ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.3 by vimartin, Fri Jun 29 03:00:35 2012 UTC vs.
Revision 1.11 by benhoob, Mon Oct 8 09:07:01 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 + [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 + FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 + AND
7 + WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 + UNCERTAINTIES
9 + CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 + INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11 +
12 + In this Section we discuss the systematic uncertainty on the BG
13 + prediction.  This prediction is assembled from the event
14 + counts in the peak region of the transverse mass distribution as
15 + well as Monte Carlo
16 + with a number of correction factors, as described previously.
17 + The
18 + final uncertainty on the prediction is built up from the uncertainties in these
19 + individual
20 + components.
21 + The calculation is done for each signal
22 + region,
23 + for electrons and muons separately.
24 +
25 + The choice to normalizing to the peak region of $M_T$ has the
26 + advantage that some uncertainties, e.g., luminosity, cancel.
27 + It does however introduce complications because it couples
28 + some of the uncertainties in non-trivial ways.  For example,
29 + the primary effect of an uncertainty on the rare MC cross-section
30 + is to introduce an uncertainty in the rare MC background estimate
31 + which comes entirely from MC.   But this uncertainty also affects,
32 + for example,
33 + the $t\bar{t} \to$ dilepton BG estimate because it changes the
34 + $t\bar{t}$ normalization to the peak region (because some of the
35 + events in the peak region are from rare processes).  These effects
36 + are carefully accounted for.  The contribution to the overall
37 + uncertainty from each BG source is tabulated in
38 + Section~\ref{sec:bgunc-bottomline}.
39 + First, however, we discuss the uncertainties one-by-one and we comment
40 + on their impact on the overall result, at least to first order.
41 + Second order effects, such as the one described, are also included.
42 +
43 + \subsection{Statistical uncertainties on the event counts in the $M_T$
44 + peak regions}
45 + These vary between XX and XX \%, depending on the signal region
46 + (different
47 + signal regions have different \met\ requirements, thus they also have
48 + different $M_T$ regions used as control.
49 + Since
50 + the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51 + fractional uncertainty is pretty much carried through all the way to
52 + the end.  There is also an uncertainty from the finite MC event counts
53 + in the $M_T$ peak regions.  This is also included, but it is smaller.
54 +
55 + \subsection{Uncertainty from the choice of $M_T$ peak region}
56 + IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 + LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 + INTO THIS AGAIN
59 +
60 + \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61 + These are taken as 50\%, uncorrelated.  
62 + The primary effect is to introduce a 50\%
63 + uncertainty
64 + on the $W +$ jets and rare BG
65 + background predictions, respectively.  However they also
66 + have an effect on the other BGs via the $M_T$ peak normalization
67 + in a way that tends to reduce the uncertainty.  This is easy
68 + to understand: if the $W$ cross-section is increased by 50\%, then
69 + the $W$ background goes up.  But the number of $M_T$ peak events
70 + attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71 + scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72 + BG goes down.  
73 +
74 + \subsection{Scale factors for the tail-to-peak ratios for lepton +
75 +  jets top and W events}
76 + These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77 + They are studied in CR1 and CR2.  The studies are described
78 + in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79 + we also give the uncertainty on the scale factors.
80 +
81 + \subsection{Uncertainty on extra jet radiation for dilepton
82 +  background}
83 + As discussed in Section~\ref{sec:jetmultiplicity}, the
84 + jet distribution in
85 + $t\bar{t} \to$
86 + dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87 + it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
88 + comes from data/MC statistics.  This  
89 + result directly in a XX\% uncertainty on the dilepton BG, which is by far
90 + the most important one.
91 +
92 +
93   \subsection{Uncertainty on the \ttll\ Acceptance}
94  
95   The \ttbar\ background prediction is obtained from MC, with corrections
# Line 30 | Line 119 | The variations considered are
119    Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120    hadronisation, while POWHEG uses Pythia6.
121   \item Modeling of taus: The alternative sample does not include
122 <  Tauola and is otherwise identical to the Powheg sample.
122 >  Tauola and is otherwise identical to the Powheg sample.
123 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
124   \item The PDF uncertainty is estimated following the PDF4LHC
125    recommendations[CITE]. The events are reweighted using alternative
126    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
# Line 38 | Line 128 | The variations considered are
128    addition, the NNPDF2.1 set with 100 replicas. The central value is
129    determined from the mean and the uncertainty is derived from the
130    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
131 <  alternative predictions and their uncertainties.
132 < \end{itemize}
131 >  alternative predictions and their uncertainties.
132 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
133 >  \end{itemize}
134  
135  
136   \begin{figure}[hbt]
# Line 53 | Line 144 | The variations considered are
144            alternative sample predictions are indicated by the
145            datapoints. The uncertainties on the alternative predictions
146            correspond to the uncorrelated statistical uncertainty from
147 <          the size of the alternative sample only.}
147 >          the size of the alternative sample only.
148 >        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
149        \end{center}
150      \end{figure}
151  
152 <
152 > \clearpage
153  
154   %
155   %
# Line 192 | Line 284 | The variations considered are
284   %\end{tabular}
285   %\end{center}
286   %\end{table}
287 +
288 + \subsection{Uncertainty from the isolated track veto}
289 + This is the uncertainty associated with how well the isolated track
290 + veto performance is modeled by the Monte Carlo.  This uncertainty
291 + only applies to the fraction of dilepton BG events that have
292 + a second e/$\mu$ or a one prong $\tau \to h$, with
293 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
294 + 7 TEV NUMBER, CHECK).  The uncertainty for these events
295 + is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
296 +
297 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
298 + \label{sec:trkveto}
299 +
300 + [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
301 + ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
302 +
303 + In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
304 + with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
305 + to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
306 + we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
307 + addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
308 + second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
309 + in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
310 + procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
311 + Furthermore, we test the data and MC
312 + isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
313 + directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
314 + may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
315 + or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
316 + the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
317 + consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
318 + $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
319 + decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
320 + Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
321 + As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
322 + leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
323 + due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
324 +
325 + The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
326 + All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
327 + We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
328 + this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
329 + not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
330 + fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
331 + \met\ $<$ 30 GeV and 0 b-tagged events.
332 + The specific criteria for tags and probes for electrons and muons are:
333 +
334 + %We study the isolated track veto efficiency in bins of \njets.
335 + %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
336 + %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
337 +
338 +
339 + \begin{itemize}
340 +  \item{Electrons}
341 +
342 +    \begin{itemize}
343 +    \item{Tag criteria}
344 +
345 +      \begin{itemize}
346 +      \item Electron passes full analysis ID/iso selection
347 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
348 +
349 +      \item Matched to 1 of the 2 electron tag-and-probe triggers
350 +        \begin{itemize}
351 +        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
352 +        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
353 +        \end{itemize}
354 +      \end{itemize}
355 +
356 +    \item{Probe criteria}
357 +      \begin{itemize}
358 +      \item Electron passes full analysis ID selection
359 +      \item \pt\ $>$ 30 GeV
360 +      \end{itemize}
361 +      \end{itemize}
362 +  \item{Muons}
363 +    \begin{itemize}
364 +    \item{Tag criteria}
365 +      \begin{itemize}
366 +      \item Muon passes full analysis ID/iso selection
367 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
368 +      \item Matched to 1 of the 2 electron tag-and-probe triggers
369 +        \begin{itemize}
370 +        \item \verb=HLT_IsoMu30_v*=
371 +        \item \verb=HLT_IsoMu30_eta2p1_v*=
372 +        \end{itemize}
373 +      \end{itemize}
374 +    \item{Probe criteria}
375 +      \begin{itemize}
376 +      \item Muon passes full analysis ID selection
377 +      \item \pt\ $>$ 30 GeV
378 +      \end{itemize}
379 +    \end{itemize}
380 + \end{itemize}
381 +
382 + The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
383 + good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
384 + absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
385 + In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
386 + efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
387 + For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
388 + a data vs. MC discrepancy in the isolated track veto efficiency.
389 +
390 +
391 + %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
392 + %This requirement is chosen because most of the tracks rejected by the isolated
393 + %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
394 +
395 + \begin{figure}[hbt]
396 +  \begin{center}
397 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
398 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
399 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
400 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
401 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
402 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
403 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
404 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
405 +        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
406 +        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
407 +        \caption{
408 +          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
409 + for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
410 + }  
411 +      \end{center}
412 + \end{figure}
413 +
414 + \clearpage
415 +
416 + \begin{table}[!ht]
417 + \begin{center}
418 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
419 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
420 + jet multiplicity requirements.}
421 + \begin{tabular}{l|c|c|c|c|c}
422 +
423 + %Electrons:
424 + %Total MC yields        : 323790
425 + %Total DATA yields      : 2772586
426 + %Muons:
427 + %Total MC yields        : 456138
428 + %Total DATA yields      : 4210022
429 +
430 + \hline
431 + \hline
432 + e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
433 + \hline
434 +      data   &  0.097 $\pm$ 0.0002   &  0.035 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
435 +        mc   &  0.096 $\pm$ 0.0005   &  0.034 $\pm$ 0.0003   &  0.015 $\pm$ 0.0002   &  0.008 $\pm$ 0.0002   &  0.005 $\pm$ 0.0001  \\
436 +   data/mc   &     1.01 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.04 $\pm$ 0.02   &     1.01 $\pm$ 0.02  \\
437 +
438 + \hline
439 + \hline
440 + $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
441 + \hline
442 +      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
443 +        mc   &  0.093 $\pm$ 0.0004   &  0.033 $\pm$ 0.0003   &  0.015 $\pm$ 0.0002   &  0.008 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
444 +   data/mc   &     1.01 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.05 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
445 +
446 + \hline
447 + \hline
448 + e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
449 + \hline
450 +      data   &  0.109 $\pm$ 0.0005   &  0.043 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
451 +        mc   &  0.109 $\pm$ 0.0014   &  0.042 $\pm$ 0.0009   &  0.020 $\pm$ 0.0006   &  0.012 $\pm$ 0.0005   &  0.008 $\pm$ 0.0004  \\
452 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.02   &     1.08 $\pm$ 0.04   &     1.13 $\pm$ 0.05   &     1.13 $\pm$ 0.06  \\
453 +
454 + \hline
455 + \hline
456 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
457 + \hline
458 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
459 +        mc   &  0.107 $\pm$ 0.0012   &  0.042 $\pm$ 0.0008   &  0.021 $\pm$ 0.0005   &  0.013 $\pm$ 0.0004   &  0.009 $\pm$ 0.0004  \\
460 +   data/mc   &     1.00 $\pm$ 0.01   &     1.03 $\pm$ 0.02   &     1.07 $\pm$ 0.03   &     1.12 $\pm$ 0.04   &     1.17 $\pm$ 0.05  \\
461 +
462 + \hline
463 + \hline
464 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
465 + \hline
466 +      data   &  0.115 $\pm$ 0.0012   &  0.049 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
467 +        mc   &  0.114 $\pm$ 0.0032   &  0.046 $\pm$ 0.0021   &  0.023 $\pm$ 0.0015   &  0.015 $\pm$ 0.0012   &  0.010 $\pm$ 0.0010  \\
468 +   data/mc   &     1.01 $\pm$ 0.03   &     1.09 $\pm$ 0.05   &     1.13 $\pm$ 0.08   &     1.09 $\pm$ 0.09   &     1.14 $\pm$ 0.12  \\
469 +
470 + \hline
471 + \hline
472 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
473 + \hline
474 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
475 +        mc   &  0.114 $\pm$ 0.0027   &  0.046 $\pm$ 0.0018   &  0.024 $\pm$ 0.0013   &  0.014 $\pm$ 0.0010   &  0.010 $\pm$ 0.0009  \\
476 +   data/mc   &     0.98 $\pm$ 0.03   &     1.04 $\pm$ 0.04   &     1.12 $\pm$ 0.07   &     1.26 $\pm$ 0.10   &     1.30 $\pm$ 0.12  \\
477 +
478 + \hline
479 + \hline
480 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
481 + \hline
482 +      data   &  0.122 $\pm$ 0.0030   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
483 +        mc   &  0.125 $\pm$ 0.0080   &  0.060 $\pm$ 0.0057   &  0.032 $\pm$ 0.0043   &  0.023 $\pm$ 0.0036   &  0.017 $\pm$ 0.0031  \\
484 +   data/mc   &     0.98 $\pm$ 0.07   &     0.97 $\pm$ 0.10   &     1.06 $\pm$ 0.15   &     1.01 $\pm$ 0.17   &     1.01 $\pm$ 0.20  \\
485 +
486 + \hline
487 + \hline
488 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
489 + \hline
490 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
491 +        mc   &  0.125 $\pm$ 0.0070   &  0.053 $\pm$ 0.0047   &  0.027 $\pm$ 0.0035   &  0.018 $\pm$ 0.0028   &  0.013 $\pm$ 0.0024  \\
492 +   data/mc   &     0.97 $\pm$ 0.06   &     1.05 $\pm$ 0.10   &     1.20 $\pm$ 0.16   &     1.19 $\pm$ 0.20   &     1.28 $\pm$ 0.25  \\
493 +
494 + \hline
495 + \hline
496 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
497 + \hline
498 +      data   &  0.130 $\pm$ 0.0079   &  0.069 $\pm$ 0.0060   &  0.044 $\pm$ 0.0048   &  0.031 $\pm$ 0.0041   &  0.021 $\pm$ 0.0034  \\
499 +        mc   &  0.136 $\pm$ 0.0219   &  0.045 $\pm$ 0.0134   &  0.027 $\pm$ 0.0108   &  0.022 $\pm$ 0.0093   &  0.016 $\pm$ 0.0084  \\
500 +   data/mc   &     0.96 $\pm$ 0.17   &     1.55 $\pm$ 0.48   &     1.62 $\pm$ 0.67   &     1.41 $\pm$ 0.63   &     1.28 $\pm$ 0.68  \\
501 +
502 + \hline
503 + \hline
504 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
505 + \hline
506 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
507 +        mc   &  0.127 $\pm$ 0.0187   &  0.062 $\pm$ 0.0134   &  0.042 $\pm$ 0.0113   &  0.034 $\pm$ 0.0104   &  0.028 $\pm$ 0.0095  \\
508 +   data/mc   &     1.07 $\pm$ 0.17   &     1.04 $\pm$ 0.24   &     0.98 $\pm$ 0.28   &     0.85 $\pm$ 0.28   &     0.87 $\pm$ 0.32  \\
509 + \hline
510 + \hline
511 +
512 + \end{tabular}
513 + \end{center}
514 + \end{table}
515 +
516 +
517 +
518 + %Figure.~\ref{fig:reliso} compares the relative track isolation
519 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
520 + %muon for $\Z+4$ jet events and various \ttll\ components. The
521 + %isolation distributions show significant differences, particularly
522 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
523 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
524 + %distribution for the various categories of tracks is different, where
525 + %the decay products from $\tau$s are significantly softer. Since the
526 + %\pt\ enters the denominator of the isolation definition and hence
527 + %alters the isolation variable...
528 +
529 + %\begin{figure}[hbt]
530 + %  \begin{center}
531 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
532 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
533 + %       \caption{
534 + %         \label{fig:reliso}%\protect
535 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
536 + %          Z+Jets and ttbar dilepton have similar isolation distributions
537 + %          ttbar with leptonic and single prong taus tend to be less
538 + %          isolated. The difference in the isolation can be attributed
539 + %          to the different \pt\ distribution of the samples, since
540 + %          $\tau$ decay products tend to be softer than leptons arising
541 + %          from \W\ or \Z\ decays.}  
542 + %      \end{center}
543 + %\end{figure}
544 +
545 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
546 +
547 +
548 + %BEGIN SECTION TO WRITE OUT
549 + %In detail, the procedure to correct the dilepton background is:
550 +
551 + %\begin{itemize}
552 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
553 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
554 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
555 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
556 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
557 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
558 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
559 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
560 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
561 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
562 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
563 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
564 + %\end{itemize}
565 + %END SECTION TO WRITE OUT
566 +
567 +
568 + {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
569 + Why not measure $\epsilon_{fake}$ in the b-veto region?}
570 +
571 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
572 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
573 + %applying an additional scale factor for the single lepton background
574 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
575 + %veto and after subtracting the \ttll\ component, corrected for the
576 + %isolation efficiency derived previously.
577 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
578 + %isolated track in single lepton events is independent of \mt\, so the use of
579 + %an overall scale factor is justified to estimate the contribution in
580 + %the \mt\ tail.
581 + %
582 + %\begin{figure}[hbt]
583 + %  \begin{center}
584 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
585 + %       \caption{
586 + %         \label{fig:vetoeffcomp}%\protect
587 + %          Efficiency for selecting an isolated track comparing
588 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
589 + %          data as a function of \mt. The
590 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
591 + %          \mt\, while the data ranges between the two. This behavior
592 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
593 + %          high \mt\ region contains mostly \ttll\ events.}  
594 + %      \end{center}
595 + %\end{figure}
596 +
597 + \subsection{Summary of uncertainties}
598 + \label{sec:bgunc-bottomline}.
599 +
600 + THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines