Figure.~\ref{fig:reliso} compares the relative track isolation
398     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
399     %muon for $\Z+4$ jet events and various \ttll\ components. The
400     %isolation distributions show significant differences, particularly
401     %between the leptons from a \W\ or \Z\ decay and the tracks arising
402     %from $\tau$ decays. As can also be seen in the figure, the \pt\
403     %distribution for the various categories of tracks is different, where
404     %the decay products from $\tau$s are significantly softer. Since the
405     %\pt\ enters the denominator of the isolation definition and hence
406     %alters the isolation variable...
407    
408     %\begin{figure}[hbt]
409     % \begin{center}
410     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
411     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
412     % \caption{
413     % \label{fig:reliso}%\protect
414     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
415     % Z+Jets and ttbar dilepton have similar isolation distributions
416     % ttbar with leptonic and single prong taus tend to be less
417     % isolated. The difference in the isolation can be attributed
418     % to the different \pt\ distribution of the samples, since
419     % $\tau$ decay products tend to be softer than leptons arising
420     % from \W\ or \Z\ decays.}
421     % \end{center}
422     %\end{figure}
423    
424     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
425    
426    
427     %BEGIN SECTION TO WRITE OUT
428     %In detail, the procedure to correct the dilepton background is:
429    
430     %\begin{itemize}
431     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
432     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
433     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
434     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
435     %the lepton \pt {\bf TODO: verify this in data and MC.}.
436     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
437     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
438     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
439     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
440     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
441     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
442     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
443     %\end{itemize}
444     %END SECTION TO WRITE OUT
445    
446    
447     {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
448     Why not measure $\epsilon_{fake}$ in the b-veto region?}
449    
450     A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
451     possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
452     applying an additional scale factor for the single lepton background
453     alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
454     veto and after subtracting the \ttll\ component, corrected for the
455     isolation efficiency derived previously.
456     As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
457     isolated track in single lepton events is independent of \mt\, so the use of
458     an overall scale factor is justified to estimate the contribution in
459     the \mt\ tail.
460    
461     \begin{figure}[hbt]
462     \begin{center}
463     \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
464     \caption{
465     \label{fig:vetoeffcomp}%\protect
466     Efficiency for selecting an isolated track comparing
467     single lepton \ttlj\ and dilepton \ttll\ events in MC and
468     data as a function of \mt. The
469     efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
470     \mt\, while the data ranges between the two. This behavior
471     is expected since the low \mt\ region is predominantly \ttlj, while the
472     high \mt\ region contains mostly \ttll\ events.}
473     \end{center}
474     \end{figure}
475