ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.6
Committed: Thu Oct 4 20:16:07 2012 UTC (12 years, 7 months ago) by burkett
Content type: application/x-tex
Branch: MAIN
Changes since 1.5: +5 -5 lines
Log Message:
fill in some XX's

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 vimartin 1.5 [ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\
5     ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL
6     REGIONS \\
7     LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES]
8    
9 vimartin 1.2 \subsection{Uncertainty on the \ttll\ Acceptance}
10 benhoob 1.1
11 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
12     derived from control samples in data. The uncertainty associated with
13     the theoretical modeling of the \ttbar\ production and decay is
14     estimated by comparing the background predictions obtained using
15     alternative MC samples. It should be noted that the full analysis is
16     performed with the alternative samples under consideration,
17     including the derivation of the various data-to-MC scale factors.
18     The variations considered are
19    
20     \begin{itemize}
21     \item Top mass: The alternative values for the top mass differ
22     from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
23     = 166.5~\GeV$.
24     \item Jet-parton matching scale: This corresponds to variations in the
25     scale at which the Matrix Element partons from Madgraph are matched
26     to Parton Shower partons from Pythia. The nominal value is
27     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
28     $x_q>40~\GeV$.
29     \item Renormalization and factorization scale: The alternative samples
30     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
31     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
32     \sum_{\mathrm{jets}} \pt^2$.
33     \item Alternative generators: Samples produced with different
34     generators include MC@NLO and Powheg (NLO generators) and
35     Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
36     hadronisation, while POWHEG uses Pythia6.
37     \item Modeling of taus: The alternative sample does not include
38 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
39     This effect was studied earlier using 7~TeV samples and found to be negligible.
40 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
41     recommendations[CITE]. The events are reweighted using alternative
42     PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
43     alternative eigenvector variations and the ``master equation''. In
44     addition, the NNPDF2.1 set with 100 replicas. The central value is
45     determined from the mean and the uncertainty is derived from the
46     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
47 burkett 1.6 alternative predictions and their uncertainties.
48     This effect was studied earlier using 7~TeV samples and found to be negligible.
49     \end{itemize}
50 benhoob 1.1
51    
52     \begin{figure}[hbt]
53     \begin{center}
54 vimartin 1.2 \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
55 benhoob 1.1 \caption{
56 vimartin 1.2 \label{fig:ttllsyst}%\protect
57 vimartin 1.3 Comparison of the \ttll\ central prediction with those using
58     alternative MC samples. The blue band corresponds to the
59     total statistical error for all data and MC samples. The
60     alternative sample predictions are indicated by the
61     datapoints. The uncertainties on the alternative predictions
62     correspond to the uncorrelated statistical uncertainty from
63     the size of the alternative sample only.}
64 vimartin 1.2 \end{center}
65     \end{figure}
66    
67    
68    
69     %
70     %
71     %The methodology for determining the systematics on the background
72     %predictions has not changed with respect to the nominal analysis.
73     %Because the template method has not changed, the same
74     %systematic uncertainty is assessed on this prediction (32\%).
75     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
76     %The systematic uncertainty in the OF background prediction based on
77     %e$\mu$ events has changed, due to the different composition of this
78     %sample after vetoing events containing b-tagged jets.
79     %
80     %As in the nominal analysis, we do not require the e$\mu$ events
81     %to satisfy the dilepton mass requirement and apply a scaling factor K,
82     %extracted from MC, to account for the fraction of e$\mu$ events
83     %which satisfy the dilepton mass requirement. This procedure is used
84     %in order to improve the statistical precision of the OF background estimate.
85     %
86     %For the selection used in the nominal analysis,
87     %the e$\mu$ sample is completely dominated by $t\bar{t}$
88     %events, and we observe that K is statistically consistent with constant with
89     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
90     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
91     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
92     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
93     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
94     %Therefore, the sample composition changes
95     %as the \MET\ requirement is varied, and as a result K depends
96     %on the \MET\ requirement.
97     %
98     %We thus measure K in MC separately for each
99     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
100     %%The systematic uncertainty on K is determined separately for each \MET\
101     %%requirement by comparing the relative difference in K in data vs. MC.
102     %The values of K used are the MC predictions
103     %%and the total systematic uncertainty on the OF prediction
104     %%as shown in
105     %(Table \ref{fig:kvmettable}).
106     %The contribution to the total OF prediction systematic uncertainty
107     %from K is assessed from the ratio of K in data and MC,
108     %shown in Fig.~\ref{fig:kvmet} (right).
109     %The ratio is consistent with unity to roughly 17\%,
110     %so we take this value as the systematic from K.
111     %17\% added in quadrature with 7\% from
112     %the electron to muon efficieny ratio
113     %(as assessed in the inclusive analysis)
114     %yields a total systematic of $\sim$18\%
115     %which we round up to 20\%.
116     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
117     %so we take a systematic based on the statistical uncertainty
118     %of the MC prediction for K.
119     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
120     %%Although we cannot check the value of K in data for \MET\ $>$ 150
121     %%because we find no OF events inside the Z mass window for this \MET\
122     %%cut, the overall OF yields with no dilepton mass requirement
123     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
124     %
125     %
126     %%Below Old
127     %
128     %%In reevaluating the systematics on the OF prediction, however,
129     %%we observed a different behavior of K as a function of \MET\
130     %%as was seen in the inclusive analysis.
131     %
132     %%Recall that K is the ratio of the number of \emu\ events
133     %%inside the Z window to the total number of \emu\ events.
134     %%In the inclusive analysis, it is taken from \ttbar\ MC
135     %%and used to scale the inclusive \emu\ yield in data.
136     %%The yield scaled by K is then corrected for
137     %%the $e$ vs $\mu$ efficiency difference to obtain the
138     %%final OF prediction.
139     %
140     %%Based on the plot in figure \ref{fig:kvmet},
141     %%we choose to use a different
142     %%K for each \MET\ cut and assess a systematic uncertainty
143     %%on the OF prediction based on the difference between
144     %%K in data and MC.
145     %%The variation of K as a function of \MET\ is caused
146     %%by a change in sample composition with increasing \MET.
147     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
148     %%not negligible (as it was in the inclusive analysis)
149     %%because of the b veto. (See appendix \ref{app:kinemu}.)
150     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
151     %
152     %
153     %
154     %
155     %\begin{figure}[hbt]
156     % \begin{center}
157     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
158     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
159     % \caption{
160     % \label{fig:kvmet}\protect
161     % The left plot shows
162     % K as a function of \MET\ in MC (red) and data (black).
163     % The bin low edge corresponds to the \MET\ cut, and the
164     % bins are inclusive.
165     % The MC used is a sum of all SM MC used in the yield table of
166     % section \ref{sec:yields}.
167     % The right plot is the ratio of K in data to MC.
168     % The ratio is fit to a line whose slope is consistent with zero
169     % (the fit parameters are
170     % 0.9 $\pm$ 0.4 for the intercept and
171     % 0.001 $\pm$ 0.005 for the slope).
172     % }
173     % \end{center}
174     %\end{figure}
175     %
176     %
177     %
178     %\begin{table}[htb]
179     %\begin{center}
180     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
181     %The uncertainties shown are the total relative systematic used for the OF prediction,
182     %which is the systematic uncertainty from K added in quadrature with
183     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
184     %inclusive analysis.
185     %}
186     %\begin{tabular}{lcc}
187     %\hline
188     %\MET\ Cut & K & Relative Systematic \\
189     %\hline
190     %%the met zero row is used only for normalization of the money plot.
191     %%0 & 0.1 & \\
192     %30 & 0.12 & 20\% \\
193     %60 & 0.13 & 20\% \\
194     %80 & 0.12 & 20\% \\
195     %100 & 0.12 & 20\% \\
196     %150 & 0.09 & 25\% \\
197     %200 & 0.06 & 60\% \\
198     %\hline
199     %\end{tabular}
200     %\end{center}
201     %\end{table}
202 vimartin 1.4
203    
204 vimartin 1.5 \subsection{Isolated Track Veto: Tag and Probe Studies}
205    
206     [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
207     ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
208 vimartin 1.4
209     In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
210     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
211     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
212     we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
213     addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
214     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
215     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
216     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
217     Furthermore, we test the data and MC
218     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
219     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
220     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
221     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
222     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
223     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
224     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
225     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
226     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
227     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
228     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
229     due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
230    
231     The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
232     All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
233     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
234     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
235     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
236     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
237     \met\ $<$ 30 GeV and 0 b-tagged events.
238     The specific criteria for tags and probes for electrons and muons are:
239    
240     %We study the isolated track veto efficiency in bins of \njets.
241     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
242     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
243    
244    
245     \begin{itemize}
246     \item{Electrons}
247    
248     \begin{itemize}
249     \item{Tag criteria}
250    
251     \begin{itemize}
252     \item Electron passes full analysis ID/iso selection
253     \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
254    
255     \item Matched to 1 of the 2 electron tag-and-probe triggers
256     \begin{itemize}
257     \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
258     \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
259     \end{itemize}
260     \end{itemize}
261    
262     \item{Probe criteria}
263     \begin{itemize}
264     \item Electron passes full analysis ID selection
265     \item \pt\ $>$ 30 GeV
266     \end{itemize}
267     \end{itemize}
268     \item{Muons}
269     \begin{itemize}
270     \item{Tag criteria}
271     \begin{itemize}
272     \item Muon passes full analysis ID/iso selection
273     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
274     \item Matched to 1 of the 2 electron tag-and-probe triggers
275     \begin{itemize}
276     \item \verb=HLT_IsoMu30_v*=
277     \item \verb=HLT_IsoMu30_eta2p1_v*=
278     \end{itemize}
279     \end{itemize}
280     \item{Probe criteria}
281     \begin{itemize}
282     \item Muon passes full analysis ID selection
283     \item \pt\ $>$ 30 GeV
284     \end{itemize}
285     \end{itemize}
286     \end{itemize}
287    
288     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
289     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
290     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
291     In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
292     efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
293     For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
294     a data vs. MC discrepancy in the isolated track veto efficiency.
295    
296    
297     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
298     %This requirement is chosen because most of the tracks rejected by the isolated
299     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
300    
301     \begin{figure}[hbt]
302     \begin{center}
303     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
304     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
305     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
306     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
307     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
308     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
309     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
310     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
311     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
312     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
313     \caption{
314     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
315     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
316     }
317     \end{center}
318     \end{figure}
319    
320     \clearpage
321    
322     \begin{table}[!ht]
323     \begin{center}
324     \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
325     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
326     jet multiplicity requirements.}
327     \begin{tabular}{l|l|c|c|c|c|c}
328     \hline
329     \hline
330     e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
331     \hline
332     data & 0.088 $\pm$ 0.0003 & 0.030 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.007 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\
333     mc & 0.087 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0001 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\
334     data/mc & 1.01 $\pm$ 0.00 & 0.99 $\pm$ 0.01 & 0.97 $\pm$ 0.01 & 0.95 $\pm$ 0.01 & 0.93 $\pm$ 0.01 \\
335     \hline
336     \hline
337     $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
338     \hline
339     data & 0.087 $\pm$ 0.0002 & 0.031 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.008 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\
340     mc & 0.085 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0000 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\
341     data/mc & 1.02 $\pm$ 0.00 & 1.06 $\pm$ 0.00 & 1.06 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
342     \hline
343     \hline
344     e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
345     \hline
346     data & 0.099 $\pm$ 0.0008 & 0.038 $\pm$ 0.0005 & 0.019 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 & 0.008 $\pm$ 0.0002 \\
347     mc & 0.100 $\pm$ 0.0004 & 0.038 $\pm$ 0.0003 & 0.019 $\pm$ 0.0002 & 0.012 $\pm$ 0.0002 & 0.008 $\pm$ 0.0001 \\
348     data/mc & 0.99 $\pm$ 0.01 & 1.00 $\pm$ 0.02 & 0.99 $\pm$ 0.02 & 0.98 $\pm$ 0.03 & 0.97 $\pm$ 0.03 \\
349     \hline
350     \hline
351     $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
352     \hline
353     data & 0.100 $\pm$ 0.0006 & 0.041 $\pm$ 0.0004 & 0.022 $\pm$ 0.0003 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0002 \\
354     mc & 0.099 $\pm$ 0.0004 & 0.039 $\pm$ 0.0002 & 0.020 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 \\
355     data/mc & 1.01 $\pm$ 0.01 & 1.05 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.06 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
356     \hline
357     \hline
358     e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
359     \hline
360     data & 0.105 $\pm$ 0.0020 & 0.042 $\pm$ 0.0013 & 0.021 $\pm$ 0.0009 & 0.013 $\pm$ 0.0007 & 0.009 $\pm$ 0.0006 \\
361     mc & 0.109 $\pm$ 0.0011 & 0.043 $\pm$ 0.0007 & 0.021 $\pm$ 0.0005 & 0.013 $\pm$ 0.0004 & 0.009 $\pm$ 0.0003 \\
362     data/mc & 0.96 $\pm$ 0.02 & 0.97 $\pm$ 0.03 & 1.00 $\pm$ 0.05 & 1.01 $\pm$ 0.06 & 0.97 $\pm$ 0.08 \\
363     \hline
364     \hline
365     $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
366     \hline
367     data & 0.106 $\pm$ 0.0016 & 0.045 $\pm$ 0.0011 & 0.025 $\pm$ 0.0008 & 0.016 $\pm$ 0.0007 & 0.012 $\pm$ 0.0006 \\
368     mc & 0.108 $\pm$ 0.0009 & 0.044 $\pm$ 0.0006 & 0.024 $\pm$ 0.0004 & 0.016 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 \\
369     data/mc & 0.98 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.04 $\pm$ 0.04 & 1.04 $\pm$ 0.05 & 1.06 $\pm$ 0.06 \\
370     \hline
371     \hline
372     e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
373     \hline
374     data & 0.117 $\pm$ 0.0055 & 0.051 $\pm$ 0.0038 & 0.029 $\pm$ 0.0029 & 0.018 $\pm$ 0.0023 & 0.012 $\pm$ 0.0019 \\
375     mc & 0.120 $\pm$ 0.0031 & 0.052 $\pm$ 0.0021 & 0.027 $\pm$ 0.0015 & 0.018 $\pm$ 0.0012 & 0.013 $\pm$ 0.0011 \\
376     data/mc & 0.97 $\pm$ 0.05 & 0.99 $\pm$ 0.08 & 1.10 $\pm$ 0.13 & 1.03 $\pm$ 0.15 & 0.91 $\pm$ 0.16 \\
377     \hline
378     \hline
379     $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
380     \hline
381     data & 0.111 $\pm$ 0.0044 & 0.050 $\pm$ 0.0030 & 0.029 $\pm$ 0.0024 & 0.019 $\pm$ 0.0019 & 0.014 $\pm$ 0.0017 \\
382     mc & 0.115 $\pm$ 0.0025 & 0.051 $\pm$ 0.0017 & 0.030 $\pm$ 0.0013 & 0.020 $\pm$ 0.0011 & 0.015 $\pm$ 0.0009 \\
383     data/mc & 0.97 $\pm$ 0.04 & 0.97 $\pm$ 0.07 & 0.95 $\pm$ 0.09 & 0.97 $\pm$ 0.11 & 0.99 $\pm$ 0.13 \\
384     \hline
385     \hline
386     e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
387     \hline
388     data & 0.113 $\pm$ 0.0148 & 0.048 $\pm$ 0.0100 & 0.033 $\pm$ 0.0083 & 0.020 $\pm$ 0.0065 & 0.017 $\pm$ 0.0062 \\
389     mc & 0.146 $\pm$ 0.0092 & 0.064 $\pm$ 0.0064 & 0.034 $\pm$ 0.0048 & 0.024 $\pm$ 0.0040 & 0.021 $\pm$ 0.0037 \\
390     data/mc & 0.78 $\pm$ 0.11 & 0.74 $\pm$ 0.17 & 0.96 $\pm$ 0.28 & 0.82 $\pm$ 0.30 & 0.85 $\pm$ 0.34 \\
391     \hline
392     \hline
393     $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
394     \hline
395     data & 0.130 $\pm$ 0.0128 & 0.052 $\pm$ 0.0085 & 0.028 $\pm$ 0.0063 & 0.019 $\pm$ 0.0052 & 0.019 $\pm$ 0.0052 \\
396     mc & 0.105 $\pm$ 0.0064 & 0.045 $\pm$ 0.0043 & 0.027 $\pm$ 0.0034 & 0.019 $\pm$ 0.0028 & 0.014 $\pm$ 0.0024 \\
397     data/mc & 1.23 $\pm$ 0.14 & 1.18 $\pm$ 0.22 & 1.03 $\pm$ 0.27 & 1.01 $\pm$ 0.32 & 1.37 $\pm$ 0.45 \\
398     \hline
399     \hline
400    
401     \end{tabular}
402     \end{center}
403     \end{table}
404    
405    
406    
407     %Figure.~\ref{fig:reliso} compares the relative track isolation
408     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
409     %muon for $\Z+4$ jet events and various \ttll\ components. The
410     %isolation distributions show significant differences, particularly
411     %between the leptons from a \W\ or \Z\ decay and the tracks arising
412     %from $\tau$ decays. As can also be seen in the figure, the \pt\
413     %distribution for the various categories of tracks is different, where
414     %the decay products from $\tau$s are significantly softer. Since the
415     %\pt\ enters the denominator of the isolation definition and hence
416     %alters the isolation variable...
417    
418     %\begin{figure}[hbt]
419     % \begin{center}
420     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
421     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
422     % \caption{
423     % \label{fig:reliso}%\protect
424     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
425     % Z+Jets and ttbar dilepton have similar isolation distributions
426     % ttbar with leptonic and single prong taus tend to be less
427     % isolated. The difference in the isolation can be attributed
428     % to the different \pt\ distribution of the samples, since
429     % $\tau$ decay products tend to be softer than leptons arising
430     % from \W\ or \Z\ decays.}
431     % \end{center}
432     %\end{figure}
433    
434     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
435    
436    
437     %BEGIN SECTION TO WRITE OUT
438     %In detail, the procedure to correct the dilepton background is:
439    
440     %\begin{itemize}
441     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
442     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
443     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
444     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
445     %the lepton \pt {\bf TODO: verify this in data and MC.}.
446     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
447     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
448     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
449     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
450     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
451     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
452     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
453     %\end{itemize}
454     %END SECTION TO WRITE OUT
455    
456    
457     {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
458     Why not measure $\epsilon_{fake}$ in the b-veto region?}
459    
460 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
461     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
462     %applying an additional scale factor for the single lepton background
463     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
464     %veto and after subtracting the \ttll\ component, corrected for the
465     %isolation efficiency derived previously.
466     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
467     %isolated track in single lepton events is independent of \mt\, so the use of
468     %an overall scale factor is justified to estimate the contribution in
469     %the \mt\ tail.
470     %
471     %\begin{figure}[hbt]
472     % \begin{center}
473     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
474     % \caption{
475     % \label{fig:vetoeffcomp}%\protect
476     % Efficiency for selecting an isolated track comparing
477     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
478     % data as a function of \mt. The
479     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
480     % \mt\, while the data ranges between the two. This behavior
481     % is expected since the low \mt\ region is predominantly \ttlj, while the
482     % high \mt\ region contains mostly \ttll\ events.}
483     % \end{center}
484     %\end{figure}
485 vimartin 1.4