ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.15 by claudioc, Thu Oct 11 07:33:42 2012 UTC vs.
Revision 1.19 by vimartin, Fri Oct 12 20:09:46 2012 UTC

# Line 25 | Line 25 | for example,
25   the $t\bar{t} \to$ dilepton BG estimate because it changes the
26   $t\bar{t}$ normalization to the peak region (because some of the
27   events in the peak region are from rare processes).  These effects
28 < are carefully accounted for.  The contribution to the overall
29 < uncertainty from each BG source is tabulated in
30 < Section~\ref{sec:bgunc-bottomline}.
31 < First, however, we discuss the uncertainties one-by-one and we comment
28 > are carefully accounted for.  
29 > %%%TO ADD BACK IN IF WE HAVE SYSTEMATICS TABLE.
30 > %The contribution to the overall
31 > %uncertainty from each BG source is tabulated in
32 > %Section~\ref{sec:bgunc-bottomline}.
33 > Here we discuss the uncertainties one-by-one and comment
34   on their impact on the overall result, at least to first order.
35   Second order effects, such as the one described, are also included.
36  
# Line 39 | Line 41 | These vary between 2\% and 20\%, dependi
41   signal regions have different \met\ requirements, thus they also have
42   different $M_T$ regions used as control.
43   Since
44 < the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
44 > the major backgrounds, eg, $t\bar{t}$ are normalized to the peak regions, this
45   fractional uncertainty is pretty much carried through all the way to
46   the end.  There is also an uncertainty from the finite MC event counts
47   in the $M_T$ peak regions.  This is also included, but it is smaller.
# Line 47 | Line 49 | in the $M_T$ peak regions.  This is also
49   Normalizing to the $M_T$ peak has the distinct advantages that
50   uncertainties on luminosity, cross-sections, trigger efficiency,
51   lepton ID, cancel out.
52 < For the low statistics regions with high \met requirements, the
53 < price to pay in terms of event count statistical uncertainties starts
52 > For the low statistics regions with high \met\ requirements, the
53 > price to pay in terms of event count is that statistical uncertainties start
54   to become significant.  In the future we may consider a different
55   normalization startegy in the low statistics regions.
56  
# Line 130 | Line 132 | BG goes down.
132   These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
133   They are studied in CR1 and CR2.  The studies are described
134   in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
135 < we also give the uncertainty on the scale factors.  See
135 > we also give the uncertainty on the scale factors (see
136   Tables~\ref{tab:cr1yields}
137 < and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
137 > and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top}$).
138  
139   \subsection{Uncertainty on extra jet radiation for dilepton
140    background}
# Line 142 | Line 144 | $t\bar{t} \to$
144   dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
145   it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
146   comes from data/MC statistics.  This  
147 < result directly in a 3\% uncertainty on the dilepton BG, which is by far
147 > result directly in a 3\% uncertainty on the dilepton background, which is by far
148   the most important one.
149  
150 + \subsection{Uncertainty from MC statistics}
151 + This affects mostly the \ttll\ background estimate, which is taken
152 + from
153 + Monte Carlo with appropriate correction factors.  This uncertainty
154 + is negligible in the low \met\ signal regions, and grows to about
155 + 15\% in SRG.
156  
149 \subsection{Uncertainty on the \ttll\ Acceptance}
157  
158 < [CLAUDIO: WE NEED TO DISCUSS THIS A LITTLE MORE -- THEN I CAN PUT THE
152 < WORDS IN]
158 > \subsection{Uncertainty on the \ttll\ Acceptance}
159  
160   The \ttbar\ background prediction is obtained from MC, with corrections
161   derived from control samples in data. The uncertainty associated with
# Line 179 | Line 185 | The variations considered are
185    Tauola and is otherwise identical to the Powheg sample.
186    This effect was studied earlier using 7~TeV samples and found to be negligible.
187   \item The PDF uncertainty is estimated following the PDF4LHC
188 <  recommendations[CITE]. The events are reweighted using alternative
188 >  recommendations. The events are reweighted using alternative
189    PDF sets for CT10 and MSTW2008 and the uncertainties for each are derived using the
190    alternative eigenvector variations and the ``master equation''. In
191    addition, the NNPDF2.1 set with 100 replicas. The central value is
# Line 189 | Line 195 | The variations considered are
195    This effect was studied earlier using 7~TeV samples and found to be negligible.
196    \end{itemize}
197  
198 <
199 < \begin{table}[!h]
200 < \begin{center}
201 < {\footnotesize
202 < \begin{tabular}{l||c||c|c|c|c|c|c|c}
203 < \hline
204 < Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
205 < Match Up & Match Down \\
206 < \hline
207 < \hline
208 < SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
209 < \hline
210 < SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
211 < \hline
212 < SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
213 < \hline
214 < SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
215 < \hline
216 < SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
211 < \hline
212 < \end{tabular}}
213 < \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
214 < \label{tab:ttdlalt}}
215 < \end{center}
216 < \end{table}
198 > \begin{figure}[hbt]
199 >  \begin{center}
200 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
201 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
202 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
203 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
204 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
205 >        \caption{
206 >          \label{fig:ttllsyst}\protect
207 >          Comparison of the \ttll\ central prediction with those using
208 >          alternative MC samples. The blue band corresponds to the
209 >          total statistical error for all data and MC samples. The
210 >          alternative sample predictions are indicated by the
211 >          datapoints. The uncertainties on the alternative predictions
212 >          correspond to the uncorrelated statistical uncertainty from
213 >          the size of the alternative sample only.  Note the
214 >          suppressed vertical scales.}
215 >      \end{center}
216 >    \end{figure}
217  
218  
219   \begin{table}[!h]
# Line 229 | Line 229 | SRA     & $2$ & $2$ & $5$ & $12$ & $7$ & $
229   \hline
230   SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
231   \hline
232 < SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
233 < \hline
234 < SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
235 < \hline
236 < SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
232 > % SRC    & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
233 > % \hline
234 > % SRD    & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
235 > % \hline
236 > % SRE    & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
237   \hline
238   \end{tabular}}
239 < \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
239 > \caption{ Relative difference in \ttdl\ predictions for alternative MC
240 >  samples in
241 > the higher statistics regions SRA and SRB.  These differences
242 > are based on the central values of the predictions.  For a fuller
243 > picture
244 > of the situation, including statistical uncertainites, see Fig.~\ref{fig:ttllsyst}.
245   \label{tab:fracdiff}}
246   \end{center}
247   \end{table}
248  
249  
250 < \begin{table}[!h]
251 < \begin{center}
252 < {\footnotesize
248 < \begin{tabular}{l||c|c|c|c|c|c|c}
249 < \hline
250 < $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
251 < Match Up & Match Down \\
252 < \hline
253 < \hline
254 < SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
255 < \hline
256 < SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
257 < \hline
258 < SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
259 < \hline
260 < SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
261 < \hline
262 < SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
263 < \hline
264 < \end{tabular}}
265 < \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
266 < \label{tab:nsig}}
267 < \end{center}
268 < \end{table}
250 > In Fig.~\ref{fig:ttllsyst} we compare the alternate MC \ttll\ background predictions
251 > for regions A through E.  We can make the following observations based
252 > on this Figure.
253  
254 + \begin{itemize}
255 + \item In the tighter signal regions we are running out of
256 +  statistics.    
257 + \item Within the limited statistics, there is no evidence that the
258 +  situation changes as we go from signal region A to signal region E.
259 + Therefore, we assess a systematic based on the relatively high
260 + statistics
261 + test in signal region A, and apply the same systematic uncertainty
262 + to all other regions.
263 + \item In order to fully (as opposed as 1$\sigma$) cover the
264 + alternative MC variations in region A we would have to take a
265 + systematic
266 + uncertainty of $\approx 10\%$.  This would be driven by the
267 + scale up/scale down variations, see Table~\ref{tab:fracdiff}.
268 + \end{itemize}
269  
270 < \begin{table}[!h]
270 > \begin{table}[!ht]
271   \begin{center}
272 < \begin{tabular}{l||c|c|c|c}
274 < \hline
275 < Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
276 < & $\Delta$ Match \\
277 < \hline
272 > \begin{tabular}{l|c|c}
273   \hline
274 < SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
274 >            Sample
275 >            &                K3   & K4\\
276   \hline
281 SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
277   \hline
278 < SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
279 < \hline
280 < SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
281 < \hline
282 < SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
278 > Powheg     & $1.01 \pm 0.03$ & $0.93 \pm 0.04$ \\
279 > Madgraph  & $1.01 \pm 0.04$ & $0.92 \pm 0.04$ \\
280 > Mass Up    & $1.00 \pm 0.04$ & $0.92 \pm 0.04$ \\
281 > Mass Down    & $1.06 \pm 0.04$ & $0.99 \pm 0.05$ \\
282 > Scale Up    & $1.14 \pm 0.04$ & $1.23 \pm 0.06$ \\
283 > Scale Down    & $0.89 \pm 0.03$ & $0.74 \pm 0.03$ \\
284 > Match Up    & $1.02 \pm 0.04$ & $0.97 \pm 0.04$ \\
285 > Match Down    & $1.02 \pm 0.04$ & $0.91 \pm 0.04$ \\
286   \hline
287   \end{tabular}
288 < \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
289 < \label{tab:devt}}
288 > \caption{$\met>100$ GeV: Data/MC scale factors used to account for differences in the
289 >  fraction of events with additional hard jets from radiation in
290 >  \ttll\ events. \label{tab:njetskfactors_met100}}
291   \end{center}
292   \end{table}
293  
294  
295 + However, we have two pieces of information indicating that the
296 + scale up/scale down variations are inconsistent with the data.
297 + These are described below.
298 +
299 + The first piece of information is that the jet multiplicity in the scale
300 + up/scale down sample is the most inconsistent with the data.  This is shown
301 + in Table~\ref{tab:njetskfactors_met100}, where we tabulate the
302 + $K_3$ and $K_4$ factors of Section~\ref{sec:jetmultiplicity} for
303 + different \ttbar\ MC samples.  The data/MC disagreement in the $N_{jets}$
304 + distribution
305 + for the scale up/scale down samples is also shown in Fig.~\ref{fig:dileptonnjets_scaleup}
306 + and~\ref{fig:dileptonnjets_scaledw}.  This should be compared with the
307 + equivalent $N_{jets}$ plots for the default Powheg MC, see
308 + Fig.~\ref{fig:dileptonnjets}, which agrees much better with data.
309 +
310   \begin{figure}[hbt]
311    \begin{center}
312 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
313 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
314 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
315 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
316 <        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
317 <        \caption{
318 <          \label{fig:ttllsyst}\protect
305 <          Comparison of the \ttll\ central prediction with those using
306 <          alternative MC samples. The blue band corresponds to the
307 <          total statistical error for all data and MC samples. The
308 <          alternative sample predictions are indicated by the
309 <          datapoints. The uncertainties on the alternative predictions
310 <          correspond to the uncorrelated statistical uncertainty from
311 <          the size of the alternative sample only.
312 <        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
312 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaleup.pdf}
313 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaleup.pdf}%
314 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaleup.pdf}
315 >        \caption{
316 >          \label{fig:dileptonnjets_scaleup}%\protect
317 >          SCALE UP: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
318 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
319        \end{center}
320 <    \end{figure}
320 > \end{figure}
321 >
322 > \begin{figure}[hbt]
323 >  \begin{center}
324 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_mueg_scaledw.pdf}
325 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_diel_scaledw.pdf}%
326 >        \includegraphics[width=0.5\linewidth]{plots/njets_all_met50_dimu_scaledw.pdf}
327 >        \caption{
328 >          \label{fig:dileptonnjets_scaledw}%\protect
329 >          SCALE DOWN: Comparison of the jet multiplicity distribution in data and MC for dilepton events in the \E-\M\
330 >          (top), \E-\E\ (bottom left) and \M-\M\ (bottom right) channels.}  
331 >      \end{center}
332 > \end{figure}
333 >
334 >
335 > \clearpage
336 >
337 > The second piece of information is that we have performed closure
338 > tests in CR5 using the alternative MC samples.  These are exactly
339 > the same tests as the one performed in Section~\ref{sec:CR5} on the
340 > Powheg sample.  As we argued previously, this is a very powerful
341 > test of the background calculation.
342 > The results of this test are summarized in Table~\ref{tab:hugecr5yields}.
343 > Concentrating on the relatively high statistics CR5A region, we see
344 > for all \ttbar\ MC samples except scale up/scale down we obtain
345 > closure within 1$\sigma$.  The scale up/scale down tests closes
346 > worse, only within 2$\sigma$.  This again is evidence that the
347 > scale up/scale down variations are in disagreement with the data.
348 >
349 > \input{hugeCR5Table.tex}
350 >
351 > Based on the two observations above, we argue that the MC
352 > scale up/scale down variations are too extreme.  We feel that
353 > a reasonable choice would be to take one-half of the scale up/scale
354 > down variations in our MC.  This factor of 1/2 would then bring
355 > the discrepancy in the closure test of
356 > Table~\ref{tab:hugecr5yields} for the scale up/scale down variations
357 > from about 2$\sigma$ to about 1$\sigma$.
358 >
359 > Then, going back to Table~\ref{tab:fracdiff}, and reducing the scale
360 > up/scale
361 > down variations by a factor 2, we can see that a systematic
362 > uncertainty
363 > of 6\% would fully cover all of the variations from different MC
364 > samples in SRA and SRB.
365 > {\bf Thus, we take a 6\% systematic uncertainty,  constant as a
366 > function of signal region, as the systematic due to alternative MC
367 > models.}
368 > Note that this 6\% is also consistent with the level at which we are
369 > able
370 > to test the closure of the method in CR5 for the high statistics
371 > regions
372 > (Table~\ref{tab:hugecr5yields}).
373 >
374 >
375 >
376 >
377 >
378 >
379 > %\begin{table}[!h]
380 > %\begin{center}
381 > %{\footnotesize
382 > %\begin{tabular}{l||c||c|c|c|c|c|c|c}
383 > %\hline
384 > %Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale
385 > %Up & Scale Down &
386 > %Match Up & Match Down \\
387 > %\hline
388 > %\hline
389 > %SRA     & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
390 > %\hline
391 > %SRB     & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
392 > %\hline
393 > %SRC     & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
394 > %\hline
395 > %SRD     & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
396 > %\hline
397 > %SRE     & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
398 > %\hline
399 > %\end{tabular}}
400 > %\caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
401 > %\label{tab:ttdlalt}}
402 > %\end{center}
403 > %\end{table}
404 >
405 >
406 >
407 >
408 > %\begin{table}[!h]
409 > %\begin{center}
410 > %{\footnotesize
411 > %\begin{tabular}{l||c|c|c|c|c|c|c}
412 > %\hline
413 > %$N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
414 > %Match Up & Match Down \\
415 > %\hline
416 > %\hline
417 > %SRA     & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
418 > %\hline
419 > %SRB     & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
420 > %\hline
421 > %SRC     & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
422 > %\hline
423 > %SRD     & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
424 > %\hline
425 > %SRE     & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
426 > %\hline
427 > %\end{tabular}}
428 > %\caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
429 > %\label{tab:nsig}}
430 > %\end{center}
431 > %\end{table}
432 >
433 >
434 > %\begin{table}[!h]
435 > %\begin{center}
436 > %\begin{tabular}{l||c|c|c|c}
437 > %\hline
438 > %Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
439 > %& $\Delta$ Match \\
440 > %\hline
441 > %\hline
442 > %SRA     & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
443 > %\hline
444 > %SRB     & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
445 > %\hline
446 > %SRC     & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
447 > %\hline
448 > %SRD     & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
449 > %\hline
450 > %SRE     & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
451 > %\hline
452 > %\end{tabular}
453 > %\caption{ Av. difference in \ttdl\ events for alternative sample pairs.
454 > %\label{tab:devt}}
455 > %\end{center}
456 > %\end{table}
457 >
458 >
459  
460   \clearpage
461  
# Line 457 | Line 601 | a second e/$\mu$ or a one prong $\tau \t
601   $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
602   Table~\ref{tab:trueisotrk}.
603   The uncertainty for these events
604 < is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
604 > is 6\% and is obtained from tag-and-probe studies, see Section~\ref{sec:trkveto}.
605  
606   \begin{table}[!h]
607   \begin{center}
# Line 506 | Line 650 | decays are well-understood, we currently
650   Second, hadronic tracks may undergo nuclear interactions and hence their tracks may not be reconstructed.
651   As discussed above, independent studies show that the MC reproduces the hadronic tracking efficiency within 4\%,
652   leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
653 < due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
653 > due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as negligible.
654  
655   The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
656   All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
# Line 563 | Line 707 | The specific criteria for tags and probe
707   The absolute track isolation distributions for passing probes are displayed in Fig.~\ref{fig:tnp}. In general we observe
708   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
709   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
710 < In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
710 > In the $\geq 0$ and $\geq 1$ jet bins where the efficiencies can be tested with statistical precision, the data and MC
711   efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
712   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
713   a data vs. MC discrepancy in the isolated track veto efficiency.
# Line 596 | Line 740 | for events with the \njets\ requirement
740  
741   \begin{table}[!ht]
742   \begin{center}
599 \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
600 on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
601 jet multiplicity requirements.}
743   \begin{tabular}{l|c|c|c|c|c}
744  
745   %Electrons:
# Line 696 | Line 837 | $\mu$ + $\geq$4 jets   &           $>$ 1
837   \hline
838  
839   \end{tabular}
840 + \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
841 + on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
842 + jet multiplicity requirements.}
843   \end{center}
844   \end{table}
845  
# Line 780 | Line 924 | $\mu$ + $\geq$4 jets   &           $>$ 1
924   %      \end{center}
925   %\end{figure}
926  
927 < \subsection{Summary of uncertainties}
928 < \label{sec:bgunc-bottomline}.
927 > % \subsection{Summary of uncertainties}
928 > % \label{sec:bgunc-bottomline}.
929  
930 < THIS NEEDS TO BE WRITTEN
930 > % THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines