ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.14 by vimartin, Wed Oct 10 04:03:33 2012 UTC vs.
Revision 1.29 by benhoob, Wed Oct 31 22:19:34 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 [DESCRIBE HERE ONE BY ONE THE UNCERTAINTIES THAT ARE PRESENT IN THE SPREADSHHET
5 FROM WHICH WE CALCULATE THE TOTAL UNCERTAINTY. WE KNOW HOW TO DO THIS
6 AND
7 WE HAVE THE TECHNOLOGY FROM THE 7 TEV ANALYSIS TO PROPAGATE ALL
8 UNCERTAINTIES
9 CORRECTLY THROUGH.  WE WILL DO IT ONCE WE HAVE SETTLED ON THE
10 INDIVIDUAL PIECES WHICH ARE STILL IN FLUX]
11
4   In this Section we discuss the systematic uncertainty on the BG
5   prediction.  This prediction is assembled from the event
6   counts in the peak region of the transverse mass distribution as
# Line 22 | Line 14 | The calculation is done for each signal
14   region,
15   for electrons and muons separately.
16  
17 < The choice to normalizing to the peak region of $M_T$ has the
17 > The choice to normalize to the peak region of $M_T$ has the
18   advantage that some uncertainties, e.g., luminosity, cancel.
19   It does however introduce complications because it couples
20   some of the uncertainties in non-trivial ways.  For example,
# Line 33 | Line 25 | for example,
25   the $t\bar{t} \to$ dilepton BG estimate because it changes the
26   $t\bar{t}$ normalization to the peak region (because some of the
27   events in the peak region are from rare processes).  These effects
28 < are carefully accounted for.  The contribution to the overall
29 < uncertainty from each BG source is tabulated in
28 > are carefully accounted for. The contribution to the overall
29 > uncertainty from each background source is tabulated in
30   Section~\ref{sec:bgunc-bottomline}.
31 < First, however, we discuss the uncertainties one-by-one and we comment
31 > Here we discuss the uncertainties one-by-one and comment
32   on their impact on the overall result, at least to first order.
33   Second order effects, such as the one described, are also included.
34  
35   \subsection{Statistical uncertainties on the event counts in the $M_T$
36   peak regions}
37 < These vary between XX and XX \%, depending on the signal region
37 > These vary between 2\% and 20\%, depending on the signal region
38   (different
39   signal regions have different \met\ requirements, thus they also have
40 < different $M_T$ regions used as control.
40 > different $M_T$ regions used as control).
41   Since
42 < the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
42 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
43   fractional uncertainty is pretty much carried through all the way to
44   the end.  There is also an uncertainty from the finite MC event counts
45   in the $M_T$ peak regions.  This is also included, but it is smaller.
46  
47 + Normalizing to the $M_T$ peak has the distinct advantages that
48 + uncertainties on luminosity, cross-sections, trigger efficiency,
49 + lepton ID, cancel out.
50 + For the low statistics regions with high \met\ requirements, the
51 + price to pay in terms of event count is that statistical uncertainties start
52 + to become significant.  In the future we may consider a different
53 + normalization startegy in the low statistics regions.
54 +
55   \subsection{Uncertainty from the choice of $M_T$ peak region}
56 IN 7 TEV DATA WE HAD SOME SHAPE DIFFERENCES IN THE MTRANS REGION THAT
57 LED US TO CONSERVATIVELY INCLUDE THIS UNCERTAINTY.  WE NEED TO LOOK
58 INTO THIS AGAIN
56  
57 < \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post-veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV).  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67 >
68 > \begin{table}[!h]
69 > \begin{center}
70 > {\footnotesize
71 > \begin{tabular}{l||c|c|c|c|c|c|c}
72 > \hline
73 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 > \hline
75 > \hline
76 > \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 > \hline
78 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 > \hline
81 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 > \hline
83 > \hline
84 > e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 > e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 > \hline
87 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 > \hline
89 > \hline
90 > \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 > \hline
92 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 > \hline
95 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 > \hline
97 > \hline
98 > e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 > e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 > \hline
101 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 > \hline
103 > \end{tabular}}
104 > \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 >  \ttdl\ sample, while the post-veto SFs are applied to the single
106 >  lepton samples. The veto SF is shown for comparison across channels.
107 >  The raw MC is used for backgrounds from rare processes.
108 >  The uncertainties are statistical only.
109 > \label{tab:mtpeaksf2}}
110 > \end{center}
111 > \end{table}
112 >
113 >
114 > \subsection{Uncertainty on the \wjets\ cross-section and the rare MC cross-sections}
115   These are taken as 50\%, uncorrelated.  
116   The primary effect is to introduce a 50\%
117   uncertainty
# Line 71 | Line 125 | attributed to $t\bar{t}$ goes down, and
125   scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126   BG goes down.  
127  
128 < \subsection{Scale factors for the tail-to-peak ratios for lepton +
128 > \subsection{Tail-to-peak ratios for lepton +
129    jets top and W events}
130 < These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131 < They are studied in CR1 and CR2.  The studies are described
132 < in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 < we also give the uncertainty on the scale factors.
130 > The tail-to-peak ratios $R_{top}$ and $R_{wjet}$ are described in Section~\ref{sec:ttp}.
131 > The data/MC scale factors are studied in CR1 and CR2 (Sections~\ref{sec:cr1} and~\ref{sec:cr2}).
132 > Only the scale factor for \wjets, $SFR_{wjet}$, is used, and its
133 > uncertainty is given in Table~\ref{tab:cr1yields}.
134 > This uncertainty affects both $R_{wjet}$ and $R_{top}$.
135 > The additional systematic uncertainty on $R_{top}$ from the variation between optimistic and pessimistic scenarios is given in Section~\ref{sec:ttp}.
136 >
137  
138   \subsection{Uncertainty on extra jet radiation for dilepton
139    background}
# Line 84 | Line 141 | As discussed in Section~\ref{sec:jetmult
141   jet distribution in
142   $t\bar{t} \to$
143   dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
144 < it agree with the data.  The XX\% uncertainties on $K_3$ and $K_4$
144 > it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
145   comes from data/MC statistics.  This  
146 < result directly in a XX\% uncertainty on the dilepton BG, which is by far
146 > results directly in a 3\% uncertainty on the dilepton background, which is by far
147   the most important one.
148  
149 + \subsection{Uncertainty from MC statistics}
150 + This affects mostly the \ttll\ background estimate, which is taken
151 + from
152 + Monte Carlo with appropriate correction factors.  This uncertainty
153 + is negligible in the low \met\ signal regions, and grows to about
154 + 15\% in SRG.
155  
93 \subsection{Uncertainty on the \ttll\ Acceptance}
156  
157 + \subsection{Uncertainty on the \ttll\ Background}
158 + \label{sec:ttdilbkgunc}
159   The \ttbar\ background prediction is obtained from MC, with corrections
160   derived from control samples in data. The uncertainty associated with
161 < the theoretical modeling of the \ttbar\ production and decay is
162 < estimated by comparing the background predictions obtained using
161 > the \ttbar\ background is derived from the level of closure of the
162 > background prediction in CR4 (Table~\ref{tab:cr4yields}) and
163 > CR5 (Table~\ref{tab:cr5yields}). The results from these control region
164 > checks are shown in Figure~\ref{fig:ttdlunc}. The uncertainties assigned
165 > to the \ttdl\ background prediction based on these tests are
166 > 5\% (SRA), 10\% (SRB), 15\% (SRC), 25\% (SRD), 40\% (SRE-G).
167 >
168 > \begin{figure}[hbt]
169 >  \begin{center}
170 >        \includegraphics[width=0.6\linewidth]{plots/ttdilepton_uncertainty.pdf}
171 >        \caption{
172 >          \label{fig:ttdlunc}%\protect
173 >          Results of the comparison of yields in the \mt\ tail comparing the MC prediction (after
174 >          applying SFs) to data for CR4 and CR5 for all the signal
175 >          region requirements considered (A-G). The bands indicate the
176 >          systematic uncertainties assigned based on these tests,
177 >          ranging from $5\%$ for SRA to $40\%$ for SRE-G.}
178 >      \end{center}
179 > \end{figure}
180 >
181 > \clearpage
182 > \subsubsection{Check of the impact of Signal Contamination}
183 >
184 > We examine the contribution of possible signal events in the \ttll\
185 > control regions (CR4 and CR5). It should be emphasized that these
186 > regions are not used to apply data/MC SFs. They are used only to quantify
187 > the level of data/MC agreement and assign a corresponding uncertainty.
188 > As a result, if signal events were to populate these control regions
189 > this would not lead to an increase in the predicted background.
190 >
191 > To illustrate how much signal is expected to populate these control
192 > regions, we examine signal points near the edge of the analysis
193 > sensitivity (m(stop) = 450 m($\chi^0$) = 0 for T2tt, m(stop) = 450
194 > m($\chi^0$) = 0, x=0.75 for T2bw)
195 > Table~\ref{tab:signalcontamination} compares the expected signal
196 > yields and the raw total MC background prediction in the control
197 > regions with the \met\ and \mt\ requirements corresponding to SRB, SRC
198 > and SRD (these are the signal regions that dominate the
199 > sensitivity). The signal contamination is smaller than the uncertainty
200 > on the dilepton background and smaller than the signal/background in
201 > the signal regions.
202 > Based on the fact that the CR4 and CR5 are not used to extract
203 > data/MC scale factors and that we do not observe evidence for signal
204 > contamination in these control regions (CR5, the control region with
205 > larger statistical precision, actually shows a slight deficit of data w.r.t. MC), we
206 > do not assign a correction for signal contamination in these control regions.
207 >
208 > \begin{table}[!h]
209 > \begin{center}
210 > {\small
211 > \begin{tabular}{l l||c|c|c}
212 > \hline
213 > \multicolumn{2}{c||}{Sample}              & CR B & CR C & CR D \\
214 > \hline
215 > \hline
216 > \multirow{4}{*}{CR4} & Raw MC            & $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$ \\
217 > %\hline
218 > & T2tt m(stop) = 450 m($\chi^0$) = 0  & $2.6 \pm 0.3$ $(2\%)$ & $2.0 \pm 0.2$ $(4\%)$ & $1.4 \pm 0.2$ $(7\%)$ \\
219 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $10.5 \pm 0.4$ $(6\%)$ &$6.1 \pm 0.3$ $(12\%)$ & $3.1 \pm 0.2$ $(16\%)$ \\
220 > \hline
221 > \hline
222 > \multirow{4}{*}{CR5} & Raw MC            & $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$ \\
223 > %\hline
224 > & T2tt m(stop) = 450 m($\chi^0$) = 0  & $10.6 \pm 0.6$ $(3\%)$ & $7.8 \pm 0.5$ $(8\%)$ & $5.4 \pm 0.4$ $(14\%)$ \\
225 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0 & $17.3 \pm 0.5$ $(6\%)$ &$11.3 \pm 0.4$ $(11\%)$ & $6.2 \pm 0.3$ $(16\%)$\\
226 > \hline
227 > \hline
228 > \hline
229 > \multirow{4}{*}{SIGNAL} & Raw MC                 & $486.3 \pm 7.8$& $164.3 \pm 4.5$& $61.5 \pm 2.8$ \\
230 > & T2tt m(stop) = 450 m($\chi^0$) = 0    & $65.3 \pm 1.4$ $(13\%)$& $48.8 \pm 1.2$ $(30\%)$& $32.9 \pm 1.0$ $(53\%)$ \\
231 > & T2bw x=0.75 m(stop) = 450 m($\chi^0$) = 0     & $69.3 \pm 1.0$ $(14\%)$& $47.3 \pm 0.8$ $(29\%)$& $27.3 \pm 0.6$ $(44\%)$ \\
232 > \hline
233 > \end{tabular}}
234 > \caption{ Yields in \mt\ tail comparing the raw SM MC prediction to the
235 >  yields for a few signal points on the edge of our sensitivity in the \ttll\
236 >  control regions CR4, CR5 and in the corresponding signal region.
237 >  The numbers in parenthesis are the expected signal yield divided by
238 >  the total background. The uncertainties are statistical only.
239 > \label{tab:signalcontamination}}
240 > \end{center}
241 > \end{table}
242 >
243 > %CR5 DUMP
244 > %Total           & $880.3 \pm 10.4$& $560.0 \pm 8.3$& $306.5 \pm 6.2$& $101.8 \pm 3.6$& $38.0 \pm 2.2$& $16.4 \pm 1.4$& $8.2 \pm 1.0$& $4.6 \pm 0.8$ \\
245 > %\hline
246 > %\hline
247 > %Data            & $941$& $559$& $287$& $95$& $26$& $8$& $5$& $3$ \\
248 > %\hline
249 > %T2tt m(stop) = 250 m($\chi^0$) = 0     & $84.3 \pm 9.2$& $61.9 \pm 7.9$& $35.7 \pm 6.0$& $5.9 \pm 2.4$& $1.0 \pm 1.0$& $1.0 \pm 1.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
250 > %\hline
251 > %T2tt m(stop) = 300 m($\chi^0$) = 50    & $61.4 \pm 4.7$& $53.6 \pm 4.4$& $42.0 \pm 3.9$& $14.3 \pm 2.3$& $7.2 \pm 1.6$& $1.8 \pm 0.8$& $0.7 \pm 0.5$& $0.0 \pm 0.0$ \\
252 > %\hline
253 > %T2tt m(stop) = 300 m($\chi^0$) = 100   & $33.3 \pm 3.5$& $28.6 \pm 3.2$& $19.2 \pm 2.6$& $6.1 \pm 1.5$& $1.8 \pm 0.8$& $0.4 \pm 0.4$& $0.4 \pm 0.4$& $0.4 \pm 0.4$ \\
254 > %\hline
255 > %T2tt m(stop) = 350 m($\chi^0$) = 0     & $33.4 \pm 2.2$& $29.8 \pm 2.1$& $27.3 \pm 2.0$& $15.3 \pm 1.5$& $5.6 \pm 0.9$& $1.9 \pm 0.5$& $0.3 \pm 0.2$& $0.0 \pm 0.0$ \\
256 > %\hline
257 > %T2tt m(stop) = 450 m($\chi^0$) = 0     & $12.0 \pm 0.6$& $11.3 \pm 0.6$& $10.6 \pm 0.6$& $7.8 \pm 0.5$& $5.4 \pm 0.4$& $3.1 \pm 0.3$& $1.8 \pm 0.2$& $0.6 \pm 0.1$ \\
258 > %\hline
259 > %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $48.5 \pm 1.9$& $40.2 \pm 1.7$& $33.0 \pm 1.5$& $14.4 \pm 1.0$& $5.7 \pm 0.6$& $2.7 \pm 0.4$& $1.3 \pm 0.3$& $0.5 \pm 0.2$ \\
260 > %\hline
261 > %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $22.3 \pm 0.6$& $20.2 \pm 0.6$& $17.3 \pm 0.5$& $11.3 \pm 0.4$& $6.2 \pm 0.3$& $3.1 \pm 0.2$& $1.3 \pm 0.1$& $0.7 \pm 0.1$ \\
262 > %\hline
263 >
264 > %CR4 DUMP
265 > %\hline
266 > %Total           & $510.1 \pm 8.0$& $324.2 \pm 6.3$& $168.2 \pm 4.5$& $51.5 \pm 2.5$& $19.6 \pm 1.5$& $7.8 \pm 1.0$& $2.6 \pm 0.6$& $1.1 \pm 0.3$ \\
267 > %\hline
268 > %\hline
269 > %Data            & $462$& $289$& $169$& $45$& $10$& $7$& $5$& $3$ \\
270 > %\hline
271 > %T2tt m(stop) = 250 m($\chi^0$) = 0     & $37.7 \pm 6.1$& $30.9 \pm 5.5$& $18.0 \pm 4.2$& $6.0 \pm 2.5$& $2.0 \pm 1.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
272 > %\hline
273 > %T2tt m(stop) = 300 m($\chi^0$) = 50    & $16.6 \pm 2.4$& $14.4 \pm 2.3$& $11.3 \pm 2.0$& $5.6 \pm 1.4$& $3.2 \pm 1.1$& $1.8 \pm 0.8$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
274 > %\hline
275 > %T2tt m(stop) = 300 m($\chi^0$) = 100   & $9.6 \pm 1.8$& $6.4 \pm 1.5$& $4.6 \pm 1.3$& $0.7 \pm 0.5$& $0.4 \pm 0.4$& $0.0 \pm 0.0$& $0.0 \pm 0.0$& $0.0 \pm 0.0$ \\
276 > %\hline
277 > %T2tt m(stop) = 350 m($\chi^0$) = 0     & $8.2 \pm 1.1$& $7.6 \pm 1.0$& $5.7 \pm 0.9$& $3.4 \pm 0.7$& $1.9 \pm 0.5$& $0.6 \pm 0.3$& $0.3 \pm 0.2$& $0.1 \pm 0.1$ \\
278 > %\hline
279 > %T2tt m(stop) = 450 m($\chi^0$) = 0     & $3.1 \pm 0.3$& $2.9 \pm 0.3$& $2.6 \pm 0.3$& $2.0 \pm 0.2$& $1.4 \pm 0.2$& $1.0 \pm 0.2$& $0.4 \pm 0.1$& $0.2 \pm 0.1$ \\
280 > %\hline
281 > %T2bw m(stop) = 350 x=0.5 m($\chi^0$) = 0       & $52.6 \pm 1.9$& $42.6 \pm 1.7$& $32.1 \pm 1.5$& $14.7 \pm 1.0$& $5.5 \pm 0.6$& $1.9 \pm 0.4$& $0.6 \pm 0.2$& $0.3 \pm 0.1$ \\
282 > %\hline
283 > %T2bw m(stop) = 450 x=0.75 m($\chi^0$) = 0      & $16.9 \pm 0.5$& $14.9 \pm 0.5$& $10.5 \pm 0.4$& $6.1 \pm 0.3$& $3.1 \pm 0.2$& $1.5 \pm 0.1$& $0.6 \pm 0.1$& $0.3 \pm 0.1$ \\
284 > %\hline
285 >
286 >
287 > \subsubsection{Check of the uncertainty on the \ttll\ Background}
288 >
289 > We check that the systematic uncertainty assigned to the \ttll\ background prediction
290 > covers the uncertainty associated with
291 > the theoretical modeling of the \ttbar\ production and decay
292 > by comparing the background predictions obtained using
293   alternative MC samples. It should be noted that the full analysis is
294   performed with the alternative samples under consideration,
295   including the derivation of the various data-to-MC scale factors.
# Line 103 | Line 297 | The variations considered are
297  
298   \begin{itemize}
299   \item Top mass: The alternative values for the top mass differ
300 <  from the central value by $5~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
300 >  from the central value by $6~\GeV$: $m_{\mathrm{top}} = 178.5~\GeV$ and $m_{\mathrm{top}}
301    = 166.5~\GeV$.
302   \item Jet-parton matching scale: This corresponds to variations in the
303    scale at which the Matrix Element partons from Madgraph are matched
# Line 115 | Line 309 | The variations considered are
309    value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
310    \sum_{\mathrm{jets}} \pt^2$.
311   \item Alternative generators: Samples produced with different
312 <  generators include MC@NLO and Powheg (NLO generators) and
119 <  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
120 <  hadronisation, while POWHEG uses Pythia6.
312 >  generators, Powheg (our default) and Madgraph.
313   \item Modeling of taus: The alternative sample does not include
314    Tauola and is otherwise identical to the Powheg sample.
315    This effect was studied earlier using 7~TeV samples and found to be negligible.
316   \item The PDF uncertainty is estimated following the PDF4LHC
317 <  recommendations[CITE]. The events are reweighted using alternative
317 >  recommendations. The events are reweighted using alternative
318    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
319 <  alternative eigenvector variations and the ``master equation''. In
320 <  addition, the NNPDF2.1 set with 100 replicas. The central value is
319 >  alternative eigenvector variations and the ``master equation''.
320 >  The NNPDF2.1 set with 100 replicas is also used. The central value is
321    determined from the mean and the uncertainty is derived from the
322    $1\sigma$ range. The overall uncertainty is derived from the envelope of the
323    alternative predictions and their uncertainties.
324    This effect was studied earlier using 7~TeV samples and found to be negligible.
325    \end{itemize}
326  
327 <
328 < \begin{table}[!h]
329 < \begin{center}
330 < {\footnotesize
331 < \begin{tabular}{l||c||c|c|c|c|c|c|c}
332 < \hline
333 < Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
334 < Match Up & Match Down \\
335 < \hline
336 < \hline
337 < SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
338 < \hline
339 < SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
340 < \hline
341 < SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
342 < \hline
343 < SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
344 < \hline
345 < SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
154 < \hline
155 < \end{tabular}}
156 < \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
157 < \label{tab:ttdlalt}}
158 < \end{center}
159 < \end{table}
327 > \begin{figure}[hbt]
328 >  \begin{center}
329 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
330 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
331 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
332 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
333 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
334 >        \caption{
335 >          \label{fig:ttllsyst}\protect
336 >          Comparison of the \ttll\ central prediction with those using
337 >          alternative MC samples. The blue band corresponds to the
338 >          total statistical error for all data and MC samples. The
339 >          alternative sample predictions are indicated by the
340 >          datapoints. The uncertainties on the alternative predictions
341 >          correspond to the uncorrelated statistical uncertainty from
342 >          the size of the alternative sample only.  Note the
343 >          suppressed vertical scales.}
344 >      \end{center}
345 >    \end{figure}
346  
347  
348   \begin{table}[!h]
# Line 172 | Line 358 | SRA     & $2$ & $2$ & $5$ & $12$ & $7$ & $
358   \hline
359   SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
360   \hline
361 < SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
362 < \hline
363 < SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
364 < \hline
365 < SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
361 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
362 > % \hline
363 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
364 > % \hline
365 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
366   \hline
367   \end{tabular}}
368 < \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
368 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
369 >  samples in
370 > the higher statistics regions SRA and SRB.  These differences
371 > are based on the central values of the predictions.  For a fuller
372 > picture
373 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
374   \label{tab:fracdiff}}
375   \end{center}
376   \end{table}
377  
378  
379 < \begin{table}[!h]
380 < \begin{center}
381 < {\footnotesize
191 < \begin{tabular}{l||c|c|c|c|c|c|c}
192 < \hline
193 < $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
194 < Match Up & Match Down \\
195 < \hline
196 < \hline
197 < SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
198 < \hline
199 < SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
200 < \hline
201 < SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
202 < \hline
203 < SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
204 < \hline
205 < SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
206 < \hline
207 < \end{tabular}}
208 < \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
209 < \label{tab:nsig}}
210 < \end{center}
211 < \end{table}
379 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
380 > for regions A through E.  We can make the following observations based
381 > on this Figure.
382  
383 + \begin{itemize}
384 + \item In the tighter signal regions we are running out of
385 +  statistics.    
386 + \item Within the limited statistics, there is no evidence that the
387 +  situation changes as we go from signal region A to signal region E.
388 + %Therefore, we assess a systematic based on the relatively high
389 + %statistics
390 + %test in signal region A, and apply the same systematic uncertainty
391 + %to all other regions.
392 + \item In signal regions B and above, the uncertainties assigned in Section~\ref{sec:ttdilbkgunc}
393 + fully cover the alternative MC variations.
394 + \item In order to fully (as opposed as 1$\sigma$) cover the
395 + alternative MC variations in region A we would have to take a
396 + systematic
397 + uncertainty of $\approx 10\%$ instead of $5\%$.  This would be driven by the
398 + scale up/scale down variations, see Table~\ref{tab:fracdiff}.
399 + \end{itemize}
400  
401 < \begin{table}[!h]
401 > \begin{table}[!ht]
402   \begin{center}
403 < \begin{tabular}{l||c|c|c|c}
217 < \hline
218 < Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
219 < & $\Delta$ Match \\
220 < \hline
221 < \hline
222 < SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
403 > \begin{tabular}{l|c|c}
404   \hline
405 < SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
405 >            Sample
406 >            &                K3   & K4\\
407   \hline
226 SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
408   \hline
409 < SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
410 < \hline
411 < SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
409 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
410 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
411 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
412 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
413 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
414 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
415 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
416 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
417   \hline
418   \end{tabular}
419 < \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
420 < \label{tab:devt}}
419 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
420 >  fraction of events with additional hard jets from radiation in
421 >  \ttll\ events. \label{tab:njetskfactors_met100}}
422   \end{center}
423   \end{table}
424  
425  
426 + However, we have two pieces of information indicating that the
427 + scale up/scale down variations are inconsistent with the data.
428 + These are described below.
429 +
430 + The first piece of information is that the jet multiplicity in the scale
431 + up/scale down sample is the most inconsistent with the data.  This is shown
432 + in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
433 + $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
434 + different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
435 + distribution
436 + for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
437 + and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
438 + equivalent $N_{jets}$ plots for the default Powheg MC, see
439 + Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
440 +
441   \begin{figure}[hbt]
442    \begin{center}
443 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
444 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
445 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
446 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
447 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
448 <        \caption{
449 <          \label{fig:ttllsyst}\protect
248 <          Comparison of the \ttll\ central prediction with those using
249 <          alternative MC samples. The blue band corresponds to the
250 <          total statistical error for all data and MC samples. The
251 <          alternative sample predictions are indicated by the
252 <          datapoints. The uncertainties on the alternative predictions
253 <          correspond to the uncorrelated statistical uncertainty from
254 <          the size of the alternative sample only.
255 <        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
443 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
444 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
445 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
446 >        \caption{
447 >          \label{fig:dileptonnjets_scaleup}%\protect
448 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
449 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
450        \end{center}
451 <    \end{figure}
451 > \end{figure}
452 >
453 > \begin{figure}[hbt]
454 >  \begin{center}
455 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
456 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
457 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
458 >        \caption{
459 >          \label{fig:dileptonnjets_scaledw}%\protect
460 >          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
461 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
462 >      \end{center}
463 > \end{figure}
464 >
465 >
466 > \clearpage
467 >
468 > The second piece of information is that we have performed closure
469 > tests in CR5 using the alternative MC samples.  These are exactly
470 > the same tests as the one performed in Section~\ref{sec:CR5} on the
471 > Powheg sample.  As we argued previously, this is a very powerful
472 > test of the background calculation.
473 > The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
474 > Concentrating on the relatively high statistics CR5A region, we see
475 > for all \ttbar\ MC samples except scale up/scale down we obtain
476 > closure within 1$\sigma$.  The scale up/scale down tests closes
477 > worse, only within 2$\sigma$.  This again is evidence that the
478 > scale up/scale down variations are in disagreement with the data.
479 >
480 > \input{hugeCR5Table.tex}
481 >
482 > Based on the two observations above, we argue that the MC
483 > scale up/scale down variations are too extreme.  We feel that
484 > a reasonable choice would be to take one-half of the scale up/scale
485 > down variations in our MC.  This factor of 1/2 would then bring
486 > the discrepancy in the closure test of
487 > Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
488 > from about 2$\sigma$ to about 1$\sigma$.
489 >
490 > Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
491 > up/scale
492 > down variations by a factor 2, we can see that a systematic
493 > uncertainty
494 > of 5\% covers the range of reasonable variations from different MC
495 > models in SRA and SRB.
496 > %The alternative MC models indicate that a 6\% systematic uncertainty
497 > %covers the range of reasonable variations.
498 > Note that this 5\% is also consistent with the level at which we are
499 > able to test the closure of the method with alternative samples in CR5 for the high statistics
500 > regions (Table~\ref{tab:hugecr5yields}).
501 > The range of reasonable variations obtained with the alternative
502 > samples are consistent with the uncertainties assigned for
503 > the \ttll\ background based on the closure of the background
504 > predictions and data in CR4 and CR5.
505 >
506 >
507 >
508 >
509 >
510 > %\begin{table}[!h]
511 > %\begin{center}
512 > %{\footnotesize
513 > %\begin{tabular}{l||c||c|c|c|c|c|c|c}
514 > %\hline
515 > %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
516 > %Up & Scale Down &
517 > %Match Up & Match Down \\
518 > %\hline
519 > %\hline
520 > %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
521 > %\hline
522 > %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
523 > %\hline
524 > %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
525 > %\hline
526 > %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
527 > %\hline
528 > %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
529 > %\hline
530 > %\end{tabular}}
531 > %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
532 > %\label{tab:ttdlalt}}
533 > %\end{center}
534 > %\end{table}
535 >
536 >
537 >
538 >
539 > %\begin{table}[!h]
540 > %\begin{center}
541 > %{\footnotesize
542 > %\begin{tabular}{l||c|c|c|c|c|c|c}
543 > %\hline
544 > %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
545 > %Match Up & Match Down \\
546 > %\hline
547 > %\hline
548 > %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
549 > %\hline
550 > %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
551 > %\hline
552 > %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
553 > %\hline
554 > %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
555 > %\hline
556 > %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
557 > %\hline
558 > %\end{tabular}}
559 > %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
560 > %\label{tab:nsig}}
561 > %\end{center}
562 > %\end{table}
563 >
564 >
565 > %\begin{table}[!h]
566 > %\begin{center}
567 > %\begin{tabular}{l||c|c|c|c}
568 > %\hline
569 > %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
570 > %& $\Delta$ Match \\
571 > %\hline
572 > %\hline
573 > %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
574 > %\hline
575 > %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
576 > %\hline
577 > %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
578 > %\hline
579 > %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
580 > %\hline
581 > %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
582 > %\hline
583 > %\end{tabular}
584 > %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
585 > %\label{tab:devt}}
586 > %\end{center}
587 > %\end{table}
588 >
589 >
590  
591   \clearpage
592  
# Line 397 | Line 729 | This is the uncertainty associated with
729   veto performance is modeled by the Monte Carlo.  This uncertainty
730   only applies to the fraction of dilepton BG events that have
731   a second e/$\mu$ or a one prong $\tau \to h$, with
732 < $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is 1/3 (THIS WAS THE
733 < 7 TEV NUMBER, CHECK).  The uncertainty for these events
734 < is XX\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
735 <
404 < \subsubsection{Isolated Track Veto: Tag and Probe Studies}
405 < \label{sec:trkveto}
406 <
407 < [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
408 < ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
732 > $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
733 > Table~\ref{tab:trueisotrk}.
734 > The uncertainty for these events
735 > is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
736  
737   \begin{table}[!h]
738   \begin{center}
# Line 426 | Line 753 | e Frac. \ttdl\ with true iso. trk.      & $
753   \end{center}
754   \end{table}
755  
756 + \subsubsection{Isolated Track Veto: Tag and Probe Studies}
757 + \label{sec:trkveto}
758 +
759  
760   In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
761   with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
762   to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
763 < we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
763 > we would need to apply a data-to-MC scale factor in order to correctly
764 > predict the \ttll\ background.
765 >
766 > This study
767   addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
768   second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
769   in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
770   procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
771 +
772   Furthermore, we test the data and MC
773   isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
774   directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
# Line 447 | Line 781 | decays are well-understood, we currently
781   Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
782   As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
783   leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
784 < due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
784 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
785  
786 < The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
786 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
787   All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
788   We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
789   this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
# Line 504 | Line 838 | The specific criteria for tags and probe
838   The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
839   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
840   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
841 < In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
841 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
842   efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
843   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
844   a data vs. MC discrepancy in the isolated track veto efficiency.
# Line 537 | Line 871 | for events with the \njets\ requirement
871  
872   \begin{table}[!ht]
873   \begin{center}
540 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
541 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
542 jet multiplicity requirements.}
874   \begin{tabular}{l|c|c|c|c|c}
875  
876   %Electrons:
# Line 637 | Line 968 | $\mu$ + $\geq$4 jets   &           $>$ 1
968   \hline
969  
970   \end{tabular}
971 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
972 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
973 + jet multiplicity requirements.}
974   \end{center}
975   \end{table}
976  
977 + \clearpage
978 + \subsection{Summary of uncertainties}
979 + \label{sec:bgunc-bottomline}
980 +
981 + The contribution from each source to the total uncertainty on the background yield is given in Tables~\ref{tab:relativeuncertaintycomponents} and~\ref{tab:uncertaintycomponents} for the relative and absolute uncertainties, respectively. In the low-\met\ regions the dominant uncertainty comes from the top tail-to-peak ratio, $R_{top}$ (Section~\ref{sec:ttp}), while in the high-\met\ regions the \ttll\ systematic uncertainty dominates (Section~\ref{sec:ttdilbkgunc}).
982 +
983 + \input{uncertainties_table.tex}
984 +
985 +
986 +
987 +
988  
989   %Figure.~\ref{fig:reliso} compares the relative track isolation
990   %for events with a track with $\pt > 10~\GeV$ in addition to a selected
# Line 691 | Line 1036 | $\mu$ + $\geq$4 jets   &           $>$ 1
1036   %END SECTION TO WRITE OUT
1037  
1038  
1039 < {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
1040 < Why not measure $\epsilon_{fake}$ in the b-veto region?}
1039 > %{\bf fix me: What you have written in the next paragraph does not
1040 > %explain how $\epsilon_{fake}$ is measured.
1041 > %Why not measure $\epsilon_{fake}$ in the b-veto region?}
1042  
1043   %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
1044   %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
# Line 720 | Line 1066 | Why not measure $\epsilon_{fake}$ in the
1066   %      \end{center}
1067   %\end{figure}
1068  
723 \subsection{Summary of uncertainties}
724 \label{sec:bgunc-bottomline}.
1069  
1070 < THIS NEEDS TO BE WRITTEN
1070 >
1071 > % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines