ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.1 by benhoob, Sun Jun 24 15:06:07 2012 UTC vs.
Revision 1.14 by vimartin, Wed Oct 10 04:03:33 2012 UTC

# Line 1 | Line 1
1 < \section{Systematics Uncertainties in the Background Prediction}
2 < \label{sec:systematics}
1 > %\section{Systematics Uncertainties on the Background Prediction}
2 > %\label{sec:systematics}
3  
4 < The methodology for determining the systematics on the background
5 < predictions has not changed with respect to the nominal analysis.
6 < Because the template method has not changed, the same
7 < systematic uncertainty is assessed on this prediction (32\%).
8 < The 50\% uncertainty on the WZ and ZZ background is also unchanged.
9 < The systematic uncertainty in the OF background prediction based on
10 < e$\mu$ events has changed, due to the different composition of this
11 < sample after vetoing events containing b-tagged jets.
12 <
13 < As in the nominal analysis, we do not require the e$\mu$ events
14 < to satisfy the dilepton mass requirement and apply a scaling factor K,
15 < extracted from MC, to account for the fraction of e$\mu$ events
16 < which satisfy the dilepton mass requirement. This procedure is used
17 < in order to improve the statistical precision of the OF background estimate.
18 <
19 < For the selection used in the nominal analysis,
20 < the e$\mu$ sample is completely dominated by $t\bar{t}$
21 < events, and we observe that K is statistically consistent with constant with
22 < respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
23 < background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
24 < backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
25 < At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
26 < and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
27 < Therefore, the sample composition changes
28 < as the \MET\ requirement is varied, and as a result K depends
29 < on the \MET\ requirement.
30 <
31 < We thus measure K in MC separately for each
32 < \MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
33 < %The systematic uncertainty on K is determined separately for each \MET\
34 < %requirement by comparing the relative difference in K in data vs. MC.
35 < The values of K used are the MC predictions
36 < %and the total systematic uncertainty on the OF prediction
37 < %as shown in
38 < (Table \ref{fig:kvmettable}).
39 < The contribution to the total OF prediction systematic uncertainty
40 < from K is assessed from the ratio of K in data and MC,
41 < shown in Fig.~\ref{fig:kvmet} (right).
42 < The ratio is consistent with unity to roughly 17\%,
43 < so we take this value as the systematic from K.
44 < 17\% added in quadrature with 7\% from
45 < the electron to muon efficieny ratio
46 < (as assessed in the inclusive analysis)
47 < yields a total systematic of $\sim$18\%
48 < which we round up to 20\%.
49 < For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
50 < so we take a systematic based on the statistical uncertainty
51 < of the MC prediction for K.
52 < This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
53 < %Although we cannot check the value of K in data for \MET\ $>$ 150
54 < %because we find no OF events inside the Z mass window for this \MET\
55 < %cut, the overall OF yields with no dilepton mass requirement
56 < %agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
57 <
58 <
59 < %Below Old
60 <
61 < %In reevaluating the systematics on the OF prediction, however,
62 < %we observed a different behavior of K as a function of \MET\
63 < %as was seen in the inclusive analysis.
64 <
65 < %Recall that K is the ratio of the number of \emu\ events
66 < %inside the Z window to the total number of \emu\ events.
67 < %In the inclusive analysis, it is taken from \ttbar\ MC
68 < %and used to scale the inclusive \emu\ yield in data.
69 < %The yield scaled by K is then corrected for
70 < %the $e$ vs $\mu$ efficiency difference to obtain the
71 < %final OF prediction.
72 <
73 < %Based on the plot in figure \ref{fig:kvmet},
74 < %we choose to use a different
75 < %K for each \MET\ cut and assess a systematic uncertainty
76 < %on the OF prediction based on the difference between
77 < %K in data and MC.
78 < %The variation of K as a function of \MET\ is caused
79 < %by a change in sample composition with increasing \MET.
80 < %At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
81 < %not negligible (as it was in the inclusive analysis)
82 < %because of the b veto. (See appendix \ref{app:kinemu}.)
83 < %At higher \MET, \ttbar\ and diboson backgrounds dominate.
4 > [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 > FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 > AND
7 > WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 > UNCERTAINTIES
9 > CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 > INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11 >
12 > In this Section we discuss the systematic uncertainty on the BG
13 > prediction.  This prediction is assembled from the event
14 > counts in the peak region of the transverse mass distribution as
15 > well as Monte Carlo
16 > with a number of correction factors, as described previously.
17 > The
18 > final uncertainty on the prediction is built up from the uncertainties in these
19 > individual
20 > components.
21 > The calculation is done for each signal
22 > region,
23 > for electrons and muons separately.
24 >
25 > The choice to normalizing to the peak region of $M_T$ has the
26 > advantage that some uncertainties, e.g., luminosity, cancel.
27 > It does however introduce complications because it couples
28 > some of the uncertainties in non-trivial ways.  For example,
29 > the primary effect of an uncertainty on the rare MC cross-section
30 > is to introduce an uncertainty in the rare MC background estimate
31 > which comes entirely from MC.   But this uncertainty also affects,
32 > for example,
33 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
34 > $t\bar{t}$ normalization to the peak region (because some of the
35 > events in the peak region are from rare processes).  These effects
36 > are carefully accounted for.  The contribution to the overall
37 > uncertainty from each BG source is tabulated in
38 > Section~\ref{sec:bgunc-bottomline}.
39 > First, however, we discuss the uncertainties one-by-one and we comment
40 > on their impact on the overall result, at least to first order.
41 > Second order effects, such as the one described, are also included.
42 >
43 > \subsection{Statistical uncertainties on the event counts in the $M_T$
44 > peak regions}
45 > These vary between XX and XX \%, depending on the signal region
46 > (different
47 > signal regions have different \met\ requirements, thus they also have
48 > different $M_T$ regions used as control.
49 > Since
50 > the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
51 > fractional uncertainty is pretty much carried through all the way to
52 > the end.  There is also an uncertainty from the finite MC event counts
53 > in the $M_T$ peak regions.  This is also included, but it is smaller.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 > IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 > LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 > INTO THIS AGAIN
59 >
60 > \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
61 > These are taken as 50\%, uncorrelated.  
62 > The primary effect is to introduce a 50\%
63 > uncertainty
64 > on the $W +$ jets and rare BG
65 > background predictions, respectively.  However they also
66 > have an effect on the other BGs via the $M_T$ peak normalization
67 > in a way that tends to reduce the uncertainty.  This is easy
68 > to understand: if the $W$ cross-section is increased by 50\%, then
69 > the $W$ background goes up.  But the number of $M_T$ peak events
70 > attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
71 > scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
72 > BG goes down.  
73 >
74 > \subsection{Scale factors for the tail-to-peak ratios for lepton +
75 >  jets top and W events}
76 > These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
77 > They are studied in CR1 and CR2.  The studies are described
78 > in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
79 > we also give the uncertainty on the scale factors.
80 >
81 > \subsection{Uncertainty on extra jet radiation for dilepton
82 >  background}
83 > As discussed in Section~\ref{sec:jetmultiplicity}, the
84 > jet distribution in
85 > $t\bar{t} \to$
86 > dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
87 > it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
88 > comes from data/MC statistics.  This  
89 > result directly in a XX\% uncertainty on the dilepton BG, which is by far
90 > the most important one.
91 >
92 >
93 > \subsection{Uncertainty on the \ttll\ Acceptance}
94 >
95 > The \ttbar\ background prediction is obtained from MC, with corrections
96 > derived from control samples in data. The uncertainty associated with
97 > the theoretical modeling of the \ttbar\ production and decay is
98 > estimated by comparing the background predictions obtained using
99 > alternative MC samples. It should be noted that the full analysis is
100 > performed with the alternative samples under consideration,
101 > including the derivation of the various data-to-MC scale factors.
102 > The variations considered are
103 >
104 > \begin{itemize}
105 > \item Top mass: The alternative values for the top mass differ
106 >  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
107 >  = 166.5~\GeV$.
108 > \item Jet-parton matching scale: This corresponds to variations in the
109 >  scale at which the Matrix Element partons from Madgraph are matched
110 >  to Parton Shower partons from Pythia. The nominal value is
111 >  $x_q>20~\GeV$. The alternative values used are $x_q>10~\GeV$ and
112 >  $x_q>40~\GeV$.
113 > \item Renormalization and factorization scale: The alternative samples
114 >  correspond to variations in the scale $\times 2$ and $\times 0.5$. The nominal
115 >  value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
116 >  \sum_{\mathrm{jets}} \pt^2$.
117 > \item Alternative generators: Samples produced with different
118 >  generators include MC@NLO and Powheg (NLO generators) and
119 >  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120 >  hadronisation, while POWHEG uses Pythia6.
121 > \item Modeling of taus: The alternative sample does not include
122 >  Tauola and is otherwise identical to the Powheg sample.
123 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
124 > \item The PDF uncertainty is estimated following the PDF4LHC
125 >  recommendations[CITE]. The events are reweighted using alternative
126 >  PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
127 >  alternative eigenvector variations and the ``master equation''. In
128 >  addition, the NNPDF2.1 set with 100 replicas. The central value is
129 >  determined from the mean and the uncertainty is derived from the
130 >  $1\sigma$ range. The overall uncertainty is derived from the envelope of the
131 >  alternative predictions and their uncertainties.
132 >  This effect was studied earlier using 7~TeV samples and found to be negligible.
133 >  \end{itemize}
134  
135  
136 + \begin{table}[!h]
137 + \begin{center}
138 + {\footnotesize
139 + \begin{tabular}{l||c||c|c|c|c|c|c|c}
140 + \hline
141 + Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
142 + Match Up & Match Down \\
143 + \hline
144 + \hline
145 + SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
146 + \hline
147 + SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
148 + \hline
149 + SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
150 + \hline
151 + SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
152 + \hline
153 + SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
154 + \hline
155 + \end{tabular}}
156 + \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
157 + \label{tab:ttdlalt}}
158 + \end{center}
159 + \end{table}
160 +
161 +
162 + \begin{table}[!h]
163 + \begin{center}
164 + {\footnotesize
165 + \begin{tabular}{l||c|c|c|c|c|c|c}
166 + \hline
167 + $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
168 + Match Up & Match Down \\
169 + \hline
170 + \hline
171 + SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
172 + \hline
173 + SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
174 + \hline
175 + SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
176 + \hline
177 + SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
178 + \hline
179 + SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
180 + \hline
181 + \end{tabular}}
182 + \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
183 + \label{tab:fracdiff}}
184 + \end{center}
185 + \end{table}
186 +
187 +
188 + \begin{table}[!h]
189 + \begin{center}
190 + {\footnotesize
191 + \begin{tabular}{l||c|c|c|c|c|c|c}
192 + \hline
193 + $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
194 + Match Up & Match Down \\
195 + \hline
196 + \hline
197 + SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
198 + \hline
199 + SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
200 + \hline
201 + SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
202 + \hline
203 + SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
204 + \hline
205 + SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
206 + \hline
207 + \end{tabular}}
208 + \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
209 + \label{tab:nsig}}
210 + \end{center}
211 + \end{table}
212 +
213 +
214 + \begin{table}[!h]
215 + \begin{center}
216 + \begin{tabular}{l||c|c|c|c}
217 + \hline
218 + Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
219 + & $\Delta$ Match \\
220 + \hline
221 + \hline
222 + SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
223 + \hline
224 + SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
225 + \hline
226 + SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
227 + \hline
228 + SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
229 + \hline
230 + SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
231 + \hline
232 + \end{tabular}
233 + \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
234 + \label{tab:devt}}
235 + \end{center}
236 + \end{table}
237  
238  
239   \begin{figure}[hbt]
240    \begin{center}
241 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
242 <        \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
241 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
242 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
243 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
244 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
245 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
246          \caption{
247 <          \label{fig:kvmet}\protect
248 <          The left plot shows
249 <          K as a function of \MET\ in MC (red) and data (black).
250 <          The bin low edge corresponds to the \MET\ cut, and the
251 <          bins are inclusive.
252 <          The MC used is a sum of all SM MC used in the yield table of
253 <          section \ref{sec:yields}.
254 <          The right plot is the ratio of K in data to MC.
255 <          The ratio is fit to a line whose slope is consistent with zero
256 <          (the fit parameters are
257 <          0.9 $\pm$  0.4 for the intercept and
258 <      0.001 $\pm$ 0.005 for the slope).
259 <        }
260 <  \end{center}
261 < \end{figure}
247 >          \label{fig:ttllsyst}\protect
248 >          Comparison of the \ttll\ central prediction with those using
249 >          alternative MC samples. The blue band corresponds to the
250 >          total statistical error for all data and MC samples. The
251 >          alternative sample predictions are indicated by the
252 >          datapoints. The uncertainties on the alternative predictions
253 >          correspond to the uncorrelated statistical uncertainty from
254 >          the size of the alternative sample only.
255 >        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
256 >      \end{center}
257 >    \end{figure}
258 >
259 > \clearpage
260 >
261 > %
262 > %
263 > %The methodology for determining the systematics on the background
264 > %predictions has not changed with respect to the nominal analysis.
265 > %Because the template method has not changed, the same
266 > %systematic uncertainty is assessed on this prediction (32\%).
267 > %The 50\% uncertainty on the WZ and ZZ background is also unchanged.
268 > %The systematic uncertainty in the OF background prediction based on
269 > %e$\mu$ events has changed, due to the different composition of this
270 > %sample after vetoing events containing b-tagged jets.
271 > %
272 > %As in the nominal analysis, we do not require the e$\mu$ events
273 > %to satisfy the dilepton mass requirement and apply a scaling factor K,
274 > %extracted from MC, to account for the fraction of e$\mu$ events
275 > %which satisfy the dilepton mass requirement. This procedure is used
276 > %in order to improve the statistical precision of the OF background estimate.
277 > %
278 > %For the selection used in the nominal analysis,
279 > %the e$\mu$ sample is completely dominated by $t\bar{t}$
280 > %events, and we observe that K is statistically consistent with constant with
281 > %respect to the \MET\ requirement. However, in this analysis, the $t\bar{t}$
282 > %background is strongly suppressed by the b-veto, and hence the non-$t\bar{t}$
283 > %backgrounds (specifically, $Z\to\tau\tau$ and VV) become more relevant.
284 > %At low \MET, the $Z\to\tau\tau$ background is pronounced, while $t\bar{t}$
285 > %and VV dominate at high \MET\ (see App.~\ref{app:kinemu}).
286 > %Therefore, the sample composition changes
287 > %as the \MET\ requirement is varied, and as a result K depends
288 > %on the \MET\ requirement.
289 > %
290 > %We thus measure K in MC separately for each
291 > %\MET\ requirement, as displayed in Fig.~\ref{fig:kvmet} (left).
292 > %%The systematic uncertainty on K is determined separately for each \MET\
293 > %%requirement by comparing the relative difference in K in data vs. MC.
294 > %The values of K used are the MC predictions
295 > %%and the total systematic uncertainty on the OF prediction
296 > %%as shown in
297 > %(Table \ref{fig:kvmettable}).
298 > %The contribution to the total OF prediction systematic uncertainty
299 > %from K is assessed from the ratio of K in data and MC,
300 > %shown in Fig.~\ref{fig:kvmet} (right).
301 > %The ratio is consistent with unity to roughly 17\%,
302 > %so we take this value as the systematic from K.
303 > %17\% added in quadrature with 7\% from
304 > %the electron to muon efficieny ratio
305 > %(as assessed in the inclusive analysis)
306 > %yields a total systematic of $\sim$18\%
307 > %which we round up to 20\%.
308 > %For \MET\ $>$ 150, there are no OF events in data inside the Z mass window
309 > %so we take a systematic based on the statistical uncertainty
310 > %of the MC prediction for K.
311 > %This value is 25\% for \MET\ $>$ 150 GeV and 60\% for \MET\ $>$ 200 GeV.
312 > %%Although we cannot check the value of K in data for \MET\ $>$ 150
313 > %%because we find no OF events inside the Z mass window for this \MET\
314 > %%cut, the overall OF yields with no dilepton mass requirement
315 > %%agree to roughly 20\% (9 data vs 7.0 $\pm$ 1.1 MC).
316 > %
317 > %
318 > %%Below Old
319 > %
320 > %%In reevaluating the systematics on the OF prediction, however,
321 > %%we observed a different behavior of K as a function of \MET\
322 > %%as was seen in the inclusive analysis.
323 > %
324 > %%Recall that K is the ratio of the number of \emu\ events
325 > %%inside the Z window to the total number of \emu\ events.
326 > %%In the inclusive analysis, it is taken from \ttbar\ MC
327 > %%and used to scale the inclusive \emu\ yield in data.
328 > %%The yield scaled by K is then corrected for
329 > %%the $e$ vs $\mu$ efficiency difference to obtain the
330 > %%final OF prediction.
331 > %
332 > %%Based on the plot in figure \ref{fig:kvmet},
333 > %%we choose to use a different
334 > %%K for each \MET\ cut and assess a systematic uncertainty
335 > %%on the OF prediction based on the difference between
336 > %%K in data and MC.
337 > %%The variation of K as a function of \MET\ is caused
338 > %%by a change in sample composition with increasing \MET.
339 > %%At \MET\ $<$ 60 GeV, the contribution of Z plus jets is
340 > %%not negligible (as it was in the inclusive analysis)
341 > %%because of the b veto. (See appendix \ref{app:kinemu}.)
342 > %%At higher \MET, \ttbar\ and diboson backgrounds dominate.
343 > %
344 > %
345 > %
346 > %
347 > %\begin{figure}[hbt]
348 > %  \begin{center}
349 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_data_ttbm.pdf}
350 > %       \includegraphics[width=0.48\linewidth]{plots/kvmet_ratio.pdf}
351 > %       \caption{
352 > %         \label{fig:kvmet}\protect
353 > %         The left plot shows
354 > %         K as a function of \MET\ in MC (red) and data (black).
355 > %         The bin low edge corresponds to the \MET\ cut, and the
356 > %         bins are inclusive.
357 > %         The MC used is a sum of all SM MC used in the yield table of
358 > %         section \ref{sec:yields}.
359 > %         The right plot is the ratio of K in data to MC.
360 > %         The ratio is fit to a line whose slope is consistent with zero
361 > %         (the fit parameters are
362 > %         0.9 $\pm$  0.4 for the intercept and
363 > %      0.001 $\pm$ 0.005 for the slope).
364 > %       }
365 > %  \end{center}
366 > %\end{figure}
367 > %
368 > %
369 > %
370 > %\begin{table}[htb]
371 > %\begin{center}
372 > %\caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
373 > %The uncertainties shown are the total relative systematic used for the OF prediction,
374 > %which is the systematic uncertainty from K added in quadrature with
375 > %a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
376 > %inclusive analysis.
377 > %}
378 > %\begin{tabular}{lcc}
379 > %\hline
380 > %\MET\ Cut    &    K        &  Relative Systematic \\
381 > %\hline
382 > %%the met zero row is used only for normalization of the money plot.
383 > %%0    &  0.1   &        \\  
384 > %30   &  0.12  &  20\%  \\  
385 > %60   &  0.13  &  20\%  \\  
386 > %80   &  0.12  &  20\%  \\  
387 > %100  &  0.12  &  20\%  \\  
388 > %150  &  0.09  &  25\%  \\  
389 > %200  &  0.06  &  60\%  \\  
390 > %\hline
391 > %\end{tabular}
392 > %\end{center}
393 > %\end{table}
394 >
395 > \subsection{Uncertainty from the isolated track veto}
396 > This is the uncertainty associated with how well the isolated track
397 > veto performance is modeled by the Monte Carlo.  This uncertainty
398 > only applies to the fraction of dilepton BG events that have
399 > a second e/$\mu$ or a one prong $\tau \to h$, with
400 > $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
401 > 7 TEV NUMBER, CHECK).  The uncertainty for these events
402 > is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
403  
404 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
405 + \label{sec:trkveto}
406  
407 + [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
408 + ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
409  
410 < \begin{table}[htb]
410 > \begin{table}[!h]
411   \begin{center}
412 < \caption{\label{fig:kvmettable} The values of K used in the OF background prediction.
413 < The uncertainties shown are the total relative systematic used for the OF prediction,
115 < which is the systematic uncertainty from K added in quadrature with
116 < a 7\% uncertainty from the electron to muon efficieny ratio as assessed in the
117 < inclusive analysis.
118 < }
119 < \begin{tabular}{lcc}
120 < \hline
121 < \MET\ Cut    &    K        &  Relative Systematic \\
122 < \hline
123 < %the met zero row is used only for normalization of the money plot.
124 < %0    &  0.1   &        \\  
125 < 30   &  0.12  &  20\%  \\  
126 < 60   &  0.13  &  20\%  \\  
127 < 80   &  0.12  &  20\%  \\  
128 < 100  &  0.12  &  20\%  \\  
129 < 150  &  0.09  &  25\%  \\  
130 < 200  &  0.06  &  60\%  \\  
412 > {\footnotesize
413 > \begin{tabular}{l||c|c|c|c|c|c|c}
414   \hline
415 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
416 + \hline
417 + \hline
418 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
419 + \hline
420 + \hline
421 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
422 + \hline
423 + \end{tabular}}
424 + \caption{ Fraction of \ttdl\ events with a true isolated track.
425 + \label{tab:trueisotrk}}
426 + \end{center}
427 + \end{table}
428 +
429 +
430 + In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
431 + with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
432 + to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
433 + we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
434 + addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
435 + second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
436 + in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
437 + procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
438 + Furthermore, we test the data and MC
439 + isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
440 + directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
441 + may differ from that of electrons and muons for two reasons. First, the $\tau$ may decay to a hadronic track plus one
442 + or two $\pi^0$'s, which may decay to $\gamma\gamma$ followed by a photon conversion. As shown in Figure~\ref{fig:absiso},
443 + the isolation distribution for charged tracks from $\tau$ decays that are not produced in association with $\pi^0$s are
444 + consistent with that from $\E$s and $\M$s. Since events from single prong $\tau$ decays produced in association with
445 + $\pi^0$s comprise a small fraction of the total sample, and since the kinematics of $\tau$, $\pi^0$ and $\gamma\to e^+e^-$
446 + decays are well-understood, we currently demonstrate that the isolation is well-reproduced for electrons and muons only.
447 + Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
448 + As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
449 + leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
450 + due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
451 +
452 + The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
453 + All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
454 + We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
455 + this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
456 + not depend on the \pt\ of the probe lepton. We therefore restrict the probe \pt\ to be $>$ 30 GeV in order to suppress
457 + fake backgrounds with steeply-falling \pt\ spectra. To suppress non-Z backgrounds (in particular \ttbar) we require
458 + \met\ $<$ 30 GeV and 0 b-tagged events.
459 + The specific criteria for tags and probes for electrons and muons are:
460 +
461 + %We study the isolated track veto efficiency in bins of \njets.
462 + %We are interested in events with at least 4 jets to emulate the hadronic activity in our signal sample. However since
463 + %there are limited statistics for Z + $\geq$4 jet events, we study the isolated track performance in events with
464 +
465 +
466 + \begin{itemize}
467 +  \item{Electrons}
468 +
469 +    \begin{itemize}
470 +    \item{Tag criteria}
471 +
472 +      \begin{itemize}
473 +      \item Electron passes full analysis ID/iso selection
474 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
475 +      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
476 +      \end{itemize}
477 +
478 +    \item{Probe criteria}
479 +      \begin{itemize}
480 +      \item Electron passes full analysis ID selection
481 +      \item \pt\ $>$ 30 GeV
482 +      \end{itemize}
483 +      \end{itemize}
484 +  \item{Muons}
485 +    \begin{itemize}
486 +    \item{Tag criteria}
487 +      \begin{itemize}
488 +      \item Muon passes full analysis ID/iso selection
489 +      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
490 +      \item Matched to 1 of the 2 single muon triggers
491 +        \begin{itemize}
492 +        \item \verb=HLT_IsoMu30_v*=
493 +        \item \verb=HLT_IsoMu30_eta2p1_v*=
494 +        \end{itemize}
495 +      \end{itemize}
496 +    \item{Probe criteria}
497 +      \begin{itemize}
498 +      \item Muon passes full analysis ID selection
499 +      \item \pt\ $>$ 30 GeV
500 +      \end{itemize}
501 +    \end{itemize}
502 + \end{itemize}
503 +
504 + The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
505 + good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
506 + absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
507 + In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
508 + efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
509 + For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
510 + a data vs. MC discrepancy in the isolated track veto efficiency.
511 +
512 +
513 + %This is because our analysis requirement is relative track isolation $<$ 0.1, and m
514 + %This requirement is chosen because most of the tracks rejected by the isolated
515 + %track veto have a \pt\ near the 10 GeV threshold, and our analysis requirement is relative track isolation $<$ 1 GeV.
516 +
517 + \begin{figure}[hbt]
518 +  \begin{center}
519 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
520 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
521 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
522 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
523 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
524 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
525 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
526 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
527 +        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
528 +        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
529 +        \caption{
530 +          \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
531 + for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
532 + }  
533 +      \end{center}
534 + \end{figure}
535 +
536 + \clearpage
537 +
538 + \begin{table}[!ht]
539 + \begin{center}
540 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
541 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
542 + jet multiplicity requirements.}
543 + \begin{tabular}{l|c|c|c|c|c}
544 +
545 + %Electrons:
546 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
547 + %Total MC yields        : 2497277
548 + %Total DATA yields      : 2649453
549 + %Muons:
550 + %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
551 + %Total MC yields        : 3749863
552 + %Total DATA yields      : 4210022
553 + %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
554 + %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
555 +
556 + \hline
557 + \hline
558 + e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
559 + \hline
560 +      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
561 +        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
562 +   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
563 +
564 + \hline
565 + \hline
566 + $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
567 + \hline
568 +      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
569 +        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
570 +   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
571 +
572 + \hline
573 + \hline
574 + e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
575 + \hline
576 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
577 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
578 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
579 +
580 + \hline
581 + \hline
582 + $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
583 + \hline
584 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
585 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
586 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
587 +
588 + \hline
589 + \hline
590 + e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
591 + \hline
592 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
593 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
594 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
595 +
596 + \hline
597 + \hline
598 + $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
599 + \hline
600 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
601 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
602 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
603 +
604 + \hline
605 + \hline
606 + e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
607 + \hline
608 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
609 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
610 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
611 +
612 + \hline
613 + \hline
614 + $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
615 + \hline
616 +      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
617 +        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
618 +   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
619 +
620 + \hline
621 + \hline
622 + e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
623 + \hline
624 +      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
625 +        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
626 +   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
627 +
628 + \hline
629 + \hline
630 + $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
631 + \hline
632 +      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
633 +        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
634 +   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
635 +
636 + \hline
637 + \hline
638 +
639   \end{tabular}
640   \end{center}
641   \end{table}
642 +
643 +
644 + %Figure.~\ref{fig:reliso} compares the relative track isolation
645 + %for events with a track with $\pt > 10~\GeV$ in addition to a selected
646 + %muon for $\Z+4$ jet events and various \ttll\ components. The
647 + %isolation distributions show significant differences, particularly
648 + %between the leptons from a \W\ or \Z\ decay and the tracks arising
649 + %from $\tau$ decays. As can also be seen in the figure, the \pt\
650 + %distribution for the various categories of tracks is different, where
651 + %the decay products from $\tau$s are significantly softer. Since the
652 + %\pt\ enters the denominator of the isolation definition and hence
653 + %alters the isolation variable...
654 +
655 + %\begin{figure}[hbt]
656 + %  \begin{center}
657 + %       \includegraphics[width=0.5\linewidth]{plots/pfiso_njets4_log.png}%
658 + %       \includegraphics[width=0.5\linewidth]{plots/pfpt_njets4.png}
659 + %       \caption{
660 + %         \label{fig:reliso}%\protect
661 + %          Comparison of relative track isolation variable for PF cand probe in Z+jets and ttbar
662 + %          Z+Jets and ttbar dilepton have similar isolation distributions
663 + %          ttbar with leptonic and single prong taus tend to be less
664 + %          isolated. The difference in the isolation can be attributed
665 + %          to the different \pt\ distribution of the samples, since
666 + %          $\tau$ decay products tend to be softer than leptons arising
667 + %          from \W\ or \Z\ decays.}  
668 + %      \end{center}
669 + %\end{figure}
670 +
671 + %       \includegraphics[width=0.5\linewidth]{plots/pfabsiso_njets4_log.png}
672 +
673 +
674 + %BEGIN SECTION TO WRITE OUT
675 + %In detail, the procedure to correct the dilepton background is:
676 +
677 + %\begin{itemize}
678 + %\item Using tag-and-probe studies, we plot the distribution of {\bf absolute} track isolation for identified probe electrons
679 + %and muons {\bf TODO: need to compare the e vs. $\mu$ track iso distributions, they might differ due to e$\to$e$\gamma$}.
680 + %\item We verify that the distribution of absolute track isolation does not depend on the \pt\ of the probe lepton.
681 + %This is due to the fact that this isolation is from ambient PU and jet activity in the event, which is uncorrelated with
682 + %the lepton \pt {\bf TODO: verify this in data and MC.}.
683 + %\item Our requirement is {\bf relative} track isolation $<$ 0.1. For a given \ttll\ MC event, we determine the \pt of the 2nd
684 + %lepton and translate this to find the corresponding requirement on the {\bf absolute} track isolation, which is simply $0.1\times$\pt.
685 + %\item We measure the efficiency to satisfy this requirement in data and MC, and define a scale-factor $SF_{\epsilon(trk)}$ which
686 + %is the ratio of the data-to-MC efficiencies. This scale-factor is applied to the \ttll\ MC event.
687 + %\item {\bf THING 2 we are unsure about: we can measure this SF for electrons and for muons, but we can't measure it for hadronic
688 + %tracks from $\tau$ decays. Verena has showed that the absolute track isolation distribution in hadronic $\tau$ tracks is harder due
689 + %to $\pi^0\to\gamma\gamma$ with $\gamma\to e^+e^-$.}
690 + %\end{itemize}
691 + %END SECTION TO WRITE OUT
692 +
693 +
694 + {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
695 + Why not measure $\epsilon_{fake}$ in the b-veto region?}
696 +
697 + %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
698 + %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
699 + %applying an additional scale factor for the single lepton background
700 + %alone, using the sample in the \mt\ peak region. This scale factor is determined after applying the isolated track
701 + %veto and after subtracting the \ttll\ component, corrected for the
702 + %isolation efficiency derived previously.
703 + %As shown in Figure~\ref{fig:vetoeffcomp}, the efficiency for selecting an
704 + %isolated track in single lepton events is independent of \mt\, so the use of
705 + %an overall scale factor is justified to estimate the contribution in
706 + %the \mt\ tail.
707 + %
708 + %\begin{figure}[hbt]
709 + %  \begin{center}
710 + %       \includegraphics[width=0.5\linewidth]{plots/vetoeff_comp.png}
711 + %       \caption{
712 + %         \label{fig:vetoeffcomp}%\protect
713 + %          Efficiency for selecting an isolated track comparing
714 + %          single lepton \ttlj\ and dilepton \ttll\ events in MC and
715 + %          data as a function of \mt. The
716 + %          efficiencies in \ttlj\ and \ttll\ exhibit no dependence on
717 + %          \mt\, while the data ranges between the two. This behavior
718 + %          is expected since the low \mt\ region is predominantly \ttlj, while the
719 + %          high \mt\ region contains mostly \ttll\ events.}  
720 + %      \end{center}
721 + %\end{figure}
722 +
723 + \subsection{Summary of uncertainties}
724 + \label{sec:bgunc-bottomline}.
725 +
726 + THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines