ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
Revision: 1.7
Committed: Fri Oct 5 05:46:08 2012 UTC (12 years, 7 months ago) by claudioc
Content type: application/x-tex
Branch: MAIN
Changes since 1.6: +103 -6 lines
Log Message:
systematics update

File Contents

# User Rev Content
1 vimartin 1.2 %\section{Systematics Uncertainties on the Background Prediction}
2     %\label{sec:systematics}
3 benhoob 1.1
4 claudioc 1.7 [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5     FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6     AND
7     WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8     UNCERTAINTIES
9     CORRECTLY THROUGH. WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10     INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11    
12     In this Section we discuss the systematic uncertainty on the BG
13     prediction. This prediction is assembled from the event
14     counts in the peak region of the transverse mass distribution as
15     well as Monte Carlo
16     with a number of correction factors, as described previously.
17     The
18     final uncertainty on the prediction is built up from the uncertainties in these
19     individual
20     components.
21     The calculation is done for each signal
22     region,
23     for electrons and muons separately.
24    
25     The choice to normalizing to the peak region of $M_T$ has the
26     advantage that some uncertainties, e.g., luminosity, cancel.
27     It does however introduce complications because it couples
28     some of the uncertainties in non-trivial ways. For example,
29     the primary effect of an uncertainty on the rare MC cross-section
30     is to introduce an uncertainty in the rare MC background estimate
31     which comes entirely from MC. But this uncertainty also affects,
32     for example,
33     the $t\bar{t} \to$ dilepton BG estimate because it changes the
34     $t\bar{t}$ normalization to the peak region (because some of the
35     events in the peak region are from rare processes). These effects
36     are carefully accounted for. The contribution to the overall
37     uncertainty from each BG source is tabulated in
38     Section~\ref{sec:bgunc-bottomline}.
39     First, however, we discuss the uncertainties one-by-one and we comment
40     on their impact on the overall result, at least to first order.
41     Second order effects, such as the one described, are also included.
42    
43     \subsection{Statistical uncertainties on the event counts in the $M_T$
44     peak regions}
45     These vary between XX and XX \%, depending on the signal region
46     (different
47     signal regions have different \met\ requirements, thus they also have
48     different $M_T$ regions used as control.
49     Since
50     the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51     fractional uncertainty is pretty much carried through all the way to
52     the end. There is also an uncertainty from the finite MC event counts
53     in the $M_T$ peak regions. This is also included, but it is smaller.
54    
55     \subsection{Uncertainty from the choice of $M_T$ peak region}
56     IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57     LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY. WE NEED TO LOOK
58     INTO THIS AGAIN
59    
60     \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61     These are taken as 50\%, uncorrelated.
62     The primary effect is to introduce a 50\%
63     uncertainty
64     on the $W +$ jets and rare BG
65     background predictions, respectively. However they also
66     have an effect on the other BGs via the $M_T$ peak normalization
67     in a way that tends to reduce the uncertainty. This is easy
68     to understand: if the $W$ cross-section is increased by 50\%, then
69     the $W$ background goes up. But the number of $M_T$ peak events
70     attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71     scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72     BG goes down.
73    
74     \subsection{Scale factors for the tail-to-peak ratios for lepton +
75     jets top and W events}
76     These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77     They are studied in CR1 and CR2. The studies are described
78     in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79     we also give the uncertainty on the scale factors.
80    
81     \subsection{Uncertainty on extra jet radiation for dilepton
82     background}
83     As discussed in Section~\ref{sec:jetmultiplicity}, the
84     jet distribution in
85     $t\bar{t} \to$
86     dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87     it agree with the data. The XX\% uncertainties on $K_3$ and $K_4$
88     comes from data/MC statistics. This
89     result directly in a XX\% uncertainty on the dilepton BG, which is by far
90     the most important one.
91    
92 vimartin 1.5
93 vimartin 1.2 \subsection{Uncertainty on the \ttll\ Acceptance}
94 benhoob 1.1
95 vimartin 1.2 The \ttbar\ background prediction is obtained from MC, with corrections
96     derived from control samples in data. The uncertainty associated with
97     the theoretical modeling of the \ttbar\ production and decay is
98     estimated by comparing the background predictions obtained using
99     alternative MC samples. It should be noted that the full analysis is
100     performed with the alternative samples under consideration,
101     including the derivation of the various data-to-MC scale factors.
102     The variations considered are
103    
104     \begin{itemize}
105     \item Top mass: The alternative values for the top mass differ
106     from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
107     = 166.5~\GeV$.
108     \item Jet-parton matching scale: This corresponds to variations in the
109     scale at which the Matrix Element partons from Madgraph are matched
110     to Parton Shower partons from Pythia. The nominal value is
111     $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
112     $x_q>40~\GeV$.
113     \item Renormalization and factorization scale: The alternative samples
114     correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
115     value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
116     \sum_{\mathrm{jets}} \pt^2$.
117     \item Alternative generators: Samples produced with different
118     generators include MC@NLO and Powheg (NLO generators) and
119     Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120     hadronisation, while POWHEG uses Pythia6.
121     \item Modeling of taus: The alternative sample does not include
122 burkett 1.6 Tauola and is otherwise identical to the Powheg sample.
123     This effect was studied earlier using 7~TeV samples and found to be negligible.
124 vimartin 1.2 \item The PDF uncertainty is estimated following the PDF4LHC
125     recommendations[CITE]. The events are reweighted using alternative
126     PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
127     alternative eigenvector variations and the ``master equation''. In
128     addition, the NNPDF2.1 set with 100 replicas. The central value is
129     determined from the mean and the uncertainty is derived from the
130     $1\sigma$ range. The overall uncertainty is derived from the envelope of the
131 burkett 1.6 alternative predictions and their uncertainties.
132     This effect was studied earlier using 7~TeV samples and found to be negligible.
133     \end{itemize}
134 benhoob 1.1
135    
136     \begin{figure}[hbt]
137     \begin{center}
138 vimartin 1.2 \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
139 benhoob 1.1 \caption{
140 vimartin 1.2 \label{fig:ttllsyst}%\protect
141 vimartin 1.3 Comparison of the \ttll\ central prediction with those using
142     alternative MC samples. The blue band corresponds to the
143     total statistical error for all data and MC samples. The
144     alternative sample predictions are indicated by the
145     datapoints. The uncertainties on the alternative predictions
146     correspond to the uncorrelated statistical uncertainty from
147     the size of the alternative sample only.}
148 vimartin 1.2 \end{center}
149     \end{figure}
150    
151 claudioc 1.7 \clearpage
152 vimartin 1.2
153     %
154     %
155     %The methodology for determining the systematics on the background
156     %predictions has not changed with respect to the nominal analysis.
157     %Because the template method has not changed, the same
158     %systematic uncertainty is assessed on this prediction (32\%).
159     %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
160     %The systematic uncertainty in the OF background prediction based on
161     %e$\mu$ events has changed, due to the different composition of this
162     %sample after vetoing events containing b-tagged jets.
163     %
164     %As in the nominal analysis, we do not require the e$\mu$ events
165     %to satisfy the dilepton mass requirement and apply a scaling factor K,
166     %extracted from MC, to account for the fraction of e$\mu$ events
167     %which satisfy the dilepton mass requirement. This procedure is used
168     %in order to improve the statistical precision of the OF background estimate.
169     %
170     %For the selection used in the nominal analysis,
171     %the e$\mu$ sample is completely dominated by $t\bar{t}$
172     %events, and we observe that K is statistically consistent with constant with
173     %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
174     %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
175     %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
176     %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
177     %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
178     %Therefore, the sample composition changes
179     %as the \MET\ requirement is varied, and as a result K depends
180     %on the \MET\ requirement.
181     %
182     %We thus measure K in MC separately for each
183     %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
184     %%The systematic uncertainty on K is determined separately for each \MET\
185     %%requirement by comparing the relative difference in K in data vs. MC.
186     %The values of K used are the MC predictions
187     %%and the total systematic uncertainty on the OF prediction
188     %%as shown in
189     %(Table \ref{fig:kvmettable}).
190     %The contribution to the total OF prediction systematic uncertainty
191     %from K is assessed from the ratio of K in data and MC,
192     %shown in Fig.~\ref{fig:kvmet} (right).
193     %The ratio is consistent with unity to roughly 17\%,
194     %so we take this value as the systematic from K.
195     %17\% added in quadrature with 7\% from
196     %the electron to muon efficieny ratio
197     %(as assessed in the inclusive analysis)
198     %yields a total systematic of $\sim$18\%
199     %which we round up to 20\%.
200     %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
201     %so we take a systematic based on the statistical uncertainty
202     %of the MC prediction for K.
203     %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
204     %%Although we cannot check the value of K in data for \MET\ $>$ 150
205     %%because we find no OF events inside the Z mass window for this \MET\
206     %%cut, the overall OF yields with no dilepton mass requirement
207     %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
208     %
209     %
210     %%Below Old
211     %
212     %%In reevaluating the systematics on the OF prediction, however,
213     %%we observed a different behavior of K as a function of \MET\
214     %%as was seen in the inclusive analysis.
215     %
216     %%Recall that K is the ratio of the number of \emu\ events
217     %%inside the Z window to the total number of \emu\ events.
218     %%In the inclusive analysis, it is taken from \ttbar\ MC
219     %%and used to scale the inclusive \emu\ yield in data.
220     %%The yield scaled by K is then corrected for
221     %%the $e$ vs $\mu$ efficiency difference to obtain the
222     %%final OF prediction.
223     %
224     %%Based on the plot in figure \ref{fig:kvmet},
225     %%we choose to use a different
226     %%K for each \MET\ cut and assess a systematic uncertainty
227     %%on the OF prediction based on the difference between
228     %%K in data and MC.
229     %%The variation of K as a function of \MET\ is caused
230     %%by a change in sample composition with increasing \MET.
231     %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
232     %%not negligible (as it was in the inclusive analysis)
233     %%because of the b veto. (See appendix \ref{app:kinemu}.)
234     %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
235     %
236     %
237     %
238     %
239     %\begin{figure}[hbt]
240     % \begin{center}
241     % \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
242     % \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
243     % \caption{
244     % \label{fig:kvmet}\protect
245     % The left plot shows
246     % K as a function of \MET\ in MC (red) and data (black).
247     % The bin low edge corresponds to the \MET\ cut, and the
248     % bins are inclusive.
249     % The MC used is a sum of all SM MC used in the yield table of
250     % section \ref{sec:yields}.
251     % The right plot is the ratio of K in data to MC.
252     % The ratio is fit to a line whose slope is consistent with zero
253     % (the fit parameters are
254     % 0.9 $\pm$ 0.4 for the intercept and
255     % 0.001 $\pm$ 0.005 for the slope).
256     % }
257     % \end{center}
258     %\end{figure}
259     %
260     %
261     %
262     %\begin{table}[htb]
263     %\begin{center}
264     %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
265     %The uncertainties shown are the total relative systematic used for the OF prediction,
266     %which is the systematic uncertainty from K added in quadrature with
267     %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
268     %inclusive analysis.
269     %}
270     %\begin{tabular}{lcc}
271     %\hline
272     %\MET\ Cut & K & Relative Systematic \\
273     %\hline
274     %%the met zero row is used only for normalization of the money plot.
275     %%0 & 0.1 & \\
276     %30 & 0.12 & 20\% \\
277     %60 & 0.13 & 20\% \\
278     %80 & 0.12 & 20\% \\
279     %100 & 0.12 & 20\% \\
280     %150 & 0.09 & 25\% \\
281     %200 & 0.06 & 60\% \\
282     %\hline
283     %\end{tabular}
284     %\end{center}
285     %\end{table}
286 vimartin 1.4
287 claudioc 1.7 \subsection{Uncertainty from the isolated track veto}
288     This is the uncertainty associated with how well the isolated track
289     veto performance is modeled by the Monte Carlo. This uncertainty
290     only applies to the fraction of dilepton BG events that have
291     a second e/$\mu$ or a one prong $\tau \to h$, with
292     $P_T > 10$ GeV in $|\eta| < 2.4$. This fraction is 1/3 (THIS WAS THE
293     7 TEV NUMBER, CHECK). The uncertainty for these events
294     is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
295 vimartin 1.4
296 claudioc 1.7 \subsubsection{Isolated Track Veto: Tag and Probe Studies}
297     \label{sec:trkveto}
298 vimartin 1.5
299     [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
300     ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
301 vimartin 1.4
302     In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
303     with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
304     to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
305     we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
306     addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
307     second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
308     in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
309     procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
310     Furthermore, we test the data and MC
311     isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
312     directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
313     may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
314     or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
315     the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
316     consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
317     $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
318     decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
319     Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
320     As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
321     leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
322     due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
323    
324     The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
325     All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
326     We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
327     this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
328     not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
329     fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
330     \met\ $<$ 30 GeV and 0 b-tagged events.
331     The specific criteria for tags and probes for electrons and muons are:
332    
333     %We study the isolated track veto efficiency in bins of \njets.
334     %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
335     %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
336    
337    
338     \begin{itemize}
339     \item{Electrons}
340    
341     \begin{itemize}
342     \item{Tag criteria}
343    
344     \begin{itemize}
345     \item Electron passes full analysis ID/iso selection
346     \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
347    
348     \item Matched to 1 of the 2 electron tag-and-probe triggers
349     \begin{itemize}
350     \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
351     \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
352     \end{itemize}
353     \end{itemize}
354    
355     \item{Probe criteria}
356     \begin{itemize}
357     \item Electron passes full analysis ID selection
358     \item \pt\ $>$ 30 GeV
359     \end{itemize}
360     \end{itemize}
361     \item{Muons}
362     \begin{itemize}
363     \item{Tag criteria}
364     \begin{itemize}
365     \item Muon passes full analysis ID/iso selection
366     \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
367     \item Matched to 1 of the 2 electron tag-and-probe triggers
368     \begin{itemize}
369     \item \verb=HLT_IsoMu30_v*=
370     \item \verb=HLT_IsoMu30_eta2p1_v*=
371     \end{itemize}
372     \end{itemize}
373     \item{Probe criteria}
374     \begin{itemize}
375     \item Muon passes full analysis ID selection
376     \item \pt\ $>$ 30 GeV
377     \end{itemize}
378     \end{itemize}
379     \end{itemize}
380    
381     The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
382     good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
383     absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
384     In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
385     efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
386     For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
387     a data vs. MC discrepancy in the isolated track veto efficiency.
388    
389    
390     %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
391     %This requirement is chosen because most of the tracks rejected by the isolated
392     %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
393    
394     \begin{figure}[hbt]
395     \begin{center}
396     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
397     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
398     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
399     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
400     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
401     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
402     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
403     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
404     %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
405     %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
406     \caption{
407     \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
408     for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
409     }
410     \end{center}
411     \end{figure}
412    
413     \clearpage
414    
415     \begin{table}[!ht]
416     \begin{center}
417     \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
418     on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
419     jet multiplicity requirements.}
420     \begin{tabular}{l|l|c|c|c|c|c}
421     \hline
422     \hline
423     e + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
424     \hline
425     data & 0.088 $\pm$ 0.0003 & 0.030 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.007 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\
426     mc & 0.087 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0001 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\
427     data/mc & 1.01 $\pm$ 0.00 & 0.99 $\pm$ 0.01 & 0.97 $\pm$ 0.01 & 0.95 $\pm$ 0.01 & 0.93 $\pm$ 0.01 \\
428     \hline
429     \hline
430     $\mu$ + $\geq$0 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
431     \hline
432     data & 0.087 $\pm$ 0.0002 & 0.031 $\pm$ 0.0001 & 0.015 $\pm$ 0.0001 & 0.008 $\pm$ 0.0001 & 0.005 $\pm$ 0.0001 \\
433     mc & 0.085 $\pm$ 0.0001 & 0.030 $\pm$ 0.0001 & 0.014 $\pm$ 0.0000 & 0.008 $\pm$ 0.0000 & 0.005 $\pm$ 0.0000 \\
434     data/mc & 1.02 $\pm$ 0.00 & 1.06 $\pm$ 0.00 & 1.06 $\pm$ 0.01 & 1.03 $\pm$ 0.01 & 1.02 $\pm$ 0.01 \\
435     \hline
436     \hline
437     e + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
438     \hline
439     data & 0.099 $\pm$ 0.0008 & 0.038 $\pm$ 0.0005 & 0.019 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 & 0.008 $\pm$ 0.0002 \\
440     mc & 0.100 $\pm$ 0.0004 & 0.038 $\pm$ 0.0003 & 0.019 $\pm$ 0.0002 & 0.012 $\pm$ 0.0002 & 0.008 $\pm$ 0.0001 \\
441     data/mc & 0.99 $\pm$ 0.01 & 1.00 $\pm$ 0.02 & 0.99 $\pm$ 0.02 & 0.98 $\pm$ 0.03 & 0.97 $\pm$ 0.03 \\
442     \hline
443     \hline
444     $\mu$ + $\geq$1 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
445     \hline
446     data & 0.100 $\pm$ 0.0006 & 0.041 $\pm$ 0.0004 & 0.022 $\pm$ 0.0003 & 0.014 $\pm$ 0.0002 & 0.010 $\pm$ 0.0002 \\
447     mc & 0.099 $\pm$ 0.0004 & 0.039 $\pm$ 0.0002 & 0.020 $\pm$ 0.0002 & 0.013 $\pm$ 0.0001 & 0.009 $\pm$ 0.0001 \\
448     data/mc & 1.01 $\pm$ 0.01 & 1.05 $\pm$ 0.01 & 1.05 $\pm$ 0.02 & 1.06 $\pm$ 0.02 & 1.06 $\pm$ 0.03 \\
449     \hline
450     \hline
451     e + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
452     \hline
453     data & 0.105 $\pm$ 0.0020 & 0.042 $\pm$ 0.0013 & 0.021 $\pm$ 0.0009 & 0.013 $\pm$ 0.0007 & 0.009 $\pm$ 0.0006 \\
454     mc & 0.109 $\pm$ 0.0011 & 0.043 $\pm$ 0.0007 & 0.021 $\pm$ 0.0005 & 0.013 $\pm$ 0.0004 & 0.009 $\pm$ 0.0003 \\
455     data/mc & 0.96 $\pm$ 0.02 & 0.97 $\pm$ 0.03 & 1.00 $\pm$ 0.05 & 1.01 $\pm$ 0.06 & 0.97 $\pm$ 0.08 \\
456     \hline
457     \hline
458     $\mu$ + $\geq$2 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
459     \hline
460     data & 0.106 $\pm$ 0.0016 & 0.045 $\pm$ 0.0011 & 0.025 $\pm$ 0.0008 & 0.016 $\pm$ 0.0007 & 0.012 $\pm$ 0.0006 \\
461     mc & 0.108 $\pm$ 0.0009 & 0.044 $\pm$ 0.0006 & 0.024 $\pm$ 0.0004 & 0.016 $\pm$ 0.0004 & 0.011 $\pm$ 0.0003 \\
462     data/mc & 0.98 $\pm$ 0.02 & 1.04 $\pm$ 0.03 & 1.04 $\pm$ 0.04 & 1.04 $\pm$ 0.05 & 1.06 $\pm$ 0.06 \\
463     \hline
464     \hline
465     e + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
466     \hline
467     data & 0.117 $\pm$ 0.0055 & 0.051 $\pm$ 0.0038 & 0.029 $\pm$ 0.0029 & 0.018 $\pm$ 0.0023 & 0.012 $\pm$ 0.0019 \\
468     mc & 0.120 $\pm$ 0.0031 & 0.052 $\pm$ 0.0021 & 0.027 $\pm$ 0.0015 & 0.018 $\pm$ 0.0012 & 0.013 $\pm$ 0.0011 \\
469     data/mc & 0.97 $\pm$ 0.05 & 0.99 $\pm$ 0.08 & 1.10 $\pm$ 0.13 & 1.03 $\pm$ 0.15 & 0.91 $\pm$ 0.16 \\
470     \hline
471     \hline
472     $\mu$ + $\geq$3 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
473     \hline
474     data & 0.111 $\pm$ 0.0044 & 0.050 $\pm$ 0.0030 & 0.029 $\pm$ 0.0024 & 0.019 $\pm$ 0.0019 & 0.014 $\pm$ 0.0017 \\
475     mc & 0.115 $\pm$ 0.0025 & 0.051 $\pm$ 0.0017 & 0.030 $\pm$ 0.0013 & 0.020 $\pm$ 0.0011 & 0.015 $\pm$ 0.0009 \\
476     data/mc & 0.97 $\pm$ 0.04 & 0.97 $\pm$ 0.07 & 0.95 $\pm$ 0.09 & 0.97 $\pm$ 0.11 & 0.99 $\pm$ 0.13 \\
477     \hline
478     \hline
479     e + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
480     \hline
481     data & 0.113 $\pm$ 0.0148 & 0.048 $\pm$ 0.0100 & 0.033 $\pm$ 0.0083 & 0.020 $\pm$ 0.0065 & 0.017 $\pm$ 0.0062 \\
482     mc & 0.146 $\pm$ 0.0092 & 0.064 $\pm$ 0.0064 & 0.034 $\pm$ 0.0048 & 0.024 $\pm$ 0.0040 & 0.021 $\pm$ 0.0037 \\
483     data/mc & 0.78 $\pm$ 0.11 & 0.74 $\pm$ 0.17 & 0.96 $\pm$ 0.28 & 0.82 $\pm$ 0.30 & 0.85 $\pm$ 0.34 \\
484     \hline
485     \hline
486     $\mu$ + $\geq$4 jets & $>$ 1 GeV & $>$ 2 GeV & $>$ 3 GeV & $>$ 4 GeV & $>$ 5 GeV \\
487     \hline
488     data & 0.130 $\pm$ 0.0128 & 0.052 $\pm$ 0.0085 & 0.028 $\pm$ 0.0063 & 0.019 $\pm$ 0.0052 & 0.019 $\pm$ 0.0052 \\
489     mc & 0.105 $\pm$ 0.0064 & 0.045 $\pm$ 0.0043 & 0.027 $\pm$ 0.0034 & 0.019 $\pm$ 0.0028 & 0.014 $\pm$ 0.0024 \\
490     data/mc & 1.23 $\pm$ 0.14 & 1.18 $\pm$ 0.22 & 1.03 $\pm$ 0.27 & 1.01 $\pm$ 0.32 & 1.37 $\pm$ 0.45 \\
491     \hline
492     \hline
493    
494     \end{tabular}
495     \end{center}
496     \end{table}
497    
498    
499    
500     %Figure.~\ref{fig:reliso} compares the relative track isolation
501     %for events with a track with $\pt > 10~\GeV$ in addition to a selected
502     %muon for $\Z+4$ jet events and various \ttll\ components. The
503     %isolation distributions show significant differences, particularly
504     %between the leptons from a \W\ or \Z\ decay and the tracks arising
505     %from $\tau$ decays. As can also be seen in the figure, the \pt\
506     %distribution for the various categories of tracks is different, where
507     %the decay products from $\tau$s are significantly softer. Since the
508     %\pt\ enters the denominator of the isolation definition and hence
509     %alters the isolation variable...
510    
511     %\begin{figure}[hbt]
512     % \begin{center}
513     % \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
514     % \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
515     % \caption{
516     % \label{fig:reliso}%\protect
517     % Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
518     % Z+Jets and ttbar dilepton have similar isolation distributions
519     % ttbar with leptonic and single prong taus tend to be less
520     % isolated. The difference in the isolation can be attributed
521     % to the different \pt\ distribution of the samples, since
522     % $\tau$ decay products tend to be softer than leptons arising
523     % from \W\ or \Z\ decays.}
524     % \end{center}
525     %\end{figure}
526    
527     % \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
528    
529    
530     %BEGIN SECTION TO WRITE OUT
531     %In detail, the procedure to correct the dilepton background is:
532    
533     %\begin{itemize}
534     %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
535     %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
536     %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
537     %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
538     %the lepton \pt {\bf TODO: verify this in data and MC.}.
539     %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
540     %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
541     %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
542     %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
543     %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
544     %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
545     %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
546     %\end{itemize}
547     %END SECTION TO WRITE OUT
548    
549    
550     {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
551     Why not measure $\epsilon_{fake}$ in the b-veto region?}
552    
553 vimartin 1.5 %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
554     %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
555     %applying an additional scale factor for the single lepton background
556     %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
557     %veto and after subtracting the \ttll\ component, corrected for the
558     %isolation efficiency derived previously.
559     %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
560     %isolated track in single lepton events is independent of \mt\, so the use of
561     %an overall scale factor is justified to estimate the contribution in
562     %the \mt\ tail.
563     %
564     %\begin{figure}[hbt]
565     % \begin{center}
566     % \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
567     % \caption{
568     % \label{fig:vetoeffcomp}%\protect
569     % Efficiency for selecting an isolated track comparing
570     % single lepton \ttlj\ and dilepton \ttll\ events in MC and
571     % data as a function of \mt. The
572     % efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
573     % \mt\, while the data ranges between the two. This behavior
574     % is expected since the low \mt\ region is predominantly \ttlj, while the
575     % high \mt\ region contains mostly \ttll\ events.}
576     % \end{center}
577     %\end{figure}
578 vimartin 1.4
579 claudioc 1.7 \subsection{Summary of uncertainties}
580     \label{sec:bgunc-bottomline}.
581    
582     THIS NEEDS TO BE WRITTEN