ViewVC Help
View File | Revision Log | Show Annotations | Root Listing
root/cvsroot/UserCode/benhoob/cmsnotes/StopSearch/systematics.tex
(Generate patch)

Comparing UserCode/benhoob/cmsnotes/StopSearch/systematics.tex (file contents):
Revision 1.6 by burkett, Thu Oct 4 20:16:07 2012 UTC vs.
Revision 1.15 by claudioc, Thu Oct 11 07:33:42 2012 UTC

# Line 1 | Line 1
1   %\section{Systematics Uncertainties on the Background Prediction}
2   %\label{sec:systematics}
3  
4 < [ADD INTRODUCTORY BLURB ON UNCERTAINTIES \\
5 < ADD COMPARISONS OF ALL THE ALTERNATIVE SAMPLES FOR ALL THE SIGNAL
6 < REGIONS \\
7 < LIST ALL THE UNCERTAINTIES INCLUDED AND THEIR VALUES]
4 > In this Section we discuss the systematic uncertainty on the BG
5 > prediction.  This prediction is assembled from the event
6 > counts in the peak region of the transverse mass distribution as
7 > well as Monte Carlo
8 > with a number of correction factors, as described previously.
9 > The
10 > final uncertainty on the prediction is built up from the uncertainties in these
11 > individual
12 > components.
13 > The calculation is done for each signal
14 > region,
15 > for electrons and muons separately.
16 >
17 > The choice to normalizing to the peak region of $M_T$ has the
18 > advantage that some uncertainties, e.g., luminosity, cancel.
19 > It does however introduce complications because it couples
20 > some of the uncertainties in non-trivial ways.  For example,
21 > the primary effect of an uncertainty on the rare MC cross-section
22 > is to introduce an uncertainty in the rare MC background estimate
23 > which comes entirely from MC.   But this uncertainty also affects,
24 > for example,
25 > the $t\bar{t} \to$ dilepton BG estimate because it changes the
26 > $t\bar{t}$ normalization to the peak region (because some of the
27 > events in the peak region are from rare processes).  These effects
28 > are carefully accounted for.  The contribution to the overall
29 > uncertainty from each BG source is tabulated in
30 > Section~\ref{sec:bgunc-bottomline}.
31 > First, however, we discuss the uncertainties one-by-one and we comment
32 > on their impact on the overall result, at least to first order.
33 > Second order effects, such as the one described, are also included.
34 >
35 > \subsection{Statistical uncertainties on the event counts in the $M_T$
36 > peak regions}
37 > These vary between 2\% and 20\%, depending on the signal region
38 > (different
39 > signal regions have different \met\ requirements, thus they also have
40 > different $M_T$ regions used as control.
41 > Since
42 > the major BG, eg, $t\bar{t}$ are normalized to the peak regions, this
43 > fractional uncertainty is pretty much carried through all the way to
44 > the end.  There is also an uncertainty from the finite MC event counts
45 > in the $M_T$ peak regions.  This is also included, but it is smaller.
46 >
47 > Normalizing to the $M_T$ peak has the distinct advantages that
48 > uncertainties on luminosity, cross-sections, trigger efficiency,
49 > lepton ID, cancel out.
50 > For the low statistics regions with high \met requirements, the
51 > price to pay in terms of event count statistical uncertainties starts
52 > to become significant.  In the future we may consider a different
53 > normalization startegy in the low statistics regions.
54 >
55 > \subsection{Uncertainty from the choice of $M_T$ peak region}
56 >
57 > This choice affects the scale factors of Table~\ref{tab:mtpeaksf}.  
58 > If the $M_T$ peak region is not well modelled, this would introduce an
59 > uncertainty.
60 >
61 > We have tested this possibility by recalculating the post veto scale factors for a different
62 > choice
63 > of $M_T$ peak region ($40 < M_T < 100$ GeV instead of the default
64 > $50 < M_T < 80$ GeV.  This is shown in Table~\ref{tab:mtpeaksf2}.  
65 > The two results for the scale factors are very compatible.
66 > We do not take any systematic uncertainty for this possible effect.
67 >
68 > \begin{table}[!h]
69 > \begin{center}
70 > {\footnotesize
71 > \begin{tabular}{l||c|c|c|c|c|c|c}
72 > \hline
73 > Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG\\
74 > \hline
75 > \hline
76 > \multicolumn{8}{c}{$50 \leq \mt \leq 80$} \\
77 > \hline
78 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.02$ & $0.95 \pm 0.03$ & $0.90 \pm 0.05$ & $0.98 \pm 0.08$ & $0.97 \pm 0.13$ & $0.85 \pm 0.18$ & $0.92 \pm 0.31$ \\
79 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.02$ & $0.95 \pm 0.03$ & $0.91 \pm 0.05$ & $1.00 \pm 0.09$ & $0.99 \pm 0.13$ & $0.85 \pm 0.18$ & $0.96 \pm 0.31$ \\
80 > \hline
81 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $1.01 \pm 0.02$ & $1.02 \pm 0.04$ & $1.02 \pm 0.06$ & $1.00 \pm 0.09$ & $1.04 \pm 0.11$ \\
82 > \hline
83 > \hline
84 > e pre-veto \mt-SF          & $0.95 \pm 0.02$ & $0.95 \pm 0.03$ & $0.94 \pm 0.06$ & $0.85 \pm 0.09$ & $0.84 \pm 0.13$ & $1.05 \pm 0.23$ & $1.04 \pm 0.33$ \\
85 > e post-veto \mt-SF         & $0.92 \pm 0.02$ & $0.91 \pm 0.03$ & $0.91 \pm 0.06$ & $0.74 \pm 0.08$ & $0.75 \pm 0.13$ & $0.91 \pm 0.22$ & $1.01 \pm 0.33$ \\
86 > \hline
87 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.96 \pm 0.02$ & $0.97 \pm 0.03$ & $0.87 \pm 0.05$ & $0.89 \pm 0.08$ & $0.86 \pm 0.11$ & $0.97 \pm 0.14$ \\
88 > \hline
89 > \hline
90 > \multicolumn{8}{c}{$40 \leq \mt \leq 100$} \\
91 > \hline
92 > $\mu$ pre-veto \mt-SF      & $1.02 \pm 0.01$ & $0.97 \pm 0.02$ & $0.91 \pm 0.05$ & $0.95 \pm 0.06$ & $0.97 \pm 0.10$ & $0.80 \pm 0.14$ & $0.74 \pm 0.22$ \\
93 > $\mu$ post-veto \mt-SF     & $1.00 \pm 0.01$ & $0.96 \pm 0.02$ & $0.90 \pm 0.04$ & $0.98 \pm 0.07$ & $1.00 \pm 0.11$ & $0.80 \pm 0.15$ & $0.81 \pm 0.24$ \\
94 > \hline
95 > $\mu$ veto \mt-SF          & $0.98 \pm 0.01$ & $0.99 \pm 0.01$ & $0.99 \pm 0.02$ & $1.03 \pm 0.03$ & $1.03 \pm 0.05$ & $1.01 \pm 0.08$ & $1.09 \pm 0.09$ \\
96 > \hline
97 > \hline
98 > e pre-veto \mt-SF          & $0.97 \pm 0.01$ & $0.93 \pm 0.02$ & $0.94 \pm 0.04$ & $0.81 \pm 0.06$ & $0.86 \pm 0.10$ & $0.95 \pm 0.17$ & $1.06 \pm 0.26$ \\
99 > e post-veto \mt-SF         & $0.94 \pm 0.01$ & $0.91 \pm 0.02$ & $0.91 \pm 0.04$ & $0.71 \pm 0.06$ & $0.82 \pm 0.10$ & $0.93 \pm 0.17$ & $1.09 \pm 0.27$ \\
100 > \hline
101 > e veto \mt-SF      & $0.97 \pm 0.01$ & $0.98 \pm 0.01$ & $0.97 \pm 0.02$ & $0.88 \pm 0.04$ & $0.95 \pm 0.06$ & $0.98 \pm 0.08$ & $1.03 \pm 0.09$ \\
102 > \hline
103 > \end{tabular}}
104 > \caption{ \mt\ peak Data/MC scale factors. The pre-veto SFs are applied to the
105 >  \ttdl\ sample, while the post-veto SFs are applied to the single
106 >  lepton samples. The veto SF is shown for comparison across channels.
107 >  The raw MC is used for backgrounds from rare processes.
108 >  The uncertainties are statistical only.
109 > \label{tab:mtpeaksf2}}
110 > \end{center}
111 > \end{table}
112 >
113 >
114 > \subsection{Uncertainty on the Wjets cross-section and the rare MC cross-sections}
115 > These are taken as 50\%, uncorrelated.  
116 > The primary effect is to introduce a 50\%
117 > uncertainty
118 > on the $W +$ jets and rare BG
119 > background predictions, respectively.  However they also
120 > have an effect on the other BGs via the $M_T$ peak normalization
121 > in a way that tends to reduce the uncertainty.  This is easy
122 > to understand: if the $W$ cross-section is increased by 50\%, then
123 > the $W$ background goes up.  But the number of $M_T$ peak events
124 > attributed to $t\bar{t}$ goes down, and since the $t\bar{t}$ BG is
125 > scaled to the number of $t\bar{t}$ events in the peak, the $t\bar{t}$
126 > BG goes down.  
127 >
128 > \subsection{Scale factors for the tail-to-peak ratios for lepton +
129 >  jets top and W events}
130 > These tail-to-peak ratios are described in Section~\ref{sec:ttp}.
131 > They are studied in CR1 and CR2.  The studies are described
132 > in Sections~\ref{sec:cr1} and~\ref{sec:cr2}), respectively, where
133 > we also give the uncertainty on the scale factors.  See
134 > Tables~\ref{tab:cr1yields}
135 > and~\ref{tab:cr2yields}, scale factors $SFR_{wjet}$ and $SFR_{top})$.
136 >
137 > \subsection{Uncertainty on extra jet radiation for dilepton
138 >  background}
139 > As discussed in Section~\ref{sec:jetmultiplicity}, the
140 > jet distribution in
141 > $t\bar{t} \to$
142 > dilepton MC is rescaled by the factors $K_3$ and $K_4$ to make
143 > it agree with the data.  The 3\% uncertainties on $K_3$ and $K_4$
144 > comes from data/MC statistics.  This  
145 > result directly in a 3\% uncertainty on the dilepton BG, which is by far
146 > the most important one.
147 >
148  
149   \subsection{Uncertainty on the \ttll\ Acceptance}
150  
151 + [CLAUDIO: WE NEED TO DISCUSS THIS A LITTLE MORE -- THEN I CAN PUT THE
152 + WORDS IN]
153 +
154   The \ttbar\ background prediction is obtained from MC, with corrections
155   derived from control samples in data. The uncertainty associated with
156   the theoretical modeling of the \ttbar\ production and decay is
# Line 31 | Line 174 | The variations considered are
174    value for the scale used is $Q^2 = m_{\mathrm{top}}^2 +
175    \sum_{\mathrm{jets}} \pt^2$.
176   \item Alternative generators: Samples produced with different
177 <  generators include MC@NLO and Powheg (NLO generators) and
35 <  Pythia (LO). It may also be noted that MC@NLO uses Herwig6 for the
36 <  hadronisation, while POWHEG uses Pythia6.
177 >  generators, Powheg (our default) and Madgraph.
178   \item Modeling of taus: The alternative sample does not include
179    Tauola and is otherwise identical to the Powheg sample.
180    This effect was studied earlier using 7~TeV samples and found to be negligible.
# Line 49 | Line 190 | The variations considered are
190    \end{itemize}
191  
192  
193 + \begin{table}[!h]
194 + \begin{center}
195 + {\footnotesize
196 + \begin{tabular}{l||c||c|c|c|c|c|c|c}
197 + \hline
198 + Sample              & Powheg & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
199 + Match Up & Match Down \\
200 + \hline
201 + \hline
202 + SRA      & $579 \pm 10$ & $569 \pm 16$ & $591 \pm 18$ & $610 \pm 22$ & $651 \pm 22$ & $537 \pm 16$ & $578 \pm 18$ & $570 \pm 17$  \\
203 + \hline
204 + SRB      & $328 \pm 7$ & $307 \pm 11$ & $329 \pm 13$ & $348 \pm 15$ & $344 \pm 15$ & $287 \pm 10$ & $313 \pm 13$ & $307 \pm 12$  \\
205 + \hline
206 + SRC      & $111 \pm 4$ & $99 \pm 5$ & $107 \pm 7$ & $113 \pm 8$ & $124 \pm 8$ & $95 \pm 6$ & $93 \pm 6$ & $106 \pm 6$  \\
207 + \hline
208 + SRD      & $39 \pm 2$ & $35 \pm 3$ & $41 \pm 4$ & $41 \pm 5$ & $47 \pm 5$ & $33 \pm 3$ & $31 \pm 3$ & $39 \pm 4$  \\
209 + \hline
210 + SRE      & $14 \pm 1$ & $15 \pm 2$ & $17 \pm 3$ & $12 \pm 3$ & $15 \pm 3$ & $13 \pm 2$ & $12 \pm 2$ & $16 \pm 2$  \\
211 + \hline
212 + \end{tabular}}
213 + \caption{ \ttdl\ predictions for alternative MC samples. The uncertainties are statistical only.
214 + \label{tab:ttdlalt}}
215 + \end{center}
216 + \end{table}
217 +
218 +
219 + \begin{table}[!h]
220 + \begin{center}
221 + {\footnotesize
222 + \begin{tabular}{l||c|c|c|c|c|c|c}
223 + \hline
224 + $\Delta/N$  [\%] & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
225 + Match Up & Match Down \\
226 + \hline
227 + \hline
228 + SRA      & $2$ & $2$ & $5$ & $12$ & $7$ & $0$ & $2$  \\
229 + \hline
230 + SRB      & $6$ & $0$ & $6$ & $5$ & $12$ & $5$ & $6$  \\
231 + \hline
232 + SRC      & $10$ & $3$ & $2$ & $12$ & $14$ & $16$ & $4$  \\
233 + \hline
234 + SRD      & $10$ & $6$ & $6$ & $21$ & $15$ & $19$ & $0$  \\
235 + \hline
236 + SRE      & $6$ & $17$ & $15$ & $2$ & $12$ & $17$ & $8$  \\
237 + \hline
238 + \end{tabular}}
239 + \caption{ Relative difference in \ttdl\ predictions for alternative MC samples.
240 + \label{tab:fracdiff}}
241 + \end{center}
242 + \end{table}
243 +
244 +
245 + \begin{table}[!h]
246 + \begin{center}
247 + {\footnotesize
248 + \begin{tabular}{l||c|c|c|c|c|c|c}
249 + \hline
250 + $N \sigma$     & Madgraph & Mass Up & Mass Down & Scale Up & Scale Down &
251 + Match Up & Match Down \\
252 + \hline
253 + \hline
254 + SRA      & $0.38$ & $0.42$ & $1.02$ & $2.34$ & $1.58$ & $0.01$ & $0.33$  \\
255 + \hline
256 + SRB      & $1.17$ & $0.07$ & $0.98$ & $0.76$ & $2.29$ & $0.78$ & $1.11$  \\
257 + \hline
258 + SRC      & $1.33$ & $0.37$ & $0.26$ & $1.24$ & $1.82$ & $1.97$ & $0.54$  \\
259 + \hline
260 + SRD      & $0.82$ & $0.46$ & $0.38$ & $1.32$ & $1.27$ & $1.47$ & $0.00$  \\
261 + \hline
262 + SRE      & $0.32$ & $0.75$ & $0.66$ & $0.07$ & $0.66$ & $0.83$ & $0.38$  \\
263 + \hline
264 + \end{tabular}}
265 + \caption{ N $\sigma$ difference in \ttdl\ predictions for alternative MC samples.
266 + \label{tab:nsig}}
267 + \end{center}
268 + \end{table}
269 +
270 +
271 + \begin{table}[!h]
272 + \begin{center}
273 + \begin{tabular}{l||c|c|c|c}
274 + \hline
275 + Av. $\Delta$ Evt.     & Alt. Gen. & $\Delta$ Mass & $\Delta$ Scale
276 + & $\Delta$ Match \\
277 + \hline
278 + \hline
279 + SRA      & $5.0$ ($1\%$) & $9.6$ ($2\%$) & $56.8$ ($10\%$) & $4.4$ ($1\%$)  \\
280 + \hline
281 + SRB      & $10.4$ ($3\%$) & $9.6$ ($3\%$) & $28.2$ ($9\%$) & $2.8$ ($1\%$)  \\
282 + \hline
283 + SRC      & $5.7$ ($5\%$) & $3.1$ ($3\%$) & $14.5$ ($13\%$) & $6.4$ ($6\%$)  \\
284 + \hline
285 + SRD      & $1.9$ ($5\%$) & $0.1$ ($0\%$) & $6.9$ ($18\%$) & $3.6$ ($9\%$)  \\
286 + \hline
287 + SRE      & $0.5$ ($3\%$) & $2.3$ ($16\%$) & $1.0$ ($7\%$) & $1.8$ ($12\%$)  \\
288 + \hline
289 + \end{tabular}
290 + \caption{ Av. difference in \ttdl\ events for alternative sample pairs.
291 + \label{tab:devt}}
292 + \end{center}
293 + \end{table}
294 +
295 +
296   \begin{figure}[hbt]
297    \begin{center}
298 <        \includegraphics[width=0.8\linewidth]{plots/n_dl_syst_comp.png}
298 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRA.pdf}%
299 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRB.pdf}
300 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRC.pdf}%
301 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRD.pdf}
302 >        \includegraphics[width=0.5\linewidth]{plots/n_dl_comp_SRE.pdf}
303          \caption{
304 <          \label{fig:ttllsyst}%\protect
304 >          \label{fig:ttllsyst}\protect
305            Comparison of the \ttll\ central prediction with those using
306            alternative MC samples. The blue band corresponds to the
307            total statistical error for all data and MC samples. The
308            alternative sample predictions are indicated by the
309            datapoints. The uncertainties on the alternative predictions
310            correspond to the uncorrelated statistical uncertainty from
311 <          the size of the alternative sample only.}
311 >          the size of the alternative sample only.
312 >        [TO BE UPDATED WITH THE LATEST SELECTION AND SFS]}
313        \end{center}
314      \end{figure}
315  
316 <
316 > \clearpage
317  
318   %
319   %
# Line 200 | Line 449 | The variations considered are
449   %\end{center}
450   %\end{table}
451  
452 + \subsection{Uncertainty from the isolated track veto}
453 + This is the uncertainty associated with how well the isolated track
454 + veto performance is modeled by the Monte Carlo.  This uncertainty
455 + only applies to the fraction of dilepton BG events that have
456 + a second e/$\mu$ or a one prong $\tau \to h$, with
457 + $P_T > 10$ GeV in $|\eta| < 2.4$.  This fraction is about 1/3, see
458 + Table~\ref{tab:trueisotrk}.
459 + The uncertainty for these events
460 + is 6\% and is obtained from Tag and Probe studies of Section~\ref{sec:trkveto}
461 +
462 + \begin{table}[!h]
463 + \begin{center}
464 + {\footnotesize
465 + \begin{tabular}{l||c|c|c|c|c|c|c}
466 + \hline
467 + Sample              & SRA & SRB & SRC & SRD & SRE & SRF & SRG \\
468 + \hline
469 + \hline
470 + $\mu$ Frac. \ttdl\ with true iso. trk.   & $0.32 \pm 0.03$ & $0.30 \pm 0.03$ & $0.32 \pm 0.06$ & $0.34 \pm 0.10$ & $0.35 \pm 0.16$ & $0.40 \pm 0.24$ & $0.50 \pm 0.32$  \\
471 + \hline
472 + \hline
473 + e Frac. \ttdl\ with true iso. trk.       & $0.32 \pm 0.03$ & $0.31 \pm 0.04$ & $0.33 \pm 0.06$ & $0.38 \pm 0.11$ & $0.38 \pm 0.19$ & $0.60 \pm 0.31$ & $0.61 \pm 0.45$  \\
474 + \hline
475 + \end{tabular}}
476 + \caption{ Fraction of \ttdl\ events with a true isolated track.
477 + \label{tab:trueisotrk}}
478 + \end{center}
479 + \end{table}
480  
481 < \subsection{Isolated Track Veto: Tag and Probe Studies}
481 > \subsubsection{Isolated Track Veto: Tag and Probe Studies}
482 > \label{sec:trkveto}
483  
206 [EVERYTHING IS 7TEV HERE, UPDATE WITH NEW RESULTS \\
207 ADD TABLE WITH FRACTION OF EVENTS THAT HAVE A TRUE ISOLATED TRACK]
484  
485   In this section we compare the performance of the isolated track veto in data and MC using tag-and-probe studies
486   with samples of Z$\to$ee and Z$\to\mu\mu$. The purpose of these studies is to demonstrate that the efficiency
487   to satisfy the isolated track veto requirements is well-reproduced in the MC, since if this were not the case
488 < we would need to apply a data-to-MC scale factor in order to correctly predict the \ttll\ background. This study
488 > we would need to apply a data-to-MC scale factor in order to correctly
489 > predict the \ttll\ background.
490 >
491 > This study
492   addresses possible data vs. MC discrepancies for the {\bf efficiency} to identify (and reject) events with a
493   second {\bf genuine} lepton (e, $\mu$, or $\tau\to$1-prong). It does not address possible data vs. MC discrepancies
494   in the fake rate for rejecting events without a second genuine lepton; this is handled separately in the top normalization
495   procedure by scaling the \ttlj\ contribution to match the data in the \mt\ peak after applying the isolated track veto.
496 +
497   Furthermore, we test the data and MC
498   isolated track veto efficiencies for electrons and muons since we are using a Z tag-and-probe technique, but we do not
499   directly test the performance for hadronic tracks from $\tau$ decays. The performance for hadronic $\tau$ decay products
# Line 228 | Line 508 | As discussed above, independent studies
508   leading to a total background uncertainty of less than 0.5\% (after taking into account the fraction of the total background
509   due to hadronic $\tau$ decays with \pt\ $>$ 10 GeV tracks), and we hence regard this effect as neglgigible.
510  
511 < The tag-and-probe studies are performed in the full 2011 data sample, and compared with the DYJets madgraph sample.
511 > The tag-and-probe studies are performed in the full data sample, and compared with the DYJets madgraph sample.
512   All events must contain a tag-probe pair (details below) with opposite-sign and satisfying the Z mass requirement 76--106 GeV.
513   We compare the distributions of absolute track isolation for probe electrons/muons in data vs. MC. The contributions to
514   this isolation sum are from ambient energy in the event from underlying event, pile-up and jet activitiy, and hence do
# Line 250 | Line 530 | The specific criteria for tags and probe
530  
531        \begin{itemize}
532        \item Electron passes full analysis ID/iso selection
533 <      \item \pt\ $>$ 30 GeV, $|\eta|<2.5$
534 <
255 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
256 <        \begin{itemize}
257 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_SC8_Mass30_v*=
258 <        \item \verb=HLT_Ele17_CaloIdVT_CaloIsoVT_TrkIdT_TrkIsoVT_Ele8_Mass30_v*=
259 <        \end{itemize}
533 >      \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
534 >      \item Matched to the single electron trigger \verb=HLT_Ele27_WP80_v*=
535        \end{itemize}
536  
537      \item{Probe criteria}
# Line 271 | Line 546 | The specific criteria for tags and probe
546        \begin{itemize}
547        \item Muon passes full analysis ID/iso selection
548        \item \pt\ $>$ 30 GeV, $|\eta|<2.1$
549 <      \item Matched to 1 of the 2 electron tag-and-probe triggers
549 >      \item Matched to 1 of the 2 single muon triggers
550          \begin{itemize}
551          \item \verb=HLT_IsoMu30_v*=
552          \item \verb=HLT_IsoMu30_eta2p1_v*=
# Line 289 | Line 564 | The absolute track isolation distributio
564   good agreement between data and MC. To be more quantitative, we compare the data vs. MC efficiencies to satisfy
565   absolute track isolation requirements varying from $>$ 1 GeV to $>$ 5 GeV, as summarized in Table~\ref{tab:isotrk}.
566   In the $\geq$0 and $\geq$1 jet bins where the efficiencies can be tested with statistical precision, the data and MC
567 < efficiencies agree within 7\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
567 > efficiencies agree within 6\%, and we apply this as a systematic uncertainty on the isolated track veto efficiency.
568   For the higher jet multiplicity bins the statistical precision decreases, but we do not observe any evidence for
569   a data vs. MC discrepancy in the isolated track veto efficiency.
570  
# Line 300 | Line 575 | a data vs. MC discrepancy in the isolate
575  
576   \begin{figure}[hbt]
577    \begin{center}
578 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
579 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
580 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
581 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
582 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
583 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
584 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
585 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
586 <        %\includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
587 <        %\includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
578 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_0j.pdf}%
579 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_0j.pdf}
580 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_1j.pdf}%
581 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_1j.pdf}
582 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_2j.pdf}%
583 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_2j.pdf}
584 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_3j.pdf}%
585 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_3j.pdf}
586 >        \includegraphics[width=0.3\linewidth]{plots/el_tkiso_4j.pdf}%
587 >        \includegraphics[width=0.3\linewidth]{plots/mu_tkiso_4j.pdf}
588          \caption{
589            \label{fig:tnp} Comparison of the absolute track isolation in data vs. MC for electrons (left) and muons (right)
590   for events with the \njets\ requirement varied from \njets\ $\geq$ 0 to \njets\ $\geq$ 4.
# Line 324 | Line 599 | for events with the \njets\ requirement
599   \caption{\label{tab:isotrk} Comparison of the data vs. MC efficiencies to satisfy the indicated requirements
600   on the absolute track isolation, and the ratio of these two efficiencies. Results are indicated separately for electrons and muons and for various
601   jet multiplicity requirements.}
602 < \begin{tabular}{l|l|c|c|c|c|c}
602 > \begin{tabular}{l|c|c|c|c|c}
603 >
604 > %Electrons:
605 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&1)==1))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_Ele27_WP80_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&8)==8))&&(probe->pt()>30))&&(drprobe<0.05)
606 > %Total MC yields        : 2497277
607 > %Total DATA yields      : 2649453
608 > %Muons:
609 > %Selection            : ((((((((((abs(tagAndProbeMass-91)<15)&&(qProbe*qTag<0))&&((eventSelection&2)==2))&&(abs(tag->eta())<2.1))&&(tag->pt()>30.0))&&(HLT_IsoMu24_tag > 0))&&(met<30))&&(nbl==0))&&((leptonSelection&65536)==65536))&&(probe->pt()>30))&&(drprobe<0.05)
610 > %Total MC yields        : 3749863
611 > %Total DATA yields      : 4210022
612 > %Info in <TCanvas::MakeDefCanvas>:  created default TCanvas with name c1
613 > %Info in <TCanvas::Print>: pdf file plots/nvtx.pdf has been created
614 >
615   \hline
616   \hline
617 < e + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
617 > e + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
618   \hline
619 <      data   &  0.088 $\pm$ 0.0003   &  0.030 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.007 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
620 <        mc   &  0.087 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0001   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
621 <   data/mc   &     1.01 $\pm$ 0.00   &     0.99 $\pm$ 0.01   &     0.97 $\pm$ 0.01   &     0.95 $\pm$ 0.01   &     0.93 $\pm$ 0.01  \\
619 >      data   &  0.098 $\pm$ 0.0002   &  0.036 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.006 $\pm$ 0.0000  \\
620 >        mc   &  0.097 $\pm$ 0.0002   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001   &  0.005 $\pm$ 0.0000  \\
621 >   data/mc   &     1.00 $\pm$ 0.00   &     1.04 $\pm$ 0.00   &     1.04 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
622 >
623   \hline
624   \hline
625 < $\mu$ + $\geq$0 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
625 > $\mu$ + $\geq$0 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
626   \hline
627 <      data   &  0.087 $\pm$ 0.0002   &  0.031 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.008 $\pm$ 0.0001   &  0.005 $\pm$ 0.0001  \\
628 <        mc   &  0.085 $\pm$ 0.0001   &  0.030 $\pm$ 0.0001   &  0.014 $\pm$ 0.0000   &  0.008 $\pm$ 0.0000   &  0.005 $\pm$ 0.0000  \\
629 <   data/mc   &     1.02 $\pm$ 0.00   &     1.06 $\pm$ 0.00   &     1.06 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
627 >      data   &  0.094 $\pm$ 0.0001   &  0.034 $\pm$ 0.0001   &  0.016 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
628 >        mc   &  0.093 $\pm$ 0.0001   &  0.033 $\pm$ 0.0001   &  0.015 $\pm$ 0.0001   &  0.009 $\pm$ 0.0000   &  0.006 $\pm$ 0.0000  \\
629 >   data/mc   &     1.01 $\pm$ 0.00   &     1.03 $\pm$ 0.00   &     1.03 $\pm$ 0.01   &     1.03 $\pm$ 0.01   &     1.02 $\pm$ 0.01  \\
630 >
631   \hline
343 \hline
344 e + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
632   \hline
633 <      data   &  0.099 $\pm$ 0.0008   &  0.038 $\pm$ 0.0005   &  0.019 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003   &  0.008 $\pm$ 0.0002  \\
347 <        mc   &  0.100 $\pm$ 0.0004   &  0.038 $\pm$ 0.0003   &  0.019 $\pm$ 0.0002   &  0.012 $\pm$ 0.0002   &  0.008 $\pm$ 0.0001  \\
348 <   data/mc   &     0.99 $\pm$ 0.01   &     1.00 $\pm$ 0.02   &     0.99 $\pm$ 0.02   &     0.98 $\pm$ 0.03   &     0.97 $\pm$ 0.03  \\
633 > e + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
634   \hline
635 +      data   &  0.110 $\pm$ 0.0005   &  0.044 $\pm$ 0.0003   &  0.022 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.009 $\pm$ 0.0002  \\
636 +        mc   &  0.110 $\pm$ 0.0005   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
637 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.02   &     1.08 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
638 +
639   \hline
351 $\mu$ + $\geq$1 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
640   \hline
641 <      data   &  0.100 $\pm$ 0.0006   &  0.041 $\pm$ 0.0004   &  0.022 $\pm$ 0.0003   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0002  \\
354 <        mc   &  0.099 $\pm$ 0.0004   &  0.039 $\pm$ 0.0002   &  0.020 $\pm$ 0.0002   &  0.013 $\pm$ 0.0001   &  0.009 $\pm$ 0.0001  \\
355 <   data/mc   &     1.01 $\pm$ 0.01   &     1.05 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.06 $\pm$ 0.02   &     1.06 $\pm$ 0.03  \\
641 > $\mu$ + $\geq$1 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
642   \hline
643 +      data   &  0.106 $\pm$ 0.0004   &  0.043 $\pm$ 0.0003   &  0.023 $\pm$ 0.0002   &  0.014 $\pm$ 0.0002   &  0.010 $\pm$ 0.0001  \\
644 +        mc   &  0.106 $\pm$ 0.0004   &  0.042 $\pm$ 0.0003   &  0.021 $\pm$ 0.0002   &  0.013 $\pm$ 0.0002   &  0.009 $\pm$ 0.0001  \\
645 +   data/mc   &     1.00 $\pm$ 0.01   &     1.04 $\pm$ 0.01   &     1.06 $\pm$ 0.01   &     1.08 $\pm$ 0.02   &     1.07 $\pm$ 0.02  \\
646 +
647   \hline
358 e + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
648   \hline
649 <      data   &  0.105 $\pm$ 0.0020   &  0.042 $\pm$ 0.0013   &  0.021 $\pm$ 0.0009   &  0.013 $\pm$ 0.0007   &  0.009 $\pm$ 0.0006  \\
361 <        mc   &  0.109 $\pm$ 0.0011   &  0.043 $\pm$ 0.0007   &  0.021 $\pm$ 0.0005   &  0.013 $\pm$ 0.0004   &  0.009 $\pm$ 0.0003  \\
362 <   data/mc   &     0.96 $\pm$ 0.02   &     0.97 $\pm$ 0.03   &     1.00 $\pm$ 0.05   &     1.01 $\pm$ 0.06   &     0.97 $\pm$ 0.08  \\
649 > e + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
650   \hline
651 +      data   &  0.117 $\pm$ 0.0012   &  0.050 $\pm$ 0.0008   &  0.026 $\pm$ 0.0006   &  0.017 $\pm$ 0.0005   &  0.012 $\pm$ 0.0004  \\
652 +        mc   &  0.120 $\pm$ 0.0012   &  0.048 $\pm$ 0.0008   &  0.025 $\pm$ 0.0006   &  0.016 $\pm$ 0.0005   &  0.011 $\pm$ 0.0004  \\
653 +   data/mc   &     0.97 $\pm$ 0.01   &     1.05 $\pm$ 0.02   &     1.05 $\pm$ 0.03   &     1.07 $\pm$ 0.04   &     1.07 $\pm$ 0.05  \\
654 +
655   \hline
365 $\mu$ + $\geq$2 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
656   \hline
657 <      data   &  0.106 $\pm$ 0.0016   &  0.045 $\pm$ 0.0011   &  0.025 $\pm$ 0.0008   &  0.016 $\pm$ 0.0007   &  0.012 $\pm$ 0.0006  \\
368 <        mc   &  0.108 $\pm$ 0.0009   &  0.044 $\pm$ 0.0006   &  0.024 $\pm$ 0.0004   &  0.016 $\pm$ 0.0004   &  0.011 $\pm$ 0.0003  \\
369 <   data/mc   &     0.98 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.04 $\pm$ 0.04   &     1.04 $\pm$ 0.05   &     1.06 $\pm$ 0.06  \\
657 > $\mu$ + $\geq$2 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
658   \hline
659 +      data   &  0.111 $\pm$ 0.0010   &  0.048 $\pm$ 0.0007   &  0.026 $\pm$ 0.0005   &  0.018 $\pm$ 0.0004   &  0.013 $\pm$ 0.0004  \\
660 +        mc   &  0.115 $\pm$ 0.0010   &  0.048 $\pm$ 0.0006   &  0.025 $\pm$ 0.0005   &  0.016 $\pm$ 0.0004   &  0.012 $\pm$ 0.0003  \\
661 +   data/mc   &     0.97 $\pm$ 0.01   &     1.01 $\pm$ 0.02   &     1.04 $\pm$ 0.03   &     1.09 $\pm$ 0.04   &     1.09 $\pm$ 0.04  \\
662 +
663   \hline
372 e + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
664   \hline
665 <      data   &  0.117 $\pm$ 0.0055   &  0.051 $\pm$ 0.0038   &  0.029 $\pm$ 0.0029   &  0.018 $\pm$ 0.0023   &  0.012 $\pm$ 0.0019  \\
375 <        mc   &  0.120 $\pm$ 0.0031   &  0.052 $\pm$ 0.0021   &  0.027 $\pm$ 0.0015   &  0.018 $\pm$ 0.0012   &  0.013 $\pm$ 0.0011  \\
376 <   data/mc   &     0.97 $\pm$ 0.05   &     0.99 $\pm$ 0.08   &     1.10 $\pm$ 0.13   &     1.03 $\pm$ 0.15   &     0.91 $\pm$ 0.16  \\
665 > e + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
666   \hline
667 +      data   &  0.123 $\pm$ 0.0031   &  0.058 $\pm$ 0.0022   &  0.034 $\pm$ 0.0017   &  0.023 $\pm$ 0.0014   &  0.017 $\pm$ 0.0012  \\
668 +        mc   &  0.131 $\pm$ 0.0030   &  0.055 $\pm$ 0.0020   &  0.030 $\pm$ 0.0015   &  0.020 $\pm$ 0.0013   &  0.015 $\pm$ 0.0011  \\
669 +   data/mc   &     0.94 $\pm$ 0.03   &     1.06 $\pm$ 0.06   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10   &     1.17 $\pm$ 0.12  \\
670 +
671   \hline
379 $\mu$ + $\geq$3 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
672   \hline
673 <      data   &  0.111 $\pm$ 0.0044   &  0.050 $\pm$ 0.0030   &  0.029 $\pm$ 0.0024   &  0.019 $\pm$ 0.0019   &  0.014 $\pm$ 0.0017  \\
674 <        mc   &  0.115 $\pm$ 0.0025   &  0.051 $\pm$ 0.0017   &  0.030 $\pm$ 0.0013   &  0.020 $\pm$ 0.0011   &  0.015 $\pm$ 0.0009  \\
675 <   data/mc   &     0.97 $\pm$ 0.04   &     0.97 $\pm$ 0.07   &     0.95 $\pm$ 0.09   &     0.97 $\pm$ 0.11   &     0.99 $\pm$ 0.13  \\
673 > $\mu$ + $\geq$3 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
674 > \hline
675 >      data   &  0.121 $\pm$ 0.0025   &  0.055 $\pm$ 0.0018   &  0.033 $\pm$ 0.0014   &  0.022 $\pm$ 0.0011   &  0.017 $\pm$ 0.0010  \\
676 >        mc   &  0.120 $\pm$ 0.0024   &  0.052 $\pm$ 0.0016   &  0.029 $\pm$ 0.0012   &  0.019 $\pm$ 0.0010   &  0.014 $\pm$ 0.0009  \\
677 >   data/mc   &     1.01 $\pm$ 0.03   &     1.06 $\pm$ 0.05   &     1.14 $\pm$ 0.07   &     1.14 $\pm$ 0.08   &     1.16 $\pm$ 0.10  \\
678 >
679   \hline
680   \hline
681 < e + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
681 > e + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
682   \hline
683 <      data   &  0.113 $\pm$ 0.0148   &  0.048 $\pm$ 0.0100   &  0.033 $\pm$ 0.0083   &  0.020 $\pm$ 0.0065   &  0.017 $\pm$ 0.0062  \\
684 <        mc   &  0.146 $\pm$ 0.0092   &  0.064 $\pm$ 0.0064   &  0.034 $\pm$ 0.0048   &  0.024 $\pm$ 0.0040   &  0.021 $\pm$ 0.0037  \\
685 <   data/mc   &     0.78 $\pm$ 0.11   &     0.74 $\pm$ 0.17   &     0.96 $\pm$ 0.28   &     0.82 $\pm$ 0.30   &     0.85 $\pm$ 0.34  \\
683 >      data   &  0.129 $\pm$ 0.0080   &  0.070 $\pm$ 0.0061   &  0.044 $\pm$ 0.0049   &  0.031 $\pm$ 0.0042   &  0.021 $\pm$ 0.0034  \\
684 >        mc   &  0.132 $\pm$ 0.0075   &  0.059 $\pm$ 0.0053   &  0.035 $\pm$ 0.0041   &  0.025 $\pm$ 0.0035   &  0.017 $\pm$ 0.0029  \\
685 >   data/mc   &     0.98 $\pm$ 0.08   &     1.18 $\pm$ 0.15   &     1.26 $\pm$ 0.20   &     1.24 $\pm$ 0.24   &     1.18 $\pm$ 0.28  \\
686 >
687   \hline
688   \hline
689 < $\mu$ + $\geq$4 jets            &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
689 > $\mu$ + $\geq$4 jets   &           $>$ 1 GeV   &           $>$ 2 GeV   &           $>$ 3 GeV   &           $>$ 4 GeV   &           $>$ 5 GeV  \\
690   \hline
691 <      data   &  0.130 $\pm$ 0.0128   &  0.052 $\pm$ 0.0085   &  0.028 $\pm$ 0.0063   &  0.019 $\pm$ 0.0052   &  0.019 $\pm$ 0.0052  \\
692 <        mc   &  0.105 $\pm$ 0.0064   &  0.045 $\pm$ 0.0043   &  0.027 $\pm$ 0.0034   &  0.019 $\pm$ 0.0028   &  0.014 $\pm$ 0.0024  \\
693 <   data/mc   &     1.23 $\pm$ 0.14   &     1.18 $\pm$ 0.22   &     1.03 $\pm$ 0.27   &     1.01 $\pm$ 0.32   &     1.37 $\pm$ 0.45  \\
691 >      data   &  0.136 $\pm$ 0.0067   &  0.064 $\pm$ 0.0048   &  0.041 $\pm$ 0.0039   &  0.029 $\pm$ 0.0033   &  0.024 $\pm$ 0.0030  \\
692 >        mc   &  0.130 $\pm$ 0.0063   &  0.065 $\pm$ 0.0046   &  0.035 $\pm$ 0.0034   &  0.020 $\pm$ 0.0026   &  0.013 $\pm$ 0.0022  \\
693 >   data/mc   &     1.04 $\pm$ 0.07   &     0.99 $\pm$ 0.10   &     1.19 $\pm$ 0.16   &     1.47 $\pm$ 0.25   &     1.81 $\pm$ 0.37  \\
694 >
695   \hline
696   \hline
697  
# Line 403 | Line 700 | jet multiplicity requirements.}
700   \end{table}
701  
702  
406
703   %Figure.~\ref{fig:reliso} compares the relative track isolation
704   %for events with a track with $\pt > 10~\GeV$ in addition to a selected
705   %muon for $\Z+4$ jet events and various \ttll\ components. The
# Line 454 | Line 750 | jet multiplicity requirements.}
750   %END SECTION TO WRITE OUT
751  
752  
753 < {\bf fix me: What you have written in the next paragraph does not explain how $\epsilon_{fake}$ is measured.
754 < Why not measure $\epsilon_{fake}$ in the b-veto region?}
753 > %{\bf fix me: What you have written in the next paragraph does not
754 > %explain how $\epsilon_{fake}$ is measured.
755 > %Why not measure $\epsilon_{fake}$ in the b-veto region?}
756  
757   %A measurement of the $\epsilon_{fake}$ in data is non-trivial. However, it is
758   %possible to correct for differences in the $\epsilon_{fake}$ between data and MC by
# Line 483 | Line 780 | Why not measure $\epsilon_{fake}$ in the
780   %      \end{center}
781   %\end{figure}
782  
783 + \subsection{Summary of uncertainties}
784 + \label{sec:bgunc-bottomline}.
785 +
786 + THIS NEEDS TO BE WRITTEN

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines